]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
1348ef0473124bb8317689c97d8a55bbad9fc8c3
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include <stdarg.h>
14
15 #include "usb_cdc.h"
16 #include "cmd.h"
17 #include "proxmark3.h"
18 #include "apps.h"
19 #include "fpga.h"
20 #include "util.h"
21 #include "printf.h"
22 #include "string.h"
23 #include "legicrf.h"
24 #include "legicrfsim.h"
25 #include "hitag2.h"
26 #include "hitagS.h"
27 #include "iso15693.h"
28 #include "lfsampling.h"
29 #include "BigBuf.h"
30 #include "mifareutil.h"
31 #include "pcf7931.h"
32 #include "i2c.h"
33 #ifdef WITH_LCD
34 #include "LCD.h"
35 #endif
36
37
38 // Craig Young - 14a stand-alone code
39 #ifdef WITH_ISO14443a
40 #include "iso14443a.h"
41 #endif
42
43 //=============================================================================
44 // A buffer where we can queue things up to be sent through the FPGA, for
45 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
46 // is the order in which they go out on the wire.
47 //=============================================================================
48
49 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
50 uint8_t ToSend[TOSEND_BUFFER_SIZE];
51 int ToSendMax;
52 static int ToSendBit;
53 struct common_area common_area __attribute__((section(".commonarea")));
54
55 void ToSendReset(void)
56 {
57 ToSendMax = -1;
58 ToSendBit = 8;
59 }
60
61 void ToSendStuffBit(int b)
62 {
63 if(ToSendBit >= 8) {
64 ToSendMax++;
65 ToSend[ToSendMax] = 0;
66 ToSendBit = 0;
67 }
68
69 if(b) {
70 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
71 }
72
73 ToSendBit++;
74
75 if(ToSendMax >= sizeof(ToSend)) {
76 ToSendBit = 0;
77 DbpString("ToSendStuffBit overflowed!");
78 }
79 }
80
81 //=============================================================================
82 // Debug print functions, to go out over USB, to the usual PC-side client.
83 //=============================================================================
84
85 void DbpString(char *str)
86 {
87 byte_t len = strlen(str);
88 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
89 }
90
91 #if 0
92 void DbpIntegers(int x1, int x2, int x3)
93 {
94 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
95 }
96 #endif
97
98 void Dbprintf(const char *fmt, ...) {
99 // should probably limit size here; oh well, let's just use a big buffer
100 char output_string[128];
101 va_list ap;
102
103 va_start(ap, fmt);
104 kvsprintf(fmt, output_string, 10, ap);
105 va_end(ap);
106
107 DbpString(output_string);
108 }
109
110 // prints HEX & ASCII
111 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
112 int l=0,i;
113 char ascii[9];
114
115 while (len>0) {
116 if (len>8) l=8;
117 else l=len;
118
119 memcpy(ascii,d,l);
120 ascii[l]=0;
121
122 // filter safe ascii
123 for (i=0;i<l;i++)
124 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
125
126 if (bAsci) {
127 Dbprintf("%-8s %*D",ascii,l,d," ");
128 } else {
129 Dbprintf("%*D",l,d," ");
130 }
131
132 len-=8;
133 d+=8;
134 }
135 }
136
137 //-----------------------------------------------------------------------------
138 // Read an ADC channel and block till it completes, then return the result
139 // in ADC units (0 to 1023). Also a routine to average 32 samples and
140 // return that.
141 //-----------------------------------------------------------------------------
142 static int ReadAdc(int ch)
143 {
144 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
145 // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
146 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
147 //
148 // The maths are:
149 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
150 //
151 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
152
153 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
154 AT91C_BASE_ADC->ADC_MR =
155 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
156 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
157 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
158
159 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
160 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
161
162 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {};
163
164 return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff;
165 }
166
167 int AvgAdc(int ch) // was static - merlok
168 {
169 int i;
170 int a = 0;
171
172 for(i = 0; i < 32; i++) {
173 a += ReadAdc(ch);
174 }
175
176 return (a + 15) >> 5;
177 }
178
179 static int AvgAdc_Voltage_HF(void)
180 {
181 int AvgAdc_Voltage_Low, AvgAdc_Voltage_High;
182
183 AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
184 // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
185 if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) {
186 AvgAdc_Voltage_High = (MAX_ADC_HF_VOLTAGE_HIGH * AvgAdc(ADC_CHAN_HF_HIGH)) >> 10;
187 if (AvgAdc_Voltage_High >= AvgAdc_Voltage_Low) {
188 return AvgAdc_Voltage_High;
189 }
190 }
191 return AvgAdc_Voltage_Low;
192 }
193
194 static int AvgAdc_Voltage_LF(void)
195 {
196 return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10;
197 }
198
199 void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[])
200 {
201 int i, adcval = 0, peak = 0;
202
203 /*
204 * Sweeps the useful LF range of the proxmark from
205 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
206 * read the voltage in the antenna, the result left
207 * in the buffer is a graph which should clearly show
208 * the resonating frequency of your LF antenna
209 * ( hopefully around 95 if it is tuned to 125kHz!)
210 */
211
212 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
213 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
214 SpinDelay(50);
215
216 for (i=255; i>=19; i--) {
217 WDT_HIT();
218 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
219 SpinDelay(20);
220 adcval = AvgAdc_Voltage_LF();
221 if (i==95) *vLf125 = adcval; // voltage at 125Khz
222 if (i==89) *vLf134 = adcval; // voltage at 134Khz
223
224 LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
225 if(LF_Results[i] > peak) {
226 *peakv = adcval;
227 peak = LF_Results[i];
228 *peakf = i;
229 //ptr = i;
230 }
231 }
232
233 for (i=18; i >= 0; i--) LF_Results[i] = 0;
234
235 return;
236 }
237
238 void MeasureAntennaTuningHfOnly(int *vHf)
239 {
240 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
241 LED_A_ON();
242 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
243 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
244 SpinDelay(20);
245 *vHf = AvgAdc_Voltage_HF();
246 LED_A_OFF();
247 return;
248 }
249
250 void MeasureAntennaTuning(int mode)
251 {
252 uint8_t LF_Results[256] = {0};
253 int peakv = 0, peakf = 0;
254 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
255
256 LED_B_ON();
257
258 if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) {
259 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
260 MeasureAntennaTuningHfOnly(&vHf);
261 MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
262 } else {
263 if (mode & FLAG_TUNE_LF) {
264 MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
265 }
266 if (mode & FLAG_TUNE_HF) {
267 MeasureAntennaTuningHfOnly(&vHf);
268 }
269 }
270
271 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125>>1 | (vLf134>>1<<16), vHf, peakf | (peakv>>1<<16), LF_Results, 256);
272 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
273 LED_B_OFF();
274 return;
275 }
276
277 void MeasureAntennaTuningHf(void)
278 {
279 int vHf = 0; // in mV
280
281 DbpString("Measuring HF antenna, press button to exit");
282
283 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
284 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
285 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
286
287 for (;;) {
288 SpinDelay(500);
289 vHf = AvgAdc_Voltage_HF();
290
291 Dbprintf("%d mV",vHf);
292 if (BUTTON_PRESS()) break;
293 }
294 DbpString("cancelled");
295
296 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
297
298 }
299
300
301 void ReadMem(int addr)
302 {
303 const uint8_t *data = ((uint8_t *)addr);
304
305 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
306 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
307 }
308
309 /* osimage version information is linked in */
310 extern struct version_information version_information;
311 /* bootrom version information is pointed to from _bootphase1_version_pointer */
312 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
313
314
315 void SendVersion(void)
316 {
317 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
318 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
319
320 /* Try to find the bootrom version information. Expect to find a pointer at
321 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
322 * pointer, then use it.
323 */
324 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
325 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
326 strcat(VersionString, "bootrom version information appears invalid\n");
327 } else {
328 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
329 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
330 }
331
332 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
333 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
334
335 for (int i = 0; i < fpga_bitstream_num; i++) {
336 strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1);
337 strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1);
338 }
339
340 // test availability of SmartCard slot
341 if (I2C_is_available()) {
342 strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1);
343 } else {
344 strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1);
345 }
346
347 // Send Chip ID and used flash memory
348 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
349 uint32_t compressed_data_section_size = common_area.arg1;
350 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
351 }
352
353 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
354 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
355 void printUSBSpeed(void)
356 {
357 Dbprintf("USB Speed:");
358 Dbprintf(" Sending USB packets to client...");
359
360 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
361 uint8_t *test_data = BigBuf_get_addr();
362 uint32_t end_time;
363
364 uint32_t start_time = end_time = GetTickCount();
365 uint32_t bytes_transferred = 0;
366
367 LED_B_ON();
368 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
369 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
370 end_time = GetTickCount();
371 bytes_transferred += USB_CMD_DATA_SIZE;
372 }
373 LED_B_OFF();
374
375 Dbprintf(" Time elapsed: %dms", end_time - start_time);
376 Dbprintf(" Bytes transferred: %d", bytes_transferred);
377 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
378 1000 * bytes_transferred / (end_time - start_time));
379
380 }
381
382 /**
383 * Prints runtime information about the PM3.
384 **/
385 void SendStatus(void)
386 {
387 BigBuf_print_status();
388 Fpga_print_status();
389 #ifdef WITH_SMARTCARD
390 I2C_print_status();
391 #endif
392 printConfig(); //LF Sampling config
393 printUSBSpeed();
394 Dbprintf("Various");
395 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
396 Dbprintf(" ToSendMax..........%d", ToSendMax);
397 Dbprintf(" ToSendBit..........%d", ToSendBit);
398
399 cmd_send(CMD_ACK,1,0,0,0,0);
400 }
401
402 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
403
404 #define OPTS 2
405
406 void StandAloneMode()
407 {
408 DbpString("Stand-alone mode! No PC necessary.");
409 // Oooh pretty -- notify user we're in elite samy mode now
410 LED(LED_RED, 200);
411 LED(LED_ORANGE, 200);
412 LED(LED_GREEN, 200);
413 LED(LED_ORANGE, 200);
414 LED(LED_RED, 200);
415 LED(LED_ORANGE, 200);
416 LED(LED_GREEN, 200);
417 LED(LED_ORANGE, 200);
418 LED(LED_RED, 200);
419
420 }
421
422 #endif
423
424
425
426 #ifdef WITH_ISO14443a_StandAlone
427 void StandAloneMode14a()
428 {
429 StandAloneMode();
430 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
431
432 int selected = 0;
433 bool playing = false, GotoRecord = false, GotoClone = false;
434 bool cardRead[OPTS] = {false};
435 uint8_t readUID[10] = {0};
436 uint32_t uid_1st[OPTS]={0};
437 uint32_t uid_2nd[OPTS]={0};
438 uint32_t uid_tmp1 = 0;
439 uint32_t uid_tmp2 = 0;
440 iso14a_card_select_t hi14a_card[OPTS];
441
442 LED(selected + 1, 0);
443
444 for (;;)
445 {
446 usb_poll();
447 WDT_HIT();
448 SpinDelay(300);
449
450 if (GotoRecord || !cardRead[selected])
451 {
452 GotoRecord = false;
453 LEDsoff();
454 LED(selected + 1, 0);
455 LED(LED_RED2, 0);
456
457 // record
458 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
459 /* need this delay to prevent catching some weird data */
460 SpinDelay(500);
461 /* Code for reading from 14a tag */
462 uint8_t uid[10] ={0};
463 uint32_t cuid;
464 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
465
466 for ( ; ; )
467 {
468 WDT_HIT();
469 if (BUTTON_PRESS()) {
470 if (cardRead[selected]) {
471 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
472 break;
473 }
474 else if (cardRead[(selected+1)%OPTS]) {
475 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
476 selected = (selected+1)%OPTS;
477 break;
478 }
479 else {
480 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
481 SpinDelay(300);
482 }
483 }
484 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true))
485 continue;
486 else
487 {
488 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
489 memcpy(readUID,uid,10*sizeof(uint8_t));
490 uint8_t *dst = (uint8_t *)&uid_tmp1;
491 // Set UID byte order
492 for (int i=0; i<4; i++)
493 dst[i] = uid[3-i];
494 dst = (uint8_t *)&uid_tmp2;
495 for (int i=0; i<4; i++)
496 dst[i] = uid[7-i];
497 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
498 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
499 }
500 else {
501 if (uid_tmp2) {
502 Dbprintf("Bank[%d] received a 7-byte UID",selected);
503 uid_1st[selected] = (uid_tmp1)>>8;
504 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
505 }
506 else {
507 Dbprintf("Bank[%d] received a 4-byte UID",selected);
508 uid_1st[selected] = uid_tmp1;
509 uid_2nd[selected] = uid_tmp2;
510 }
511 break;
512 }
513 }
514 }
515 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
516 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
517 LEDsoff();
518 LED(LED_GREEN, 200);
519 LED(LED_ORANGE, 200);
520 LED(LED_GREEN, 200);
521 LED(LED_ORANGE, 200);
522
523 LEDsoff();
524 LED(selected + 1, 0);
525
526 // Next state is replay:
527 playing = true;
528
529 cardRead[selected] = true;
530 }
531 /* MF Classic UID clone */
532 else if (GotoClone)
533 {
534 GotoClone=false;
535 LEDsoff();
536 LED(selected + 1, 0);
537 LED(LED_ORANGE, 250);
538
539
540 // record
541 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
542
543 // wait for button to be released
544 while(BUTTON_PRESS())
545 {
546 // Delay cloning until card is in place
547 WDT_HIT();
548 }
549 Dbprintf("Starting clone. [Bank: %u]", selected);
550 // need this delay to prevent catching some weird data
551 SpinDelay(500);
552 // Begin clone function here:
553 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
554 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
555 memcpy(c.d.asBytes, data, 16);
556 SendCommand(&c);
557
558 Block read is similar:
559 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
560 We need to imitate that call with blockNo 0 to set a uid.
561
562 The get and set commands are handled in this file:
563 // Work with "magic Chinese" card
564 case CMD_MIFARE_CSETBLOCK:
565 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
566 break;
567 case CMD_MIFARE_CGETBLOCK:
568 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
569 break;
570
571 mfCSetUID provides example logic for UID set workflow:
572 -Read block0 from card in field with MifareCGetBlock()
573 -Configure new values without replacing reserved bytes
574 memcpy(block0, uid, 4); // Copy UID bytes from byte array
575 // Mifare UID BCC
576 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
577 Bytes 5-7 are reserved SAK and ATQA for mifare classic
578 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
579 */
580 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
581 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
582 MifareCGetBlock(0x3F, 1, 0, oldBlock0);
583 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
584 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
585 playing = true;
586 }
587 else {
588 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
589 memcpy(newBlock0,oldBlock0,16);
590 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
591
592 newBlock0[0] = uid_1st[selected]>>24;
593 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
594 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
595 newBlock0[3] = 0xFF & (uid_1st[selected]);
596 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
597 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
598 MifareCSetBlock(0, 0xFF,0, newBlock0);
599 MifareCGetBlock(0x3F, 1, 0, testBlock0);
600 if (memcmp(testBlock0,newBlock0,16)==0)
601 {
602 DbpString("Cloned successfull!");
603 cardRead[selected] = false; // Only if the card was cloned successfully should we clear it
604 playing = false;
605 GotoRecord = true;
606 selected = (selected+1) % OPTS;
607 }
608 else {
609 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
610 playing = true;
611 }
612 }
613 LEDsoff();
614 LED(selected + 1, 0);
615
616 }
617 // Change where to record (or begin playing)
618 else if (playing) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
619 {
620 LEDsoff();
621 LED(selected + 1, 0);
622
623 // Begin transmitting
624 LED(LED_GREEN, 0);
625 DbpString("Playing");
626 for ( ; ; ) {
627 WDT_HIT();
628 int button_action = BUTTON_HELD(1000);
629 if (button_action == 0) { // No button action, proceed with sim
630 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
631 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
632 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
633 DbpString("Mifare Classic");
634 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
635 }
636 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
637 DbpString("Mifare Ultralight");
638 SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
639 }
640 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
641 DbpString("Mifare DESFire");
642 SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
643 }
644 else {
645 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
646 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
647 }
648 }
649 else if (button_action == BUTTON_SINGLE_CLICK) {
650 selected = (selected + 1) % OPTS;
651 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
652 GotoRecord = true;
653 break;
654 }
655 else if (button_action == BUTTON_HOLD) {
656 Dbprintf("Playtime over. Begin cloning...");
657 GotoClone = true;
658 break;
659 }
660 WDT_HIT();
661 }
662
663 /* We pressed a button so ignore it here with a delay */
664 SpinDelay(300);
665 LEDsoff();
666 LED(selected + 1, 0);
667 }
668 }
669 }
670 #elif WITH_LF_StandAlone
671 // samy's sniff and repeat routine
672 void SamyRun()
673 {
674 StandAloneMode();
675 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
676
677 int tops[OPTS], high[OPTS], low[OPTS];
678 int selected = 0;
679 int playing = 0;
680 int cardRead = 0;
681
682 // Turn on selected LED
683 LED(selected + 1, 0);
684
685 for (;;)
686 {
687 usb_poll();
688 WDT_HIT();
689
690 // Was our button held down or pressed?
691 int button_pressed = BUTTON_HELD(1000);
692 SpinDelay(300);
693
694 // Button was held for a second, begin recording
695 if (button_pressed > 0 && cardRead == 0)
696 {
697 LEDsoff();
698 LED(selected + 1, 0);
699 LED(LED_RED2, 0);
700
701 // record
702 DbpString("Starting recording");
703
704 // wait for button to be released
705 while(BUTTON_PRESS())
706 WDT_HIT();
707
708 /* need this delay to prevent catching some weird data */
709 SpinDelay(500);
710
711 CmdHIDdemodFSK(1, &tops[selected], &high[selected], &low[selected], 0);
712 if (tops[selected] > 0)
713 Dbprintf("Recorded %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
714 else
715 Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]);
716
717 LEDsoff();
718 LED(selected + 1, 0);
719 // Finished recording
720
721 // If we were previously playing, set playing off
722 // so next button push begins playing what we recorded
723 playing = 0;
724
725 cardRead = 1;
726
727 }
728
729 else if (button_pressed > 0 && cardRead == 1)
730 {
731 LEDsoff();
732 LED(selected + 1, 0);
733 LED(LED_ORANGE, 0);
734
735 // record
736 if (tops[selected] > 0)
737 Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
738 else
739 Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
740
741 // wait for button to be released
742 while(BUTTON_PRESS())
743 WDT_HIT();
744
745 /* need this delay to prevent catching some weird data */
746 SpinDelay(500);
747
748 CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)), 0x1D);
749 if (tops[selected] > 0)
750 Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
751 else
752 Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
753
754 LEDsoff();
755 LED(selected + 1, 0);
756 // Finished recording
757
758 // If we were previously playing, set playing off
759 // so next button push begins playing what we recorded
760 playing = 0;
761
762 cardRead = 0;
763
764 }
765
766 // Change where to record (or begin playing)
767 else if (button_pressed)
768 {
769 // Next option if we were previously playing
770 if (playing)
771 selected = (selected + 1) % OPTS;
772 playing = !playing;
773
774 LEDsoff();
775 LED(selected + 1, 0);
776
777 // Begin transmitting
778 if (playing)
779 {
780 LED(LED_GREEN, 0);
781 DbpString("Playing");
782 // wait for button to be released
783 while(BUTTON_PRESS())
784 WDT_HIT();
785 if (tops[selected] > 0)
786 Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]);
787 else
788 Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
789
790 CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0);
791 DbpString("Done playing");
792 if (BUTTON_HELD(1000) > 0)
793 {
794 DbpString("Exiting");
795 LEDsoff();
796 return;
797 }
798
799 /* We pressed a button so ignore it here with a delay */
800 SpinDelay(300);
801
802 // when done, we're done playing, move to next option
803 selected = (selected + 1) % OPTS;
804 playing = !playing;
805 LEDsoff();
806 LED(selected + 1, 0);
807 }
808 else
809 while(BUTTON_PRESS())
810 WDT_HIT();
811 }
812 }
813 }
814
815 #endif
816 /*
817 OBJECTIVE
818 Listen and detect an external reader. Determine the best location
819 for the antenna.
820
821 INSTRUCTIONS:
822 Inside the ListenReaderField() function, there is two mode.
823 By default, when you call the function, you will enter mode 1.
824 If you press the PM3 button one time, you will enter mode 2.
825 If you press the PM3 button a second time, you will exit the function.
826
827 DESCRIPTION OF MODE 1:
828 This mode just listens for an external reader field and lights up green
829 for HF and/or red for LF. This is the original mode of the detectreader
830 function.
831
832 DESCRIPTION OF MODE 2:
833 This mode will visually represent, using the LEDs, the actual strength of the
834 current compared to the maximum current detected. Basically, once you know
835 what kind of external reader is present, it will help you spot the best location to place
836 your antenna. You will probably not get some good results if there is a LF and a HF reader
837 at the same place! :-)
838
839 LIGHT SCHEME USED:
840 */
841 static const char LIGHT_SCHEME[] = {
842 0x0, /* ---- | No field detected */
843 0x1, /* X--- | 14% of maximum current detected */
844 0x2, /* -X-- | 29% of maximum current detected */
845 0x4, /* --X- | 43% of maximum current detected */
846 0x8, /* ---X | 57% of maximum current detected */
847 0xC, /* --XX | 71% of maximum current detected */
848 0xE, /* -XXX | 86% of maximum current detected */
849 0xF, /* XXXX | 100% of maximum current detected */
850 };
851 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
852
853 void ListenReaderField(int limit)
854 {
855 int lf_av, lf_av_new=0, lf_baseline= 0, lf_max;
856 int hf_av, hf_av_new=0, hf_baseline= 0, hf_max;
857 int mode=1, display_val, display_max, i;
858
859 #define LF_ONLY 1
860 #define HF_ONLY 2
861 #define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
862 #define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
863 #define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
864
865
866 // switch off FPGA - we don't want to measure our own signal
867 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
868 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
869
870 LEDsoff();
871
872 lf_av = lf_max = AvgAdc_Voltage_LF();
873
874 if(limit != HF_ONLY) {
875 Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av);
876 lf_baseline = lf_av;
877 }
878
879 hf_av = hf_max = AvgAdc_Voltage_HF();
880
881 if (limit != LF_ONLY) {
882 Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av);
883 hf_baseline = hf_av;
884 }
885
886 for(;;) {
887 SpinDelay(500);
888 if (BUTTON_PRESS()) {
889 switch (mode) {
890 case 1:
891 mode=2;
892 DbpString("Signal Strength Mode");
893 break;
894 case 2:
895 default:
896 DbpString("Stopped");
897 LEDsoff();
898 return;
899 break;
900 }
901 while (BUTTON_PRESS());
902 }
903 WDT_HIT();
904
905 if (limit != HF_ONLY) {
906 if(mode == 1) {
907 if (lf_av - lf_baseline > MIN_LF_FIELD)
908 LED_D_ON();
909 else
910 LED_D_OFF();
911 }
912
913 lf_av_new = AvgAdc_Voltage_LF();
914 // see if there's a significant change
915 if (ABS((lf_av - lf_av_new)*100/(lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) {
916 Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new);
917 lf_av = lf_av_new;
918 if (lf_av > lf_max)
919 lf_max = lf_av;
920 }
921 }
922
923 if (limit != LF_ONLY) {
924 if (mode == 1){
925 if (hf_av - hf_baseline > MIN_HF_FIELD)
926 LED_B_ON();
927 else
928 LED_B_OFF();
929 }
930
931 hf_av_new = AvgAdc_Voltage_HF();
932
933 // see if there's a significant change
934 if (ABS((hf_av - hf_av_new)*100/(hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) {
935 Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new);
936 hf_av = hf_av_new;
937 if (hf_av > hf_max)
938 hf_max = hf_av;
939 }
940 }
941
942 if(mode == 2) {
943 if (limit == LF_ONLY) {
944 display_val = lf_av;
945 display_max = lf_max;
946 } else if (limit == HF_ONLY) {
947 display_val = hf_av;
948 display_max = hf_max;
949 } else { /* Pick one at random */
950 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
951 display_val = hf_av;
952 display_max = hf_max;
953 } else {
954 display_val = lf_av;
955 display_max = lf_max;
956 }
957 }
958 for (i=0; i<LIGHT_LEN; i++) {
959 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
960 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
961 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
962 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
963 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
964 break;
965 }
966 }
967 }
968 }
969 }
970
971 void UsbPacketReceived(uint8_t *packet, int len)
972 {
973 UsbCommand *c = (UsbCommand *)packet;
974
975 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
976
977 switch(c->cmd) {
978 #ifdef WITH_LF
979 case CMD_SET_LF_SAMPLING_CONFIG:
980 setSamplingConfig((sample_config *) c->d.asBytes);
981 break;
982 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
983 cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0);
984 break;
985 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
986 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
987 break;
988 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
989 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
990 break;
991 case CMD_HID_DEMOD_FSK:
992 CmdHIDdemodFSK(c->arg[0], 0, 0, 0, 1);
993 break;
994 case CMD_HID_SIM_TAG:
995 CmdHIDsimTAG(c->arg[0], c->arg[1], c->arg[2], 1);
996 break;
997 case CMD_FSK_SIM_TAG:
998 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
999 break;
1000 case CMD_ASK_SIM_TAG:
1001 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1002 break;
1003 case CMD_PSK_SIM_TAG:
1004 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1005 break;
1006 case CMD_HID_CLONE_TAG:
1007 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x1D);
1008 break;
1009 case CMD_PARADOX_CLONE_TAG:
1010 // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
1011 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x0F);
1012 break;
1013 case CMD_IO_DEMOD_FSK:
1014 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
1015 break;
1016 case CMD_IO_CLONE_TAG:
1017 CopyIOtoT55x7(c->arg[0], c->arg[1]);
1018 break;
1019 case CMD_EM410X_DEMOD:
1020 CmdEM410xdemod(c->arg[0], 0, 0, 1);
1021 break;
1022 case CMD_EM410X_WRITE_TAG:
1023 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
1024 break;
1025 case CMD_READ_TI_TYPE:
1026 ReadTItag();
1027 break;
1028 case CMD_WRITE_TI_TYPE:
1029 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
1030 break;
1031 case CMD_SIMULATE_TAG_125K:
1032 LED_A_ON();
1033 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
1034 LED_A_OFF();
1035 break;
1036 case CMD_LF_SIMULATE_BIDIR:
1037 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
1038 break;
1039 case CMD_INDALA_CLONE_TAG:
1040 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
1041 break;
1042 case CMD_INDALA_CLONE_TAG_L:
1043 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
1044 break;
1045 case CMD_T55XX_READ_BLOCK:
1046 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
1047 break;
1048 case CMD_T55XX_WRITE_BLOCK:
1049 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
1050 break;
1051 case CMD_T55XX_WAKEUP:
1052 T55xxWakeUp(c->arg[0]);
1053 break;
1054 case CMD_T55XX_RESET_READ:
1055 T55xxResetRead();
1056 break;
1057 case CMD_PCF7931_READ:
1058 ReadPCF7931();
1059 break;
1060 case CMD_PCF7931_WRITE:
1061 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
1062 break;
1063 case CMD_PCF7931_BRUTEFORCE:
1064 BruteForcePCF7931(c->arg[0], (c->arg[1] & 0xFF), c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128);
1065 break;
1066 case CMD_EM4X_READ_WORD:
1067 EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]);
1068 break;
1069 case CMD_EM4X_WRITE_WORD:
1070 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
1071 break;
1072 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1073 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
1074 break;
1075 case CMD_VIKING_CLONE_TAG:
1076 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
1077 break;
1078 case CMD_COTAG:
1079 Cotag(c->arg[0]);
1080 break;
1081 #endif
1082
1083 #ifdef WITH_HITAG
1084 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1085 SnoopHitag(c->arg[0]);
1086 break;
1087 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1088 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1089 break;
1090 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1091 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1092 break;
1093 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1094 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1095 break;
1096 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
1097 check_challenges_cmd((bool)c->arg[0], (byte_t*)c->d.asBytes, (uint8_t)c->arg[1]);
1098 break;
1099 case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge
1100 ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false);
1101 break;
1102 case CMD_READ_HITAG_S_BLK:
1103 ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], true);
1104 break;
1105 case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge
1106 if ((hitag_function)c->arg[0] < 10) {
1107 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1108 }
1109 else if ((hitag_function)c->arg[0] >= 10) {
1110 WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]);
1111 }
1112 break;
1113 #endif
1114
1115 #ifdef WITH_ISO15693
1116 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1117 AcquireRawAdcSamplesIso15693();
1118 break;
1119
1120 case CMD_SNOOP_ISO_15693:
1121 SnoopIso15693();
1122 break;
1123
1124 case CMD_ISO_15693_COMMAND:
1125 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1126 break;
1127
1128 case CMD_ISO_15693_FIND_AFI:
1129 BruteforceIso15693Afi(c->arg[0]);
1130 break;
1131
1132 case CMD_ISO_15693_DEBUG:
1133 SetDebugIso15693(c->arg[0]);
1134 break;
1135
1136 case CMD_READER_ISO_15693:
1137 ReaderIso15693(c->arg[0]);
1138 break;
1139 case CMD_SIMTAG_ISO_15693:
1140 SimTagIso15693(c->arg[0], c->d.asBytes);
1141 break;
1142 #endif
1143
1144 #ifdef WITH_LEGICRF
1145 case CMD_SIMULATE_TAG_LEGIC_RF:
1146 LegicRfSimulate(c->arg[0]);
1147 break;
1148
1149 case CMD_WRITER_LEGIC_RF:
1150 LegicRfWriter(c->arg[1], c->arg[0]);
1151 break;
1152
1153 case CMD_READER_LEGIC_RF:
1154 LegicRfReader(c->arg[0], c->arg[1]);
1155 break;
1156 #endif
1157
1158 #ifdef WITH_ISO14443b
1159 case CMD_READ_SRI512_TAG:
1160 ReadSTMemoryIso14443b(0x0F);
1161 break;
1162 case CMD_READ_SRIX4K_TAG:
1163 ReadSTMemoryIso14443b(0x7F);
1164 break;
1165 case CMD_SNOOP_ISO_14443B:
1166 SnoopIso14443b();
1167 break;
1168 case CMD_SIMULATE_TAG_ISO_14443B:
1169 SimulateIso14443bTag();
1170 break;
1171 case CMD_ISO_14443B_COMMAND:
1172 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1173 break;
1174 #endif
1175
1176 #ifdef WITH_ISO14443a
1177 case CMD_SNOOP_ISO_14443a:
1178 SnoopIso14443a(c->arg[0]);
1179 break;
1180 case CMD_READER_ISO_14443a:
1181 ReaderIso14443a(c);
1182 break;
1183 case CMD_SIMULATE_TAG_ISO_14443a:
1184 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1185 break;
1186
1187 case CMD_EPA_PACE_COLLECT_NONCE:
1188 EPA_PACE_Collect_Nonce(c);
1189 break;
1190 case CMD_EPA_PACE_REPLAY:
1191 EPA_PACE_Replay(c);
1192 break;
1193
1194 case CMD_READER_MIFARE:
1195 ReaderMifare(c->arg[0]);
1196 break;
1197 case CMD_MIFARE_READBL:
1198 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1199 break;
1200 case CMD_MIFAREU_READBL:
1201 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1202 break;
1203 case CMD_MIFAREUC_AUTH:
1204 MifareUC_Auth(c->arg[0],c->d.asBytes);
1205 break;
1206 case CMD_MIFAREU_READCARD:
1207 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1208 break;
1209 case CMD_MIFAREUC_SETPWD:
1210 MifareUSetPwd(c->arg[0], c->d.asBytes);
1211 break;
1212 case CMD_MIFARE_READSC:
1213 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1214 break;
1215 case CMD_MIFARE_WRITEBL:
1216 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1217 break;
1218 //case CMD_MIFAREU_WRITEBL_COMPAT:
1219 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1220 //break;
1221 case CMD_MIFAREU_WRITEBL:
1222 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1223 break;
1224 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1225 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1226 break;
1227 case CMD_MIFARE_NESTED:
1228 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1229 break;
1230 case CMD_MIFARE_CHKKEYS:
1231 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1232 break;
1233 case CMD_SIMULATE_MIFARE_CARD:
1234 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1235 break;
1236
1237 // emulator
1238 case CMD_MIFARE_SET_DBGMODE:
1239 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1240 break;
1241 case CMD_MIFARE_EML_MEMCLR:
1242 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1243 break;
1244 case CMD_MIFARE_EML_MEMSET:
1245 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1246 break;
1247 case CMD_MIFARE_EML_MEMGET:
1248 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1249 break;
1250 case CMD_MIFARE_EML_CARDLOAD:
1251 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1252 break;
1253
1254 // Work with "magic Chinese" card
1255 case CMD_MIFARE_CWIPE:
1256 MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1257 break;
1258 case CMD_MIFARE_CSETBLOCK:
1259 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1260 break;
1261 case CMD_MIFARE_CGETBLOCK:
1262 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1263 break;
1264 case CMD_MIFARE_CIDENT:
1265 MifareCIdent();
1266 break;
1267
1268 // mifare sniffer
1269 case CMD_MIFARE_SNIFFER:
1270 SniffMifare(c->arg[0]);
1271 break;
1272
1273 #endif
1274
1275 #ifdef WITH_ICLASS
1276 // Makes use of ISO14443a FPGA Firmware
1277 case CMD_SNOOP_ICLASS:
1278 SnoopIClass();
1279 break;
1280 case CMD_SIMULATE_TAG_ICLASS:
1281 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1282 break;
1283 case CMD_READER_ICLASS:
1284 ReaderIClass(c->arg[0]);
1285 break;
1286 case CMD_READER_ICLASS_REPLAY:
1287 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1288 break;
1289 case CMD_ICLASS_EML_MEMSET:
1290 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1291 break;
1292 case CMD_ICLASS_WRITEBLOCK:
1293 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1294 break;
1295 case CMD_ICLASS_READCHECK: // auth step 1
1296 iClass_ReadCheck(c->arg[0], c->arg[1]);
1297 break;
1298 case CMD_ICLASS_READBLOCK:
1299 iClass_ReadBlk(c->arg[0]);
1300 break;
1301 case CMD_ICLASS_AUTHENTICATION: //check
1302 iClass_Authentication(c->d.asBytes);
1303 break;
1304 case CMD_ICLASS_DUMP:
1305 iClass_Dump(c->arg[0], c->arg[1]);
1306 break;
1307 case CMD_ICLASS_CLONE:
1308 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1309 break;
1310 #endif
1311 #ifdef WITH_HFSNOOP
1312 case CMD_HF_SNIFFER:
1313 HfSnoop(c->arg[0], c->arg[1]);
1314 break;
1315 #endif
1316 #ifdef WITH_SMARTCARD
1317 case CMD_SMART_ATR: {
1318 SmartCardAtr();
1319 break;
1320 }
1321 case CMD_SMART_SETCLOCK:{
1322 SmartCardSetClock(c->arg[0]);
1323 break;
1324 }
1325 case CMD_SMART_RAW: {
1326 SmartCardRaw(c->arg[0], c->arg[1], c->d.asBytes);
1327 break;
1328 }
1329 case CMD_SMART_UPLOAD: {
1330 // upload file from client
1331 uint8_t *mem = BigBuf_get_addr();
1332 memcpy( mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1333 cmd_send(CMD_ACK,1,0,0,0,0);
1334 break;
1335 }
1336 case CMD_SMART_UPGRADE: {
1337 SmartCardUpgrade(c->arg[0]);
1338 break;
1339 }
1340 #endif
1341
1342 case CMD_BUFF_CLEAR:
1343 BigBuf_Clear();
1344 break;
1345
1346 case CMD_MEASURE_ANTENNA_TUNING:
1347 MeasureAntennaTuning(c->arg[0]);
1348 break;
1349
1350 case CMD_MEASURE_ANTENNA_TUNING_HF:
1351 MeasureAntennaTuningHf();
1352 break;
1353
1354 case CMD_LISTEN_READER_FIELD:
1355 ListenReaderField(c->arg[0]);
1356 break;
1357
1358 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1359 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1360 SpinDelay(200);
1361 LED_D_OFF(); // LED D indicates field ON or OFF
1362 break;
1363
1364 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
1365
1366 LED_B_ON();
1367 uint8_t *BigBuf = BigBuf_get_addr();
1368 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1369 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
1370 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1371 }
1372 // Trigger a finish downloading signal with an ACK frame
1373 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
1374 LED_B_OFF();
1375 break;
1376
1377 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1378 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1379 // to be able to use this one for uploading data to device
1380 // arg1 = 0 upload for LF usage
1381 // 1 upload for HF usage
1382 if (c->arg[1] == 0)
1383 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1384 else
1385 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1386
1387 uint8_t *b = BigBuf_get_addr();
1388 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1389 cmd_send(CMD_ACK,0,0,0,0,0);
1390 break;
1391 }
1392 case CMD_READ_MEM:
1393 ReadMem(c->arg[0]);
1394 break;
1395
1396 case CMD_SET_LF_DIVISOR:
1397 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1398 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1399 break;
1400
1401 case CMD_SET_ADC_MUX:
1402 switch(c->arg[0]) {
1403 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1404 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1405 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1406 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1407 }
1408 break;
1409
1410 case CMD_VERSION:
1411 SendVersion();
1412 break;
1413 case CMD_STATUS:
1414 SendStatus();
1415 break;
1416 case CMD_PING:
1417 cmd_send(CMD_ACK,0,0,0,0,0);
1418 break;
1419 #ifdef WITH_LCD
1420 case CMD_LCD_RESET:
1421 LCDReset();
1422 break;
1423 case CMD_LCD:
1424 LCDSend(c->arg[0]);
1425 break;
1426 #endif
1427 case CMD_SETUP_WRITE:
1428 case CMD_FINISH_WRITE:
1429 case CMD_HARDWARE_RESET:
1430 usb_disable();
1431 SpinDelay(1000);
1432 SpinDelay(1000);
1433 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1434 for(;;) {
1435 // We're going to reset, and the bootrom will take control.
1436 }
1437 break;
1438
1439 case CMD_START_FLASH:
1440 if(common_area.flags.bootrom_present) {
1441 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1442 }
1443 usb_disable();
1444 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1445 for(;;);
1446 break;
1447
1448 case CMD_DEVICE_INFO: {
1449 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1450 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1451 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1452 break;
1453 }
1454 default:
1455 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1456 break;
1457 }
1458 }
1459
1460 void __attribute__((noreturn)) AppMain(void)
1461 {
1462 SpinDelay(100);
1463 clear_trace();
1464 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1465 /* Initialize common area */
1466 memset(&common_area, 0, sizeof(common_area));
1467 common_area.magic = COMMON_AREA_MAGIC;
1468 common_area.version = 1;
1469 }
1470 common_area.flags.osimage_present = 1;
1471
1472 LED_D_OFF();
1473 LED_C_OFF();
1474 LED_B_OFF();
1475 LED_A_OFF();
1476
1477 // Init USB device
1478 usb_enable();
1479
1480 // The FPGA gets its clock from us from PCK0 output, so set that up.
1481 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1482 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1483 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1484 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1485 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1486 AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1487 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1488
1489 // Reset SPI
1490 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1491 // Reset SSC
1492 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1493
1494 // Load the FPGA image, which we have stored in our flash.
1495 // (the HF version by default)
1496 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1497
1498 StartTickCount();
1499
1500 #ifdef WITH_LCD
1501 LCDInit();
1502 #endif
1503
1504 byte_t rx[sizeof(UsbCommand)];
1505 size_t rx_len;
1506
1507 for(;;) {
1508 if (usb_poll()) {
1509 rx_len = usb_read(rx,sizeof(UsbCommand));
1510 if (rx_len) {
1511 UsbPacketReceived(rx,rx_len);
1512 }
1513 }
1514 WDT_HIT();
1515
1516 #ifdef WITH_LF_StandAlone
1517 #ifndef WITH_ISO14443a_StandAlone
1518 if (BUTTON_HELD(1000) > 0)
1519 SamyRun();
1520 #endif
1521 #endif
1522 #ifdef WITH_ISO14443a
1523 #ifdef WITH_ISO14443a_StandAlone
1524 if (BUTTON_HELD(1000) > 0)
1525 StandAloneMode14a();
1526 #endif
1527 #endif
1528 }
1529 }
Impressum, Datenschutz