1 //-----------------------------------------------------------------------------
2 // The main application code. This is the first thing called after start.c
4 // Jonathan Westhues, Mar 2006
5 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
6 //-----------------------------------------------------------------------------
16 // The large multi-purpose buffer, typically used to hold A/D samples,
17 // maybe pre-processed in some way.
20 //=============================================================================
21 // A buffer where we can queue things up to be sent through the FPGA, for
22 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
23 // is the order in which they go out on the wire.
24 //=============================================================================
30 void ToSendReset(void)
36 void ToSendStuffBit(int b
)
40 ToSend
[ToSendMax
] = 0;
45 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
50 if(ToSendBit
>= sizeof(ToSend
)) {
52 DbpString("ToSendStuffBit overflowed!");
56 //=============================================================================
57 // Debug print functions, to go out over USB, to the usual PC-side client.
58 //=============================================================================
60 void DbpString(char *str
)
63 c
.cmd
= CMD_DEBUG_PRINT_STRING
;
65 memcpy(c
.d
.asBytes
, str
, c
.ext1
);
67 UsbSendPacket((BYTE
*)&c
, sizeof(c
));
68 // TODO fix USB so stupid things like this aren't req'd
72 void DbpIntegers(int x1
, int x2
, int x3
)
75 c
.cmd
= CMD_DEBUG_PRINT_INTEGERS
;
80 UsbSendPacket((BYTE
*)&c
, sizeof(c
));
85 void AcquireRawAdcSamples125k(BOOL at134khz
)
87 BYTE
*dest
= (BYTE
*)BigBuf
;
88 int n
= sizeof(BigBuf
);
94 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
95 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
| FPGA_LF_READER_USE_134_KHZ
);
97 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
98 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
| FPGA_LF_READER_USE_125_KHZ
);
101 // Connect the A/D to the peak-detected low-frequency path.
102 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
104 // Give it a bit of time for the resonant antenna to settle.
107 // Now set up the SSC to get the ADC samples that are now streaming at us.
112 if(SSC_STATUS
& (SSC_STATUS_TX_READY
)) {
113 SSC_TRANSMIT_HOLDING
= 0x43;
116 if(SSC_STATUS
& (SSC_STATUS_RX_READY
)) {
117 dest
[i
] = (BYTE
)SSC_RECEIVE_HOLDING
;
125 DbpIntegers(dest
[0], dest
[1], at134khz
);
128 //-----------------------------------------------------------------------------
129 // Read an ADC channel and block till it completes, then return the result
130 // in ADC units (0 to 1023). Also a routine to average 32 samples and
132 //-----------------------------------------------------------------------------
133 static int ReadAdc(int ch
)
137 ADC_CONTROL
= ADC_CONTROL_RESET
;
138 ADC_MODE
= ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) |
139 ADC_MODE_SAMPLE_HOLD_TIME(8);
140 ADC_CHANNEL_ENABLE
= ADC_CHANNEL(ch
);
142 ADC_CONTROL
= ADC_CONTROL_START
;
143 while(!(ADC_STATUS
& ADC_END_OF_CONVERSION(ch
)))
145 d
= ADC_CHANNEL_DATA(ch
);
150 static int AvgAdc(int ch
)
155 for(i
= 0; i
< 32; i
++) {
159 return (a
+ 15) >> 5;
163 * Sweeps the useful LF range of the proxmark from
164 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
165 * reads the voltage in the antenna: the result is a graph
166 * which should clearly show the resonating frequency of your
167 * LF antenna ( hopefully around 90 if it is tuned to 125kHz!)
171 BYTE
*dest
= (BYTE
*)BigBuf
;
175 memset(BigBuf
,0,sizeof(BigBuf
));
177 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
178 for (i
=255; i
>19; i
--) {
179 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
181 dest
[i
] = (137500 * AvgAdc(4)) >> 18;
185 void MeasureAntennaTuning(void)
187 // Impedances are Zc = 1/(j*omega*C), in ohms
188 #define LF_TUNING_CAP_Z 1273 // 1 nF @ 125 kHz
189 #define HF_TUNING_CAP_Z 235 // 50 pF @ 13.56 MHz
191 int vLf125
, vLf134
, vHf
; // in mV
195 // Let the FPGA drive the low-frequency antenna around 125 kHz.
196 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
197 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
| FPGA_LF_READER_USE_125_KHZ
);
200 // Vref = 3.3V, and a 10000:240 voltage divider on the input
201 // can measure voltages up to 137500 mV
202 vLf125
= (137500 * vLf125
) >> 10;
204 // Let the FPGA drive the low-frequency antenna around 134 kHz.
205 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
206 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
| FPGA_LF_READER_USE_134_KHZ
);
209 // Vref = 3.3V, and a 10000:240 voltage divider on the input
210 // can measure voltages up to 137500 mV
211 vLf134
= (137500 * vLf134
) >> 10;
213 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
214 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
217 // Vref = 3300mV, and an 10:1 voltage divider on the input
218 // can measure voltages up to 33000 mV
219 vHf
= (33000 * vHf
) >> 10;
221 c
.cmd
= CMD_MEASURED_ANTENNA_TUNING
;
222 c
.ext1
= (vLf125
<< 0) | (vLf134
<< 16);
224 c
.ext3
= (LF_TUNING_CAP_Z
<< 0) | (HF_TUNING_CAP_Z
<< 16);
225 UsbSendPacket((BYTE
*)&c
, sizeof(c
));
228 void SimulateTagLowFrequency(int period
)
231 BYTE
*tab
= (BYTE
*)BigBuf
;
233 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR
);
235 PIO_ENABLE
= (1 << GPIO_SSC_DOUT
) | (1 << GPIO_SSC_CLK
);
237 PIO_OUTPUT_ENABLE
= (1 << GPIO_SSC_DOUT
);
238 PIO_OUTPUT_DISABLE
= (1 << GPIO_SSC_CLK
);
240 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
241 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
245 while(!(PIO_PIN_DATA_STATUS
& (1<<GPIO_SSC_CLK
))) {
260 while(PIO_PIN_DATA_STATUS
& (1<<GPIO_SSC_CLK
)) {
268 if(i
== period
) i
= 0;
272 // compose fc/8 fc/10 waveform
273 static void fc(int c
, int *n
) {
274 BYTE
*dest
= (BYTE
*)BigBuf
;
277 // for when we want an fc8 pattern every 4 logical bits
288 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
290 for (idx
=0; idx
<6; idx
++) {
302 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
304 for (idx
=0; idx
<5; idx
++) {
319 // prepare a waveform pattern in the buffer based on the ID given then
320 // simulate a HID tag until the button is pressed
321 static void CmdHIDsimTAG(int hi
, int lo
)
325 HID tag bitstream format
326 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
327 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
328 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
329 A fc8 is inserted before every 4 bits
330 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
331 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
335 DbpString("Tags can only have 44 bits.");
339 // special start of frame marker containing invalid bit sequences
340 fc(8, &n
); fc(8, &n
); // invalid
341 fc(8, &n
); fc(10, &n
); // logical 0
342 fc(10, &n
); fc(10, &n
); // invalid
343 fc(8, &n
); fc(10, &n
); // logical 0
346 // manchester encode bits 43 to 32
347 for (i
=11; i
>=0; i
--) {
348 if ((i
%4)==3) fc(0,&n
);
350 fc(10, &n
); fc(8, &n
); // low-high transition
352 fc(8, &n
); fc(10, &n
); // high-low transition
357 // manchester encode bits 31 to 0
358 for (i
=31; i
>=0; i
--) {
359 if ((i
%4)==3) fc(0,&n
);
361 fc(10, &n
); fc(8, &n
); // low-high transition
363 fc(8, &n
); fc(10, &n
); // high-low transition
368 SimulateTagLowFrequency(n
);
372 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
373 static void CmdHIDdemodFSK(void)
375 BYTE
*dest
= (BYTE
*)BigBuf
;
376 int m
=0, n
=0, i
=0, idx
=0, found
=0, lastval
=0;
379 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
380 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
| FPGA_LF_READER_USE_125_KHZ
);
382 // Connect the A/D to the peak-detected low-frequency path.
383 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
385 // Give it a bit of time for the resonant antenna to settle.
388 // Now set up the SSC to get the ADC samples that are now streaming at us.
403 if(SSC_STATUS
& (SSC_STATUS_TX_READY
)) {
404 SSC_TRANSMIT_HOLDING
= 0x43;
407 if(SSC_STATUS
& (SSC_STATUS_RX_READY
)) {
408 dest
[i
] = (BYTE
)SSC_RECEIVE_HOLDING
;
409 // we don't care about actual value, only if it's more or less than a
410 // threshold essentially we capture zero crossings for later analysis
411 if(dest
[i
] < 127) dest
[i
] = 0; else dest
[i
] = 1;
422 // sync to first lo-hi transition
423 for( idx
=1; idx
<m
; idx
++) {
424 if (dest
[idx
-1]<dest
[idx
])
430 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
431 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
432 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
433 for( i
=0; idx
<m
; idx
++) {
434 if (dest
[idx
-1]<dest
[idx
]) {
449 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
454 for( idx
=0; idx
<m
; idx
++) {
455 if (dest
[idx
]==lastval
) {
458 // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
459 // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
460 // swallowed up by rounding
461 // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
462 // special start of frame markers use invalid manchester states (no transitions) by using sequences
465 n
=(n
+1)/6; // fc/8 in sets of 6
467 n
=(n
+1)/5; // fc/10 in sets of 5
469 switch (n
) { // stuff appropriate bits in buffer
472 dest
[i
++]=dest
[idx
-1];
475 dest
[i
++]=dest
[idx
-1];
476 dest
[i
++]=dest
[idx
-1];
478 case 3: // 3 bit start of frame markers
479 dest
[i
++]=dest
[idx
-1];
480 dest
[i
++]=dest
[idx
-1];
481 dest
[i
++]=dest
[idx
-1];
483 // When a logic 0 is immediately followed by the start of the next transmisson
484 // (special pattern) a pattern of 4 bit duration lengths is created.
486 dest
[i
++]=dest
[idx
-1];
487 dest
[i
++]=dest
[idx
-1];
488 dest
[i
++]=dest
[idx
-1];
489 dest
[i
++]=dest
[idx
-1];
491 default: // this shouldn't happen, don't stuff any bits
501 // final loop, go over previously decoded manchester data and decode into usable tag ID
502 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
503 for( idx
=0; idx
<m
-6; idx
++) {
504 // search for a start of frame marker
505 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
509 if (found
&& (hi
|lo
)) {
511 DbpIntegers(hi
, lo
, (lo
>>1)&0xffff);
518 if (dest
[idx
] && (!dest
[idx
+1]) ) {
521 } else if ( (!dest
[idx
]) && dest
[idx
+1]) {
531 if ( dest
[idx
] && dest
[idx
+1] && dest
[idx
+2] && (!dest
[idx
+3]) && (!dest
[idx
+4]) && (!dest
[idx
+5]) )
535 if (found
&& (hi
|lo
)) {
537 DbpIntegers(hi
, lo
, (lo
>>1)&0xffff);
548 void SimulateTagHfListen(void)
550 BYTE
*dest
= (BYTE
*)BigBuf
;
551 int n
= sizeof(BigBuf
);
556 // We're using this mode just so that I can test it out; the simulated
557 // tag mode would work just as well and be simpler.
558 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
560 // We need to listen to the high-frequency, peak-detected path.
561 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
567 if(SSC_STATUS
& (SSC_STATUS_TX_READY
)) {
568 SSC_TRANSMIT_HOLDING
= 0xff;
570 if(SSC_STATUS
& (SSC_STATUS_RX_READY
)) {
571 BYTE r
= (BYTE
)SSC_RECEIVE_HOLDING
;
591 DbpString("simulate tag (now type bitsamples)");
594 void UsbPacketReceived(BYTE
*packet
, int len
)
596 UsbCommand
*c
= (UsbCommand
*)packet
;
599 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
600 AcquireRawAdcSamples125k(c
->ext1
);
603 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
604 AcquireRawAdcSamplesIso15693();
607 case CMD_READER_ISO_15693
:
608 ReaderIso15693(c
->ext1
);
611 case CMD_SIMTAG_ISO_15693
:
612 SimTagIso15693(c
->ext1
);
615 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
616 AcquireRawAdcSamplesIso14443(c
->ext1
);
619 case CMD_READ_SRI512_TAG
:
620 ReadSRI512Iso14443(c
->ext1
);
623 case CMD_READER_ISO_14443a
:
624 ReaderIso14443a(c
->ext1
);
627 case CMD_SNOOP_ISO_14443
:
631 case CMD_SNOOP_ISO_14443a
:
635 case CMD_SIMULATE_TAG_HF_LISTEN
:
636 SimulateTagHfListen();
639 case CMD_SIMULATE_TAG_ISO_14443
:
640 SimulateIso14443Tag();
643 case CMD_SIMULATE_TAG_ISO_14443a
:
644 SimulateIso14443aTag(c
->ext1
, c
->ext2
); // ## Simulate iso14443a tag - pass tag type & UID
647 case CMD_MEASURE_ANTENNA_TUNING
:
648 MeasureAntennaTuning();
651 case CMD_HID_DEMOD_FSK
:
652 CmdHIDdemodFSK(); // Demodulate HID tag
655 case CMD_HID_SIM_TAG
:
656 CmdHIDsimTAG(c
->ext1
, c
->ext2
); // Simulate HID tag by ID
659 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
660 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
662 LED_D_OFF(); // LED D indicates field ON or OFF
665 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
666 case CMD_DOWNLOAD_RAW_BITS_TI_TYPE
: {
668 if(c
->cmd
== CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
) {
669 n
.cmd
= CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
;
671 n
.cmd
= CMD_DOWNLOADED_RAW_BITS_TI_TYPE
;
674 memcpy(n
.d
.asDwords
, BigBuf
+c
->ext1
, 12*sizeof(DWORD
));
675 UsbSendPacket((BYTE
*)&n
, sizeof(n
));
678 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
679 BYTE
*b
= (BYTE
*)BigBuf
;
680 memcpy(b
+c
->ext1
, c
->d
.asBytes
, 48);
683 case CMD_SIMULATE_TAG_125K
:
685 SimulateTagLowFrequency(c
->ext1
);
697 case CMD_SET_LF_DIVISOR
:
698 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->ext1
);
705 case CMD_SETUP_WRITE
:
706 case CMD_FINISH_WRITE
:
707 case CMD_HARDWARE_RESET
:
708 USB_D_PLUS_PULLUP_OFF();
711 RSTC_CONTROL
= RST_CONTROL_KEY
| RST_CONTROL_PROCESSOR_RESET
;
713 // We're going to reset, and the bootrom will take control.
719 DbpString("unknown command");
726 memset(BigBuf
,0,sizeof(BigBuf
));
736 // The FPGA gets its clock from us from PCK0 output, so set that up.
737 PIO_PERIPHERAL_B_SEL
= (1 << GPIO_PCK0
);
738 PIO_DISABLE
= (1 << GPIO_PCK0
);
739 PMC_SYS_CLK_ENABLE
= PMC_SYS_CLK_PROGRAMMABLE_CLK_0
;
740 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
741 PMC_PROGRAMMABLE_CLK_0
= PMC_CLK_SELECTION_PLL_CLOCK
|
742 PMC_CLK_PRESCALE_DIV_4
;
743 PIO_OUTPUT_ENABLE
= (1 << GPIO_PCK0
);
746 SPI_CONTROL
= SPI_CONTROL_RESET
;
748 SSC_CONTROL
= SSC_CONTROL_RESET
;
750 // Load the FPGA image, which we have stored in our flash.
757 // test text on different colored backgrounds
758 LCDString(" The quick brown fox ", &FONT6x8
,1,1+8*0,WHITE
,BLACK
);
759 LCDString(" jumped over the ", &FONT6x8
,1,1+8*1,BLACK
,WHITE
);
760 LCDString(" lazy dog. ", &FONT6x8
,1,1+8*2,YELLOW
,RED
);
761 LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8
,1,1+8*3,RED
,GREEN
);
762 LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8
,1,1+8*4,MAGENTA
,BLUE
);
763 LCDString("UuVvWwXxYyZz0123456789", &FONT6x8
,1,1+8*5,BLUE
,YELLOW
);
764 LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8
,1,1+8*6,BLACK
,CYAN
);
765 LCDString(" _+{}|:\\\"<>? ",&FONT6x8
,1,1+8*7,BLUE
,MAGENTA
);
768 LCDFill(0, 1+8* 8, 132, 8, BLACK
);
769 LCDFill(0, 1+8* 9, 132, 8, WHITE
);
770 LCDFill(0, 1+8*10, 132, 8, RED
);
771 LCDFill(0, 1+8*11, 132, 8, GREEN
);
772 LCDFill(0, 1+8*12, 132, 8, BLUE
);
773 LCDFill(0, 1+8*13, 132, 8, YELLOW
);
774 LCDFill(0, 1+8*14, 132, 8, CYAN
);
775 LCDFill(0, 1+8*15, 132, 8, MAGENTA
);
785 void SpinDelay(int ms
)
787 int ticks
= (48000*ms
) >> 10;
789 // Borrow a PWM unit for my real-time clock
790 PWM_ENABLE
= PWM_CHANNEL(0);
791 // 48 MHz / 1024 gives 46.875 kHz
792 PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);
793 PWM_CH_DUTY_CYCLE(0) = 0;
794 PWM_CH_PERIOD(0) = 0xffff;
796 WORD start
= (WORD
)PWM_CH_COUNTER(0);
799 WORD now
= (WORD
)PWM_CH_COUNTER(0);
800 if(now
== (WORD
)(start
+ ticks
)) {