1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
24 #include "legicrfsim.h"
28 #include "lfsampling.h"
30 #include "mifareutil.h"
38 // Craig Young - 14a stand-alone code
40 #include "iso14443a.h"
43 //=============================================================================
44 // A buffer where we can queue things up to be sent through the FPGA, for
45 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
46 // is the order in which they go out on the wire.
47 //=============================================================================
49 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
50 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
53 struct common_area common_area
__attribute__((section(".commonarea")));
55 void ToSendReset(void)
61 void ToSendStuffBit(int b
)
65 ToSend
[ToSendMax
] = 0;
70 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
75 if(ToSendMax
>= sizeof(ToSend
)) {
77 DbpString("ToSendStuffBit overflowed!");
81 //=============================================================================
82 // Debug print functions, to go out over USB, to the usual PC-side client.
83 //=============================================================================
85 void DbpString(char *str
)
87 byte_t len
= strlen(str
);
88 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
92 void DbpIntegers(int x1
, int x2
, int x3
)
94 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
98 void Dbprintf(const char *fmt
, ...) {
99 // should probably limit size here; oh well, let's just use a big buffer
100 char output_string
[128];
104 kvsprintf(fmt
, output_string
, 10, ap
);
107 DbpString(output_string
);
110 // prints HEX & ASCII
111 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
124 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
127 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
129 Dbprintf("%*D",l
,d
," ");
137 //-----------------------------------------------------------------------------
138 // Read an ADC channel and block till it completes, then return the result
139 // in ADC units (0 to 1023). Also a routine to average 32 samples and
141 //-----------------------------------------------------------------------------
142 static int ReadAdc(int ch
)
144 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
145 // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
146 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
149 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
151 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
153 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
154 AT91C_BASE_ADC
->ADC_MR
=
155 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
156 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
157 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
159 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
160 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
162 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
164 return AT91C_BASE_ADC
->ADC_CDR
[ch
] & 0x3ff;
167 int AvgAdc(int ch
) // was static - merlok
172 for(i
= 0; i
< 32; i
++) {
176 return (a
+ 15) >> 5;
179 static int AvgAdc_Voltage_HF(void)
181 int AvgAdc_Voltage_Low
, AvgAdc_Voltage_High
;
183 AvgAdc_Voltage_Low
= (MAX_ADC_HF_VOLTAGE_LOW
* AvgAdc(ADC_CHAN_HF_LOW
)) >> 10;
184 // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
185 if (AvgAdc_Voltage_Low
> MAX_ADC_HF_VOLTAGE_LOW
- 300) {
186 AvgAdc_Voltage_High
= (MAX_ADC_HF_VOLTAGE_HIGH
* AvgAdc(ADC_CHAN_HF_HIGH
)) >> 10;
187 if (AvgAdc_Voltage_High
>= AvgAdc_Voltage_Low
) {
188 return AvgAdc_Voltage_High
;
191 return AvgAdc_Voltage_Low
;
194 static int AvgAdc_Voltage_LF(void)
196 return (MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10;
199 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
201 int i
, adcval
= 0, peak
= 0;
204 * Sweeps the useful LF range of the proxmark from
205 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
206 * read the voltage in the antenna, the result left
207 * in the buffer is a graph which should clearly show
208 * the resonating frequency of your LF antenna
209 * ( hopefully around 95 if it is tuned to 125kHz!)
212 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
213 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
216 for (i
=255; i
>=19; i
--) {
218 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
220 adcval
= AvgAdc_Voltage_LF();
221 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
222 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
224 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
225 if(LF_Results
[i
] > peak
) {
227 peak
= LF_Results
[i
];
233 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
238 void MeasureAntennaTuningHfOnly(int *vHf
)
240 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
242 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
243 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
245 *vHf
= AvgAdc_Voltage_HF();
250 void MeasureAntennaTuning(int mode
)
252 uint8_t LF_Results
[256] = {0};
253 int peakv
= 0, peakf
= 0;
254 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
258 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
259 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
260 MeasureAntennaTuningHfOnly(&vHf
);
261 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
263 if (mode
& FLAG_TUNE_LF
) {
264 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
266 if (mode
& FLAG_TUNE_HF
) {
267 MeasureAntennaTuningHfOnly(&vHf
);
271 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
272 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
277 void MeasureAntennaTuningHf(void)
279 int vHf
= 0; // in mV
281 DbpString("Measuring HF antenna, press button to exit");
283 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
284 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
285 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
289 vHf
= AvgAdc_Voltage_HF();
291 Dbprintf("%d mV",vHf
);
292 if (BUTTON_PRESS()) break;
294 DbpString("cancelled");
296 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
301 void ReadMem(int addr
)
303 const uint8_t *data
= ((uint8_t *)addr
);
305 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
306 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
309 /* osimage version information is linked in */
310 extern struct version_information version_information
;
311 /* bootrom version information is pointed to from _bootphase1_version_pointer */
312 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
315 void SendVersion(void)
317 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
318 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
320 /* Try to find the bootrom version information. Expect to find a pointer at
321 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
322 * pointer, then use it.
324 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
325 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
326 strcat(VersionString
, "bootrom version information appears invalid\n");
328 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
329 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
332 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
333 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
335 for (int i
= 0; i
< fpga_bitstream_num
; i
++) {
336 strncat(VersionString
, fpga_version_information
[i
], sizeof(VersionString
) - strlen(VersionString
) - 1);
337 strncat(VersionString
, "\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
340 // test availability of SmartCard slot
341 if (I2C_is_available()) {
342 strncat(VersionString
, "SmartCard Slot: available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
344 strncat(VersionString
, "SmartCard Slot: not available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
347 // Send Chip ID and used flash memory
348 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
349 uint32_t compressed_data_section_size
= common_area
.arg1
;
350 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
353 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
354 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
355 void printUSBSpeed(void)
357 Dbprintf("USB Speed:");
358 Dbprintf(" Sending USB packets to client...");
360 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
361 uint8_t *test_data
= BigBuf_get_addr();
364 uint32_t start_time
= end_time
= GetTickCount();
365 uint32_t bytes_transferred
= 0;
368 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
369 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
370 end_time
= GetTickCount();
371 bytes_transferred
+= USB_CMD_DATA_SIZE
;
375 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
376 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
377 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
378 1000 * bytes_transferred
/ (end_time
- start_time
));
383 * Prints runtime information about the PM3.
385 void SendStatus(void)
387 BigBuf_print_status();
389 #ifdef WITH_SMARTCARD
392 printConfig(); //LF Sampling config
395 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
396 Dbprintf(" ToSendMax..........%d", ToSendMax
);
397 Dbprintf(" ToSendBit..........%d", ToSendBit
);
399 cmd_send(CMD_ACK
,1,0,0,0,0);
402 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
406 void StandAloneMode()
408 DbpString("Stand-alone mode! No PC necessary.");
409 // Oooh pretty -- notify user we're in elite samy mode now
411 LED(LED_ORANGE
, 200);
413 LED(LED_ORANGE
, 200);
415 LED(LED_ORANGE
, 200);
417 LED(LED_ORANGE
, 200);
426 #ifdef WITH_ISO14443a_StandAlone
427 void StandAloneMode14a()
430 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
433 bool playing
= false, GotoRecord
= false, GotoClone
= false;
434 bool cardRead
[OPTS
] = {false};
435 uint8_t readUID
[10] = {0};
436 uint32_t uid_1st
[OPTS
]={0};
437 uint32_t uid_2nd
[OPTS
]={0};
438 uint32_t uid_tmp1
= 0;
439 uint32_t uid_tmp2
= 0;
440 iso14a_card_select_t hi14a_card
[OPTS
];
442 LED(selected
+ 1, 0);
450 if (GotoRecord
|| !cardRead
[selected
])
454 LED(selected
+ 1, 0);
458 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
459 /* need this delay to prevent catching some weird data */
461 /* Code for reading from 14a tag */
462 uint8_t uid
[10] ={0};
464 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
469 if (BUTTON_PRESS()) {
470 if (cardRead
[selected
]) {
471 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
474 else if (cardRead
[(selected
+1)%OPTS
]) {
475 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
476 selected
= (selected
+1)%OPTS
;
480 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
484 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
488 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
489 memcpy(readUID
,uid
,10*sizeof(uint8_t));
490 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
491 // Set UID byte order
492 for (int i
=0; i
<4; i
++)
494 dst
= (uint8_t *)&uid_tmp2
;
495 for (int i
=0; i
<4; i
++)
497 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
498 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
502 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
503 uid_1st
[selected
] = (uid_tmp1
)>>8;
504 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
507 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
508 uid_1st
[selected
] = uid_tmp1
;
509 uid_2nd
[selected
] = uid_tmp2
;
515 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
516 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
519 LED(LED_ORANGE
, 200);
521 LED(LED_ORANGE
, 200);
524 LED(selected
+ 1, 0);
526 // Next state is replay:
529 cardRead
[selected
] = true;
531 /* MF Classic UID clone */
536 LED(selected
+ 1, 0);
537 LED(LED_ORANGE
, 250);
541 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
543 // wait for button to be released
544 while(BUTTON_PRESS())
546 // Delay cloning until card is in place
549 Dbprintf("Starting clone. [Bank: %u]", selected
);
550 // need this delay to prevent catching some weird data
552 // Begin clone function here:
553 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
554 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
555 memcpy(c.d.asBytes, data, 16);
558 Block read is similar:
559 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
560 We need to imitate that call with blockNo 0 to set a uid.
562 The get and set commands are handled in this file:
563 // Work with "magic Chinese" card
564 case CMD_MIFARE_CSETBLOCK:
565 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
567 case CMD_MIFARE_CGETBLOCK:
568 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
571 mfCSetUID provides example logic for UID set workflow:
572 -Read block0 from card in field with MifareCGetBlock()
573 -Configure new values without replacing reserved bytes
574 memcpy(block0, uid, 4); // Copy UID bytes from byte array
576 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
577 Bytes 5-7 are reserved SAK and ATQA for mifare classic
578 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
580 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
581 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
582 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
583 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
584 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
588 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
589 memcpy(newBlock0
,oldBlock0
,16);
590 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
592 newBlock0
[0] = uid_1st
[selected
]>>24;
593 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
594 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
595 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
596 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
597 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
598 MifareCSetBlock(0, 0xFF,0, newBlock0
);
599 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
600 if (memcmp(testBlock0
,newBlock0
,16)==0)
602 DbpString("Cloned successfull!");
603 cardRead
[selected
] = false; // Only if the card was cloned successfully should we clear it
606 selected
= (selected
+1) % OPTS
;
609 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
614 LED(selected
+ 1, 0);
617 // Change where to record (or begin playing)
618 else if (playing
) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
621 LED(selected
+ 1, 0);
623 // Begin transmitting
625 DbpString("Playing");
628 int button_action
= BUTTON_HELD(1000);
629 if (button_action
== 0) { // No button action, proceed with sim
630 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
631 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
632 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
633 DbpString("Mifare Classic");
634 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
636 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
637 DbpString("Mifare Ultralight");
638 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
640 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
641 DbpString("Mifare DESFire");
642 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
645 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
646 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
649 else if (button_action
== BUTTON_SINGLE_CLICK
) {
650 selected
= (selected
+ 1) % OPTS
;
651 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
655 else if (button_action
== BUTTON_HOLD
) {
656 Dbprintf("Playtime over. Begin cloning...");
663 /* We pressed a button so ignore it here with a delay */
666 LED(selected
+ 1, 0);
670 #elif WITH_LF_StandAlone
671 // samy's sniff and repeat routine
675 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
677 int tops
[OPTS
], high
[OPTS
], low
[OPTS
];
682 // Turn on selected LED
683 LED(selected
+ 1, 0);
690 // Was our button held down or pressed?
691 int button_pressed
= BUTTON_HELD(1000);
694 // Button was held for a second, begin recording
695 if (button_pressed
> 0 && cardRead
== 0)
698 LED(selected
+ 1, 0);
702 DbpString("Starting recording");
704 // wait for button to be released
705 while(BUTTON_PRESS())
708 /* need this delay to prevent catching some weird data */
711 CmdHIDdemodFSK(1, &tops
[selected
], &high
[selected
], &low
[selected
], 0);
712 if (tops
[selected
] > 0)
713 Dbprintf("Recorded %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
715 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
718 LED(selected
+ 1, 0);
719 // Finished recording
721 // If we were previously playing, set playing off
722 // so next button push begins playing what we recorded
729 else if (button_pressed
> 0 && cardRead
== 1)
732 LED(selected
+ 1, 0);
736 if (tops
[selected
] > 0)
737 Dbprintf("Cloning %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
739 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
741 // wait for button to be released
742 while(BUTTON_PRESS())
745 /* need this delay to prevent catching some weird data */
748 CopyHIDtoT55x7(tops
[selected
] & 0x000FFFFF, high
[selected
], low
[selected
], (tops
[selected
] != 0 && ((high
[selected
]& 0xFFFFFFC0) != 0)), 0x1D);
749 if (tops
[selected
] > 0)
750 Dbprintf("Cloned %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
752 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
755 LED(selected
+ 1, 0);
756 // Finished recording
758 // If we were previously playing, set playing off
759 // so next button push begins playing what we recorded
766 // Change where to record (or begin playing)
767 else if (button_pressed
)
769 // Next option if we were previously playing
771 selected
= (selected
+ 1) % OPTS
;
775 LED(selected
+ 1, 0);
777 // Begin transmitting
781 DbpString("Playing");
782 // wait for button to be released
783 while(BUTTON_PRESS())
785 if (tops
[selected
] > 0)
786 Dbprintf("%x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
788 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
790 CmdHIDsimTAG(tops
[selected
], high
[selected
], low
[selected
], 0);
791 DbpString("Done playing");
792 if (BUTTON_HELD(1000) > 0)
794 DbpString("Exiting");
799 /* We pressed a button so ignore it here with a delay */
802 // when done, we're done playing, move to next option
803 selected
= (selected
+ 1) % OPTS
;
806 LED(selected
+ 1, 0);
809 while(BUTTON_PRESS())
818 Listen and detect an external reader. Determine the best location
822 Inside the ListenReaderField() function, there is two mode.
823 By default, when you call the function, you will enter mode 1.
824 If you press the PM3 button one time, you will enter mode 2.
825 If you press the PM3 button a second time, you will exit the function.
827 DESCRIPTION OF MODE 1:
828 This mode just listens for an external reader field and lights up green
829 for HF and/or red for LF. This is the original mode of the detectreader
832 DESCRIPTION OF MODE 2:
833 This mode will visually represent, using the LEDs, the actual strength of the
834 current compared to the maximum current detected. Basically, once you know
835 what kind of external reader is present, it will help you spot the best location to place
836 your antenna. You will probably not get some good results if there is a LF and a HF reader
837 at the same place! :-)
841 static const char LIGHT_SCHEME
[] = {
842 0x0, /* ---- | No field detected */
843 0x1, /* X--- | 14% of maximum current detected */
844 0x2, /* -X-- | 29% of maximum current detected */
845 0x4, /* --X- | 43% of maximum current detected */
846 0x8, /* ---X | 57% of maximum current detected */
847 0xC, /* --XX | 71% of maximum current detected */
848 0xE, /* -XXX | 86% of maximum current detected */
849 0xF, /* XXXX | 100% of maximum current detected */
851 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
853 void ListenReaderField(int limit
)
855 int lf_av
, lf_av_new
=0, lf_baseline
= 0, lf_max
;
856 int hf_av
, hf_av_new
=0, hf_baseline
= 0, hf_max
;
857 int mode
=1, display_val
, display_max
, i
;
861 #define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
862 #define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
863 #define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
866 // switch off FPGA - we don't want to measure our own signal
867 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
868 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
872 lf_av
= lf_max
= AvgAdc_Voltage_LF();
874 if(limit
!= HF_ONLY
) {
875 Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av
);
879 hf_av
= hf_max
= AvgAdc_Voltage_HF();
881 if (limit
!= LF_ONLY
) {
882 Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av
);
888 if (BUTTON_PRESS()) {
892 DbpString("Signal Strength Mode");
896 DbpString("Stopped");
901 while (BUTTON_PRESS());
905 if (limit
!= HF_ONLY
) {
907 if (lf_av
- lf_baseline
> MIN_LF_FIELD
)
913 lf_av_new
= AvgAdc_Voltage_LF();
914 // see if there's a significant change
915 if (ABS((lf_av
- lf_av_new
)*100/(lf_av
?lf_av
:1)) > REPORT_CHANGE_PERCENT
) {
916 Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new
);
923 if (limit
!= LF_ONLY
) {
925 if (hf_av
- hf_baseline
> MIN_HF_FIELD
)
931 hf_av_new
= AvgAdc_Voltage_HF();
933 // see if there's a significant change
934 if (ABS((hf_av
- hf_av_new
)*100/(hf_av
?hf_av
:1)) > REPORT_CHANGE_PERCENT
) {
935 Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new
);
943 if (limit
== LF_ONLY
) {
945 display_max
= lf_max
;
946 } else if (limit
== HF_ONLY
) {
948 display_max
= hf_max
;
949 } else { /* Pick one at random */
950 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
952 display_max
= hf_max
;
955 display_max
= lf_max
;
958 for (i
=0; i
<LIGHT_LEN
; i
++) {
959 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
960 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
961 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
962 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
963 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
971 void UsbPacketReceived(uint8_t *packet
, int len
)
973 UsbCommand
*c
= (UsbCommand
*)packet
;
975 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
979 case CMD_SET_LF_SAMPLING_CONFIG
:
980 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
982 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
983 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
985 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
986 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
988 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
989 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
991 case CMD_HID_DEMOD_FSK
:
992 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 0, 1);
994 case CMD_HID_SIM_TAG
:
995 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], 1);
997 case CMD_FSK_SIM_TAG
:
998 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1000 case CMD_ASK_SIM_TAG
:
1001 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1003 case CMD_PSK_SIM_TAG
:
1004 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1006 case CMD_HID_CLONE_TAG
:
1007 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x1D);
1009 case CMD_PARADOX_CLONE_TAG
:
1010 // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
1011 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x0F);
1013 case CMD_IO_DEMOD_FSK
:
1014 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
1016 case CMD_IO_CLONE_TAG
:
1017 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
1019 case CMD_EM410X_DEMOD
:
1020 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
1022 case CMD_EM410X_WRITE_TAG
:
1023 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1025 case CMD_READ_TI_TYPE
:
1028 case CMD_WRITE_TI_TYPE
:
1029 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
1031 case CMD_SIMULATE_TAG_125K
:
1033 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
1036 case CMD_LF_SIMULATE_BIDIR
:
1037 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
1039 case CMD_INDALA_CLONE_TAG
:
1040 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
1042 case CMD_INDALA_CLONE_TAG_L
:
1043 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
1045 case CMD_T55XX_READ_BLOCK
:
1046 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1048 case CMD_T55XX_WRITE_BLOCK
:
1049 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1051 case CMD_T55XX_WAKEUP
:
1052 T55xxWakeUp(c
->arg
[0]);
1054 case CMD_T55XX_RESET_READ
:
1057 case CMD_PCF7931_READ
:
1060 case CMD_PCF7931_WRITE
:
1061 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1063 case CMD_PCF7931_BRUTEFORCE
:
1064 BruteForcePCF7931(c
->arg
[0], (c
->arg
[1] & 0xFF), c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128);
1066 case CMD_EM4X_READ_WORD
:
1067 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1069 case CMD_EM4X_WRITE_WORD
:
1070 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1072 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1073 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1075 case CMD_VIKING_CLONE_TAG
:
1076 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1084 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1085 SnoopHitag(c
->arg
[0]);
1087 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1088 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1090 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1091 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1093 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1094 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1096 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1097 check_challenges_cmd((bool)c
->arg
[0], (byte_t
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1]);
1099 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1100 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], false);
1102 case CMD_READ_HITAG_S_BLK
:
1103 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], true);
1105 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1106 if ((hitag_function
)c
->arg
[0] < 10) {
1107 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1109 else if ((hitag_function
)c
->arg
[0] >= 10) {
1110 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1115 #ifdef WITH_ISO15693
1116 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1117 AcquireRawAdcSamplesIso15693();
1120 case CMD_SNOOP_ISO_15693
:
1124 case CMD_ISO_15693_COMMAND
:
1125 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1128 case CMD_ISO_15693_FIND_AFI
:
1129 BruteforceIso15693Afi(c
->arg
[0]);
1132 case CMD_ISO_15693_DEBUG
:
1133 SetDebugIso15693(c
->arg
[0]);
1136 case CMD_READER_ISO_15693
:
1137 ReaderIso15693(c
->arg
[0]);
1139 case CMD_SIMTAG_ISO_15693
:
1140 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1145 case CMD_SIMULATE_TAG_LEGIC_RF
:
1146 LegicRfSimulate(c
->arg
[0]);
1149 case CMD_WRITER_LEGIC_RF
:
1150 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1153 case CMD_READER_LEGIC_RF
:
1154 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1158 #ifdef WITH_ISO14443b
1159 case CMD_READ_SRI512_TAG
:
1160 ReadSTMemoryIso14443b(0x0F);
1162 case CMD_READ_SRIX4K_TAG
:
1163 ReadSTMemoryIso14443b(0x7F);
1165 case CMD_SNOOP_ISO_14443B
:
1168 case CMD_SIMULATE_TAG_ISO_14443B
:
1169 SimulateIso14443bTag();
1171 case CMD_ISO_14443B_COMMAND
:
1172 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1176 #ifdef WITH_ISO14443a
1177 case CMD_SNOOP_ISO_14443a
:
1178 SnoopIso14443a(c
->arg
[0]);
1180 case CMD_READER_ISO_14443a
:
1183 case CMD_SIMULATE_TAG_ISO_14443a
:
1184 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1187 case CMD_EPA_PACE_COLLECT_NONCE
:
1188 EPA_PACE_Collect_Nonce(c
);
1190 case CMD_EPA_PACE_REPLAY
:
1194 case CMD_READER_MIFARE
:
1195 ReaderMifare(c
->arg
[0]);
1197 case CMD_MIFARE_READBL
:
1198 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1200 case CMD_MIFAREU_READBL
:
1201 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1203 case CMD_MIFAREUC_AUTH
:
1204 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1206 case CMD_MIFAREU_READCARD
:
1207 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1209 case CMD_MIFAREUC_SETPWD
:
1210 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1212 case CMD_MIFARE_READSC
:
1213 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1215 case CMD_MIFARE_WRITEBL
:
1216 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1218 //case CMD_MIFAREU_WRITEBL_COMPAT:
1219 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1221 case CMD_MIFAREU_WRITEBL
:
1222 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1224 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1225 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1227 case CMD_MIFARE_NESTED
:
1228 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1230 case CMD_MIFARE_CHKKEYS
:
1231 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1233 case CMD_SIMULATE_MIFARE_CARD
:
1234 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1238 case CMD_MIFARE_SET_DBGMODE
:
1239 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1241 case CMD_MIFARE_EML_MEMCLR
:
1242 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1244 case CMD_MIFARE_EML_MEMSET
:
1245 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1247 case CMD_MIFARE_EML_MEMGET
:
1248 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1250 case CMD_MIFARE_EML_CARDLOAD
:
1251 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1254 // Work with "magic Chinese" card
1255 case CMD_MIFARE_CWIPE
:
1256 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1258 case CMD_MIFARE_CSETBLOCK
:
1259 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1261 case CMD_MIFARE_CGETBLOCK
:
1262 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1264 case CMD_MIFARE_CIDENT
:
1269 case CMD_MIFARE_SNIFFER
:
1270 SniffMifare(c
->arg
[0]);
1276 // Makes use of ISO14443a FPGA Firmware
1277 case CMD_SNOOP_ICLASS
:
1280 case CMD_SIMULATE_TAG_ICLASS
:
1281 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1283 case CMD_READER_ICLASS
:
1284 ReaderIClass(c
->arg
[0]);
1286 case CMD_READER_ICLASS_REPLAY
:
1287 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1289 case CMD_ICLASS_EML_MEMSET
:
1290 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1292 case CMD_ICLASS_WRITEBLOCK
:
1293 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1295 case CMD_ICLASS_READCHECK
: // auth step 1
1296 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1298 case CMD_ICLASS_READBLOCK
:
1299 iClass_ReadBlk(c
->arg
[0]);
1301 case CMD_ICLASS_AUTHENTICATION
: //check
1302 iClass_Authentication(c
->d
.asBytes
);
1304 case CMD_ICLASS_DUMP
:
1305 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1307 case CMD_ICLASS_CLONE
:
1308 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1312 case CMD_HF_SNIFFER
:
1313 HfSnoop(c
->arg
[0], c
->arg
[1]);
1316 #ifdef WITH_SMARTCARD
1317 case CMD_SMART_ATR
: {
1321 case CMD_SMART_SETCLOCK
:{
1322 SmartCardSetClock(c
->arg
[0]);
1325 case CMD_SMART_RAW
: {
1326 SmartCardRaw(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1329 case CMD_SMART_UPLOAD
: {
1330 // upload file from client
1331 uint8_t *mem
= BigBuf_get_addr();
1332 memcpy( mem
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1333 cmd_send(CMD_ACK
,1,0,0,0,0);
1336 case CMD_SMART_UPGRADE
: {
1337 SmartCardUpgrade(c
->arg
[0]);
1342 case CMD_BUFF_CLEAR
:
1346 case CMD_MEASURE_ANTENNA_TUNING
:
1347 MeasureAntennaTuning(c
->arg
[0]);
1350 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1351 MeasureAntennaTuningHf();
1354 case CMD_LISTEN_READER_FIELD
:
1355 ListenReaderField(c
->arg
[0]);
1358 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1359 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1361 LED_D_OFF(); // LED D indicates field ON or OFF
1364 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1367 uint8_t *BigBuf
= BigBuf_get_addr();
1368 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1369 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1370 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1372 // Trigger a finish downloading signal with an ACK frame
1373 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1377 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1378 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1379 // to be able to use this one for uploading data to device
1380 // arg1 = 0 upload for LF usage
1381 // 1 upload for HF usage
1383 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1385 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1387 uint8_t *b
= BigBuf_get_addr();
1388 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1389 cmd_send(CMD_ACK
,0,0,0,0,0);
1396 case CMD_SET_LF_DIVISOR
:
1397 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1398 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1401 case CMD_SET_ADC_MUX
:
1403 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1404 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1405 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1406 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1417 cmd_send(CMD_ACK
,0,0,0,0,0);
1427 case CMD_SETUP_WRITE
:
1428 case CMD_FINISH_WRITE
:
1429 case CMD_HARDWARE_RESET
:
1433 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1435 // We're going to reset, and the bootrom will take control.
1439 case CMD_START_FLASH
:
1440 if(common_area
.flags
.bootrom_present
) {
1441 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1444 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1448 case CMD_DEVICE_INFO
: {
1449 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1450 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1451 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1455 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1460 void __attribute__((noreturn
)) AppMain(void)
1464 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1465 /* Initialize common area */
1466 memset(&common_area
, 0, sizeof(common_area
));
1467 common_area
.magic
= COMMON_AREA_MAGIC
;
1468 common_area
.version
= 1;
1470 common_area
.flags
.osimage_present
= 1;
1480 // The FPGA gets its clock from us from PCK0 output, so set that up.
1481 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1482 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1483 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1484 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1485 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1486 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1487 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1490 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1492 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1494 // Load the FPGA image, which we have stored in our flash.
1495 // (the HF version by default)
1496 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1504 byte_t rx
[sizeof(UsbCommand
)];
1509 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1511 UsbPacketReceived(rx
,rx_len
);
1516 #ifdef WITH_LF_StandAlone
1517 #ifndef WITH_ISO14443a_StandAlone
1518 if (BUTTON_HELD(1000) > 0)
1522 #ifdef WITH_ISO14443a
1523 #ifdef WITH_ISO14443a_StandAlone
1524 if (BUTTON_HELD(1000) > 0)
1525 StandAloneMode14a();