1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
41 #include "proxmark3.h"
48 #include "iso14443a.h"
50 // Needed for CRC in emulation mode;
51 // same construction as in ISO 14443;
52 // different initial value (CRC_ICLASS)
53 #include "iso14443crc.h"
54 #include "iso15693tools.h"
55 #include "protocols.h"
56 #include "optimized_cipher.h"
57 #include "usb_cdc.h" // for usb_poll_validate_length
58 #include "fpgaloader.h"
60 // iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after
61 // the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period.
62 // 330us = 140 ssp_clk cycles @ 423,75kHz when simulating.
63 // 56,64us = 24 ssp_clk_cycles
64 #define DELAY_ICLASS_VCD_TO_VICC_SIM (140 - 24)
65 // times in ssp_clk_cycles @ 3,3625MHz when acting as reader
66 #define DELAY_ICLASS_VICC_TO_VCD_READER DELAY_ISO15693_VICC_TO_VCD_READER
67 // times in samples @ 212kHz when acting as reader
68 #define ICLASS_READER_TIMEOUT_ACTALL 330 // 1558us, nominal 330us + 7slots*160us = 1450us
69 #define ICLASS_READER_TIMEOUT_OTHERS 80 // 380us, nominal 330us
72 //-----------------------------------------------------------------------------
73 // The software UART that receives commands from the reader, and its state
75 //-----------------------------------------------------------------------------
79 STATE_START_OF_COMMUNICATION
,
99 static RAMFUNC
int OutOfNDecoding(int bit
) {
103 if (!Uart
.bitBuffer
) {
104 Uart
.bitBuffer
= bit
^ 0xFF0;
107 Uart
.bitBuffer
<<= 4;
108 Uart
.bitBuffer
^= bit
;
111 /*if (Uart.swapper) {
112 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
115 if (Uart.byteCnt > 15) { return true; }
121 if (Uart
.state
!= STATE_UNSYNCD
) {
124 if ((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
129 if (((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
134 if (bit
!= bitright
) {
139 // So, now we only have to deal with *bit*, lets see...
140 if (Uart
.posCnt
== 1) {
141 // measurement first half bitperiod
143 // Drop in first half means that we are either seeing
146 if (Uart
.nOutOfCnt
== 1) {
147 // End of Communication
148 Uart
.state
= STATE_UNSYNCD
;
150 if (Uart
.byteCnt
== 0) {
151 // Its not straightforward to show single EOFs
152 // So just leave it and do not return true
153 Uart
.output
[0] = 0xf0;
158 } else if (Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
159 // When not part of SOF or EOF, it is an error
160 Uart
.state
= STATE_UNSYNCD
;
166 // measurement second half bitperiod
167 // Count the bitslot we are in... (ISO 15693)
171 if (Uart
.dropPosition
) {
172 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) {
177 // It is an error if we already have seen a drop in current frame
178 Uart
.state
= STATE_UNSYNCD
;
181 Uart
.dropPosition
= Uart
.nOutOfCnt
;
188 if (Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
191 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) {
192 if (Uart
.dropPosition
== 4) {
193 Uart
.state
= STATE_RECEIVING
;
195 } else if (Uart
.dropPosition
== 3) {
196 Uart
.state
= STATE_RECEIVING
;
198 //Uart.output[Uart.byteCnt] = 0xdd;
201 Uart
.state
= STATE_UNSYNCD
;
204 Uart
.dropPosition
= 0;
208 if (!Uart
.dropPosition
) {
209 Uart
.state
= STATE_UNSYNCD
;
217 //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; }
218 //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; }
220 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
222 Uart
.dropPosition
= 0;
224 if (Uart
.bitCnt
== 8) {
225 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
232 } else if (Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
235 if (!Uart
.dropPosition
) {
236 Uart
.state
= STATE_UNSYNCD
;
241 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
246 Uart
.dropPosition
= 0;
251 Uart.output[Uart.byteCnt] = 0xAA;
253 Uart.output[Uart.byteCnt] = error & 0xFF;
255 Uart.output[Uart.byteCnt] = 0xAA;
257 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
259 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
261 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
263 Uart.output[Uart.byteCnt] = 0xAA;
270 bit
= Uart
.bitBuffer
& 0xf0;
272 bit
^= 0x0F; // drops become 1s ;-)
274 // should have been high or at least (4 * 128) / fc
275 // according to ISO this should be at least (9 * 128 + 20) / fc
276 if (Uart
.highCnt
== 8) {
277 // we went low, so this could be start of communication
278 // it turns out to be safer to choose a less significant
279 // syncbit... so we check whether the neighbour also represents the drop
280 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
281 Uart
.syncBit
= bit
& 8;
283 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
284 else if (bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
285 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
286 else if (bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
287 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
288 if (Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
291 // the first half bit period is expected in next sample
295 } else if (bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
298 Uart
.state
= STATE_START_OF_COMMUNICATION
;
302 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
303 Uart
.dropPosition
= 0;
309 } else if (Uart
.highCnt
< 8) {
318 //=============================================================================
320 //=============================================================================
325 DEMOD_START_OF_COMMUNICATION
,
326 DEMOD_START_OF_COMMUNICATION2
,
327 DEMOD_START_OF_COMMUNICATION3
,
331 DEMOD_END_OF_COMMUNICATION
,
332 DEMOD_END_OF_COMMUNICATION2
,
355 static RAMFUNC
int ManchesterDecoding(int v
) {
361 Demod
.buffer
= Demod
.buffer2
;
362 Demod
.buffer2
= Demod
.buffer3
;
365 if (Demod
.buff
< 3) {
370 if (Demod
.state
==DEMOD_UNSYNCD
) {
371 Demod
.output
[Demod
.len
] = 0xfa;
374 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
377 Demod
.syncBit
= 0x08;
384 Demod
.syncBit
= 0x04;
391 Demod
.syncBit
= 0x02;
394 if (bit
& 0x01 && Demod
.syncBit
) {
395 Demod
.syncBit
= 0x01;
400 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
401 Demod
.sub
= SUB_FIRST_HALF
;
405 if (Demod
.posCount
) {
406 switch (Demod
.syncBit
) {
407 case 0x08: Demod
.samples
= 3; break;
408 case 0x04: Demod
.samples
= 2; break;
409 case 0x02: Demod
.samples
= 1; break;
410 case 0x01: Demod
.samples
= 0; break;
412 // SOF must be long burst... otherwise stay unsynced!!!
413 if (!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
414 Demod
.state
= DEMOD_UNSYNCD
;
417 // SOF must be long burst... otherwise stay unsynced!!!
418 if (!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
419 Demod
.state
= DEMOD_UNSYNCD
;
428 // state is DEMOD is in SYNC from here on.
429 modulation
= bit
& Demod
.syncBit
;
430 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
434 if (Demod
.posCount
== 0) {
437 Demod
.sub
= SUB_FIRST_HALF
;
439 Demod
.sub
= SUB_NONE
;
444 if (Demod
.sub
== SUB_FIRST_HALF
) {
445 Demod
.sub
= SUB_BOTH
;
447 Demod
.sub
= SUB_SECOND_HALF
;
449 } else if (Demod
.sub
== SUB_NONE
) {
450 if (Demod
.state
== DEMOD_SOF_COMPLETE
) {
451 Demod
.output
[Demod
.len
] = 0x0f;
453 Demod
.state
= DEMOD_UNSYNCD
;
456 Demod
.state
= DEMOD_ERROR_WAIT
;
461 switch(Demod
.state
) {
462 case DEMOD_START_OF_COMMUNICATION
:
463 if (Demod
.sub
== SUB_BOTH
) {
464 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
466 Demod
.sub
= SUB_NONE
;
468 Demod
.output
[Demod
.len
] = 0xab;
469 Demod
.state
= DEMOD_ERROR_WAIT
;
473 case DEMOD_START_OF_COMMUNICATION2
:
474 if (Demod
.sub
== SUB_SECOND_HALF
) {
475 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
477 Demod
.output
[Demod
.len
] = 0xab;
478 Demod
.state
= DEMOD_ERROR_WAIT
;
482 case DEMOD_START_OF_COMMUNICATION3
:
483 if (Demod
.sub
== SUB_SECOND_HALF
) {
484 Demod
.state
= DEMOD_SOF_COMPLETE
;
486 Demod
.output
[Demod
.len
] = 0xab;
487 Demod
.state
= DEMOD_ERROR_WAIT
;
491 case DEMOD_SOF_COMPLETE
:
492 case DEMOD_MANCHESTER_D
:
493 case DEMOD_MANCHESTER_E
:
494 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
495 // 00001111 = 1 (0 in 14443)
496 if (Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
498 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
499 Demod
.state
= DEMOD_MANCHESTER_D
;
500 } else if (Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
502 Demod
.shiftReg
>>= 1;
503 Demod
.state
= DEMOD_MANCHESTER_E
;
504 } else if (Demod
.sub
== SUB_BOTH
) {
505 Demod
.state
= DEMOD_MANCHESTER_F
;
507 Demod
.state
= DEMOD_ERROR_WAIT
;
512 case DEMOD_MANCHESTER_F
:
513 // Tag response does not need to be a complete byte!
514 if (Demod
.len
> 0 || Demod
.bitCount
> 0) {
515 if (Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
516 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align data
517 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
521 Demod
.state
= DEMOD_UNSYNCD
;
524 Demod
.output
[Demod
.len
] = 0xad;
525 Demod
.state
= DEMOD_ERROR_WAIT
;
530 case DEMOD_ERROR_WAIT
:
531 Demod
.state
= DEMOD_UNSYNCD
;
535 Demod
.output
[Demod
.len
] = 0xdd;
536 Demod
.state
= DEMOD_UNSYNCD
;
540 if (Demod
.bitCount
>= 8) {
541 Demod
.shiftReg
>>= 1;
542 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
549 Demod
.output
[Demod
.len
] = 0xBB;
551 Demod
.output
[Demod
.len
] = error
& 0xFF;
553 Demod
.output
[Demod
.len
] = 0xBB;
555 Demod
.output
[Demod
.len
] = bit
& 0xFF;
557 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
560 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
562 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
564 Demod
.output
[Demod
.len
] = 0xBB;
571 } // end (state != UNSYNCED)
576 //=============================================================================
577 // Finally, a `sniffer' for iClass communication
578 // Both sides of communication!
579 //=============================================================================
581 //-----------------------------------------------------------------------------
582 // Record the sequence of commands sent by the reader to the tag, with
583 // triggering so that we start recording at the point that the tag is moved
585 //-----------------------------------------------------------------------------
586 void RAMFUNC
SnoopIClass(void) {
588 // We won't start recording the frames that we acquire until we trigger;
589 // a good trigger condition to get started is probably when we see a
590 // response from the tag.
591 //int triggered = false; // false to wait first for card
593 // The command (reader -> tag) that we're receiving.
594 // The length of a received command will in most cases be no more than 18 bytes.
595 // So 32 should be enough!
596 #define ICLASS_BUFFER_SIZE 32
597 uint8_t readerToTagCmd
[ICLASS_BUFFER_SIZE
];
598 // The response (tag -> reader) that we're receiving.
599 uint8_t tagToReaderResponse
[ICLASS_BUFFER_SIZE
];
601 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
603 // free all BigBuf memory
605 // The DMA buffer, used to stream samples from the FPGA
606 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
610 iso14a_set_trigger(false);
617 // Count of samples received so far, so that we can include timing
618 // information in the trace buffer.
622 // Set up the demodulator for tag -> reader responses.
623 Demod
.output
= tagToReaderResponse
;
625 Demod
.state
= DEMOD_UNSYNCD
;
627 // Setup for the DMA.
628 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
630 lastRxCounter
= DMA_BUFFER_SIZE
;
631 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
633 // And the reader -> tag commands
634 memset(&Uart
, 0, sizeof(Uart
));
635 Uart
.output
= readerToTagCmd
;
636 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
637 Uart
.state
= STATE_UNSYNCD
;
639 // And put the FPGA in the appropriate mode
640 // Signal field is off with the appropriate LED
642 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
643 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
645 uint32_t time_0
= GetCountSspClk();
646 uint32_t time_start
= 0;
647 uint32_t time_stop
= 0;
654 // And now we loop, receiving samples.
658 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) & (DMA_BUFFER_SIZE
-1);
659 if (behindBy
> maxBehindBy
) {
660 maxBehindBy
= behindBy
;
661 if (behindBy
> (9 * DMA_BUFFER_SIZE
/ 10)) {
662 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
666 if (behindBy
< 1) continue;
672 if (upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
673 upTo
-= DMA_BUFFER_SIZE
;
674 lastRxCounter
+= DMA_BUFFER_SIZE
;
675 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
676 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
683 decbyte
^= (1 << (3 - div
));
686 // FOR READER SIDE COMMUMICATION...
689 decbyter
^= (smpl
& 0x30);
693 if ((div
+ 1) % 2 == 0) {
695 if (OutOfNDecoding((smpl
& 0xF0) >> 4)) {
696 rsamples
= samples
- Uart
.samples
;
697 time_stop
= (GetCountSspClk()-time_0
) << 4;
699 //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
700 //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
701 uint8_t parity
[MAX_PARITY_SIZE
];
702 GetParity(Uart
.output
, Uart
.byteCnt
, parity
);
703 LogTrace_ISO15693(Uart
.output
, Uart
.byteCnt
, time_start
*32, time_stop
*32, parity
, true);
705 /* And ready to receive another command. */
706 Uart
.state
= STATE_UNSYNCD
;
707 /* And also reset the demod code, which might have been */
708 /* false-triggered by the commands from the reader. */
709 Demod
.state
= DEMOD_UNSYNCD
;
712 time_start
= (GetCountSspClk()-time_0
) << 4;
719 if (ManchesterDecoding(smpl
& 0x0F)) {
720 time_stop
= (GetCountSspClk()-time_0
) << 4;
722 rsamples
= samples
- Demod
.samples
;
724 uint8_t parity
[MAX_PARITY_SIZE
];
725 GetParity(Demod
.output
, Demod
.len
, parity
);
726 LogTrace_ISO15693(Demod
.output
, Demod
.len
, time_start
*32, time_stop
*32, parity
, false);
728 // And ready to receive another response.
729 memset(&Demod
, 0, sizeof(Demod
));
730 Demod
.output
= tagToReaderResponse
;
731 Demod
.state
= DEMOD_UNSYNCD
;
733 time_start
= (GetCountSspClk()-time_0
) << 4;
740 if (BUTTON_PRESS()) {
741 DbpString("cancelled_a");
746 DbpString("COMMAND FINISHED");
748 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
749 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
752 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
753 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
754 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
758 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
760 for (i
= 0; i
< 8; i
++) {
761 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
766 static void CodeIClassTagSOF() {
768 ToSend
[++ToSendMax
] = 0x1D;
772 static void AppendCrc(uint8_t *data
, int len
) {
773 ComputeCrc14443(CRC_ICLASS
, data
, len
, data
+len
, data
+len
+1);
778 * @brief Does the actual simulation
780 int doIClassSimulation(int simulationMode
, uint8_t *reader_mac_buf
) {
782 // free eventually allocated BigBuf memory
783 BigBuf_free_keep_EM();
785 uint16_t page_size
= 32 * 8;
786 uint8_t current_page
= 0;
788 // maintain cipher states for both credit and debit key for each page
789 State cipher_state_KC
[8];
790 State cipher_state_KD
[8];
791 State
*cipher_state
= &cipher_state_KD
[0];
793 uint8_t *emulator
= BigBuf_get_EM_addr();
794 uint8_t *csn
= emulator
;
796 // CSN followed by two CRC bytes
797 uint8_t anticoll_data
[10];
798 uint8_t csn_data
[10];
799 memcpy(csn_data
, csn
, sizeof(csn_data
));
800 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn
[0], csn
[1], csn
[2], csn
[3], csn
[4], csn
[5], csn
[6], csn
[7]);
802 // Construct anticollision-CSN
803 rotateCSN(csn_data
, anticoll_data
);
805 // Compute CRC on both CSNs
806 AppendCrc(anticoll_data
, 8);
807 AppendCrc(csn_data
, 8);
809 uint8_t diversified_key_d
[8] = { 0x00 };
810 uint8_t diversified_key_c
[8] = { 0x00 };
811 uint8_t *diversified_key
= diversified_key_d
;
813 // configuration block
814 uint8_t conf_block
[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
817 uint8_t card_challenge_data
[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
819 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
820 // initialize from page 0
821 memcpy(conf_block
, emulator
+ 8 * 1, 8);
822 memcpy(card_challenge_data
, emulator
+ 8 * 2, 8); // e-purse
823 memcpy(diversified_key_d
, emulator
+ 8 * 3, 8); // Kd
824 memcpy(diversified_key_c
, emulator
+ 8 * 4, 8); // Kc
827 AppendCrc(conf_block
, 8);
829 // save card challenge for sim2,4 attack
830 if (reader_mac_buf
!= NULL
) {
831 memcpy(reader_mac_buf
, card_challenge_data
, 8);
834 if (conf_block
[5] & 0x80) {
839 // When the page is in personalization mode this bit is equal to 1.
840 // Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0:
841 // the page is then "in application mode".
842 bool personalization_mode
= conf_block
[7] & 0x80;
844 // chip memory may be divided in 8 pages
845 uint8_t max_page
= conf_block
[4] & 0x10 ? 0 : 7;
847 // Precalculate the cipher states, feeding it the CC
848 cipher_state_KD
[0] = opt_doTagMAC_1(card_challenge_data
, diversified_key_d
);
849 cipher_state_KC
[0] = opt_doTagMAC_1(card_challenge_data
, diversified_key_c
);
850 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
851 for (int i
= 1; i
< max_page
; i
++) {
852 uint8_t *epurse
= emulator
+ i
*page_size
+ 8*2;
853 uint8_t *Kd
= emulator
+ i
*page_size
+ 8*3;
854 uint8_t *Kc
= emulator
+ i
*page_size
+ 8*4;
855 cipher_state_KD
[i
] = opt_doTagMAC_1(epurse
, Kd
);
856 cipher_state_KC
[i
] = opt_doTagMAC_1(epurse
, Kc
);
865 // Reader 81 anticoll. CSN
868 uint8_t *modulated_response
;
869 int modulated_response_size
= 0;
870 uint8_t *trace_data
= NULL
;
871 int trace_data_size
= 0;
873 // Respond SOF -- takes 1 bytes
874 uint8_t *resp_sof
= BigBuf_malloc(1);
877 // Anticollision CSN (rotated CSN)
878 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
879 uint8_t *resp_anticoll
= BigBuf_malloc(22);
880 int resp_anticoll_len
;
883 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
884 uint8_t *resp_csn
= BigBuf_malloc(22);
887 // configuration (block 1) picopass 2ks
888 uint8_t *resp_conf
= BigBuf_malloc(22);
892 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
893 uint8_t *resp_cc
= BigBuf_malloc(18);
896 // Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only
897 uint8_t *resp_ff
= BigBuf_malloc(22);
899 uint8_t ff_data
[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
900 AppendCrc(ff_data
, 8);
902 // Application Issuer Area (block 5)
903 uint8_t *resp_aia
= BigBuf_malloc(22);
905 uint8_t aia_data
[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
906 AppendCrc(aia_data
, 8);
908 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
911 // Prepare card messages
913 // First card answer: SOF only
915 memcpy(resp_sof
, ToSend
, ToSendMax
);
916 resp_sof_Len
= ToSendMax
;
919 CodeIso15693AsTag(anticoll_data
, sizeof(anticoll_data
));
920 memcpy(resp_anticoll
, ToSend
, ToSendMax
);
921 resp_anticoll_len
= ToSendMax
;
924 CodeIso15693AsTag(csn_data
, sizeof(csn_data
));
925 memcpy(resp_csn
, ToSend
, ToSendMax
);
926 resp_csn_len
= ToSendMax
;
928 // Configuration (block 1)
929 CodeIso15693AsTag(conf_block
, sizeof(conf_block
));
930 memcpy(resp_conf
, ToSend
, ToSendMax
);
931 resp_conf_len
= ToSendMax
;
934 CodeIso15693AsTag(card_challenge_data
, sizeof(card_challenge_data
));
935 memcpy(resp_cc
, ToSend
, ToSendMax
);
936 resp_cc_len
= ToSendMax
;
938 // Kd, Kc (blocks 3 and 4)
939 CodeIso15693AsTag(ff_data
, sizeof(ff_data
));
940 memcpy(resp_ff
, ToSend
, ToSendMax
);
941 resp_ff_len
= ToSendMax
;
943 // Application Issuer Area (block 5)
944 CodeIso15693AsTag(aia_data
, sizeof(aia_data
));
945 memcpy(resp_aia
, ToSend
, ToSendMax
);
946 resp_aia_len
= ToSendMax
;
948 //This is used for responding to READ-block commands or other data which is dynamically generated
949 uint8_t *data_generic_trace
= BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer
950 uint8_t *data_response
= BigBuf_malloc( (32 + 2) * 2 + 2);
952 bool buttonPressed
= false;
953 enum { IDLE
, ACTIVATED
, SELECTED
, HALTED
} chip_state
= IDLE
;
958 uint32_t reader_eof_time
= 0;
959 len
= GetIso15693CommandFromReader(receivedCmd
, MAX_FRAME_SIZE
, &reader_eof_time
);
961 buttonPressed
= true;
965 // Now look at the reader command and provide appropriate responses
966 // default is no response:
967 modulated_response
= NULL
;
968 modulated_response_size
= 0;
972 if (receivedCmd
[0] == ICLASS_CMD_ACTALL
&& len
== 1) {
973 // Reader in anticollision phase
974 if (chip_state
!= HALTED
) {
975 modulated_response
= resp_sof
;
976 modulated_response_size
= resp_sof_Len
;
977 chip_state
= ACTIVATED
;
980 } else if (receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 1) { // identify
981 // Reader asks for anticollision CSN
982 if (chip_state
== SELECTED
|| chip_state
== ACTIVATED
) {
983 modulated_response
= resp_anticoll
;
984 modulated_response_size
= resp_anticoll_len
;
985 trace_data
= anticoll_data
;
986 trace_data_size
= sizeof(anticoll_data
);
989 } else if (receivedCmd
[0] == ICLASS_CMD_SELECT
&& len
== 9) {
990 // Reader selects anticollision CSN.
991 // Tag sends the corresponding real CSN
992 if (chip_state
== ACTIVATED
|| chip_state
== SELECTED
) {
993 if (!memcmp(receivedCmd
+1, anticoll_data
, 8)) {
994 modulated_response
= resp_csn
;
995 modulated_response_size
= resp_csn_len
;
996 trace_data
= csn_data
;
997 trace_data_size
= sizeof(csn_data
);
998 chip_state
= SELECTED
;
1002 } else if (chip_state
== HALTED
) {
1003 // RESELECT with CSN
1004 if (!memcmp(receivedCmd
+1, csn_data
, 8)) {
1005 modulated_response
= resp_csn
;
1006 modulated_response_size
= resp_csn_len
;
1007 trace_data
= csn_data
;
1008 trace_data_size
= sizeof(csn_data
);
1009 chip_state
= SELECTED
;
1013 } else if (receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 4) { // read block
1014 uint16_t blockNo
= receivedCmd
[1];
1015 if (chip_state
== SELECTED
) {
1016 if (simulationMode
== ICLASS_SIM_MODE_EXIT_AFTER_MAC
) {
1017 // provide defaults for blocks 0 ... 5
1019 case 0: // csn (block 00)
1020 modulated_response
= resp_csn
;
1021 modulated_response_size
= resp_csn_len
;
1022 trace_data
= csn_data
;
1023 trace_data_size
= sizeof(csn_data
);
1025 case 1: // configuration (block 01)
1026 modulated_response
= resp_conf
;
1027 modulated_response_size
= resp_conf_len
;
1028 trace_data
= conf_block
;
1029 trace_data_size
= sizeof(conf_block
);
1031 case 2: // e-purse (block 02)
1032 modulated_response
= resp_cc
;
1033 modulated_response_size
= resp_cc_len
;
1034 trace_data
= card_challenge_data
;
1035 trace_data_size
= sizeof(card_challenge_data
);
1036 // set epurse of sim2,4 attack
1037 if (reader_mac_buf
!= NULL
) {
1038 memcpy(reader_mac_buf
, card_challenge_data
, 8);
1042 case 4: // Kd, Kc, always respond with 0xff bytes
1043 modulated_response
= resp_ff
;
1044 modulated_response_size
= resp_ff_len
;
1045 trace_data
= ff_data
;
1046 trace_data_size
= sizeof(ff_data
);
1048 case 5: // Application Issuer Area (block 05)
1049 modulated_response
= resp_aia
;
1050 modulated_response_size
= resp_aia_len
;
1051 trace_data
= aia_data
;
1052 trace_data_size
= sizeof(aia_data
);
1054 // default: don't respond
1056 } else if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1057 if (blockNo
== 3 || blockNo
== 4) { // Kd, Kc, always respond with 0xff bytes
1058 modulated_response
= resp_ff
;
1059 modulated_response_size
= resp_ff_len
;
1060 trace_data
= ff_data
;
1061 trace_data_size
= sizeof(ff_data
);
1062 } else { // use data from emulator memory
1063 memcpy(data_generic_trace
, emulator
+ current_page
*page_size
+ 8*blockNo
, 8);
1064 AppendCrc(data_generic_trace
, 8);
1065 trace_data
= data_generic_trace
;
1066 trace_data_size
= 10;
1067 CodeIso15693AsTag(trace_data
, trace_data_size
);
1068 memcpy(data_response
, ToSend
, ToSendMax
);
1069 modulated_response
= data_response
;
1070 modulated_response_size
= ToSendMax
;
1075 } else if ((receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
1076 || receivedCmd
[0] == ICLASS_CMD_READCHECK_KC
) && receivedCmd
[1] == 0x02 && len
== 2) {
1077 // Read e-purse (88 02 || 18 02)
1078 if (chip_state
== SELECTED
) {
1079 if(receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
){
1080 cipher_state
= &cipher_state_KD
[current_page
];
1081 diversified_key
= diversified_key_d
;
1083 cipher_state
= &cipher_state_KC
[current_page
];
1084 diversified_key
= diversified_key_c
;
1086 modulated_response
= resp_cc
;
1087 modulated_response_size
= resp_cc_len
;
1088 trace_data
= card_challenge_data
;
1089 trace_data_size
= sizeof(card_challenge_data
);
1092 } else if ((receivedCmd
[0] == ICLASS_CMD_CHECK_KC
1093 || receivedCmd
[0] == ICLASS_CMD_CHECK_KD
) && len
== 9) {
1094 // Reader random and reader MAC!!!
1095 if (chip_state
== SELECTED
) {
1096 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1097 //NR, from reader, is in receivedCmd+1
1098 opt_doTagMAC_2(*cipher_state
, receivedCmd
+1, data_generic_trace
, diversified_key
);
1099 trace_data
= data_generic_trace
;
1100 trace_data_size
= 4;
1101 CodeIso15693AsTag(trace_data
, trace_data_size
);
1102 memcpy(data_response
, ToSend
, ToSendMax
);
1103 modulated_response
= data_response
;
1104 modulated_response_size
= ToSendMax
;
1106 } else { // Not fullsim, we don't respond
1107 // We do not know what to answer, so lets keep quiet
1108 if (simulationMode
== ICLASS_SIM_MODE_EXIT_AFTER_MAC
) {
1109 if (reader_mac_buf
!= NULL
) {
1110 // save NR and MAC for sim 2,4
1111 memcpy(reader_mac_buf
+ 8, receivedCmd
+ 1, 8);
1118 } else if (receivedCmd
[0] == ICLASS_CMD_HALT
&& len
== 1) {
1119 if (chip_state
== SELECTED
) {
1120 // Reader ends the session
1121 modulated_response
= resp_sof
;
1122 modulated_response_size
= resp_sof_Len
;
1123 chip_state
= HALTED
;
1126 } else if (simulationMode
== ICLASS_SIM_MODE_FULL
&& receivedCmd
[0] == ICLASS_CMD_READ4
&& len
== 4) { // 0x06
1128 if (chip_state
== SELECTED
) {
1129 uint8_t blockNo
= receivedCmd
[1];
1130 memcpy(data_generic_trace
, emulator
+ current_page
*page_size
+ blockNo
*8, 8 * 4);
1131 AppendCrc(data_generic_trace
, 8 * 4);
1132 trace_data
= data_generic_trace
;
1133 trace_data_size
= 8 * 4 + 2;
1134 CodeIso15693AsTag(trace_data
, trace_data_size
);
1135 memcpy(data_response
, ToSend
, ToSendMax
);
1136 modulated_response
= data_response
;
1137 modulated_response_size
= ToSendMax
;
1140 } else if (receivedCmd
[0] == ICLASS_CMD_UPDATE
&& (len
== 12 || len
== 14)) {
1141 // We're expected to respond with the data+crc, exactly what's already in the receivedCmd
1142 // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b
1143 if (chip_state
== SELECTED
) {
1144 uint8_t blockNo
= receivedCmd
[1];
1145 if (blockNo
== 2) { // update e-purse
1146 memcpy(card_challenge_data
, receivedCmd
+2, 8);
1147 CodeIso15693AsTag(card_challenge_data
, sizeof(card_challenge_data
));
1148 memcpy(resp_cc
, ToSend
, ToSendMax
);
1149 resp_cc_len
= ToSendMax
;
1150 cipher_state_KD
[current_page
] = opt_doTagMAC_1(card_challenge_data
, diversified_key_d
);
1151 cipher_state_KC
[current_page
] = opt_doTagMAC_1(card_challenge_data
, diversified_key_c
);
1152 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1153 memcpy(emulator
+ current_page
*page_size
+ 8*2, card_challenge_data
, 8);
1155 } else if (blockNo
== 3) { // update Kd
1156 for (int i
= 0; i
< 8; i
++) {
1157 if (personalization_mode
) {
1158 diversified_key_d
[i
] = receivedCmd
[2 + i
];
1160 diversified_key_d
[i
] ^= receivedCmd
[2 + i
];
1163 cipher_state_KD
[current_page
] = opt_doTagMAC_1(card_challenge_data
, diversified_key_d
);
1164 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1165 memcpy(emulator
+ current_page
*page_size
+ 8*3, diversified_key_d
, 8);
1167 } else if (blockNo
== 4) { // update Kc
1168 for (int i
= 0; i
< 8; i
++) {
1169 if (personalization_mode
) {
1170 diversified_key_c
[i
] = receivedCmd
[2 + i
];
1172 diversified_key_c
[i
] ^= receivedCmd
[2 + i
];
1175 cipher_state_KC
[current_page
] = opt_doTagMAC_1(card_challenge_data
, diversified_key_c
);
1176 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1177 memcpy(emulator
+ current_page
*page_size
+ 8*4, diversified_key_c
, 8);
1179 } else if (simulationMode
== ICLASS_SIM_MODE_FULL
) { // update any other data block
1180 memcpy(emulator
+ current_page
*page_size
+ 8*blockNo
, receivedCmd
+2, 8);
1182 memcpy(data_generic_trace
, receivedCmd
+ 2, 8);
1183 AppendCrc(data_generic_trace
, 8);
1184 trace_data
= data_generic_trace
;
1185 trace_data_size
= 10;
1186 CodeIso15693AsTag(trace_data
, trace_data_size
);
1187 memcpy(data_response
, ToSend
, ToSendMax
);
1188 modulated_response
= data_response
;
1189 modulated_response_size
= ToSendMax
;
1192 } else if (receivedCmd
[0] == ICLASS_CMD_PAGESEL
&& len
== 4) {
1194 // Chips with a single page will not answer to this command
1195 // Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC
1196 if (chip_state
== SELECTED
) {
1197 if (simulationMode
== ICLASS_SIM_MODE_FULL
&& max_page
> 0) {
1198 current_page
= receivedCmd
[1];
1199 memcpy(data_generic_trace
, emulator
+ current_page
*page_size
+ 8*1, 8);
1200 memcpy(diversified_key_d
, emulator
+ current_page
*page_size
+ 8*3, 8);
1201 memcpy(diversified_key_c
, emulator
+ current_page
*page_size
+ 8*4, 8);
1202 cipher_state
= &cipher_state_KD
[current_page
];
1203 personalization_mode
= data_generic_trace
[7] & 0x80;
1204 AppendCrc(data_generic_trace
, 8);
1205 trace_data
= data_generic_trace
;
1206 trace_data_size
= 10;
1207 CodeIso15693AsTag(trace_data
, trace_data_size
);
1208 memcpy(data_response
, ToSend
, ToSendMax
);
1209 modulated_response
= data_response
;
1210 modulated_response_size
= ToSendMax
;
1214 } else if (receivedCmd
[0] == 0x26 && len
== 5) {
1215 // standard ISO15693 INVENTORY command. Ignore.
1218 // don't know how to handle this command
1219 char debug_message
[250]; // should be enough
1220 sprintf(debug_message
, "Unhandled command (len = %d) received from reader:", len
);
1221 for (int i
= 0; i
< len
&& strlen(debug_message
) < sizeof(debug_message
) - 3 - 1; i
++) {
1222 sprintf(debug_message
+ strlen(debug_message
), " %02x", receivedCmd
[i
]);
1224 Dbprintf("%s", debug_message
);
1229 A legit tag has about 273,4us delay between reader EOT and tag SOF.
1231 if (modulated_response_size
> 0) {
1232 uint32_t response_time
= reader_eof_time
+ DELAY_ICLASS_VCD_TO_VICC_SIM
;
1233 TransmitTo15693Reader(modulated_response
, modulated_response_size
, &response_time
, 0, false);
1234 LogTrace_ISO15693(trace_data
, trace_data_size
, response_time
*32, response_time
*32 + modulated_response_size
/2, NULL
, false);
1241 DbpString("Button pressed");
1243 return buttonPressed
;
1247 * @brief SimulateIClass simulates an iClass card.
1248 * @param arg0 type of simulation
1249 * - 0 uses the first 8 bytes in usb data as CSN
1250 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
1251 * in the usb data. This mode collects MAC from the reader, in order to do an offline
1252 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
1253 * - Other : Uses the default CSN (031fec8af7ff12e0)
1254 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
1258 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
) {
1262 uint32_t simType
= arg0
;
1263 uint32_t numberOfCSNS
= arg1
;
1265 // setup hardware for simulation:
1266 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1267 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1268 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1270 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1273 // Enable and clear the trace
1276 //Use the emulator memory for SIM
1277 uint8_t *emulator
= BigBuf_get_EM_addr();
1279 if (simType
== ICLASS_SIM_MODE_CSN
) {
1280 // Use the CSN from commandline
1281 memcpy(emulator
, datain
, 8);
1282 doIClassSimulation(ICLASS_SIM_MODE_CSN
, NULL
);
1283 } else if (simType
== ICLASS_SIM_MODE_CSN_DEFAULT
) {
1285 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1286 // Use the CSN from commandline
1287 memcpy(emulator
, csn_crc
, 8);
1288 doIClassSimulation(ICLASS_SIM_MODE_CSN
, NULL
);
1289 } else if (simType
== ICLASS_SIM_MODE_READER_ATTACK
) {
1290 uint8_t mac_responses
[USB_CMD_DATA_SIZE
] = { 0 };
1291 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS
);
1292 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1293 // in order to collect MAC's from the reader. This can later be used in an offline-attack
1294 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1296 for (i
= 0; i
< numberOfCSNS
&& i
*16+16 <= USB_CMD_DATA_SIZE
; i
++) {
1297 // The usb data is 512 bytes, fitting 32 responses (8 byte CC + 4 Byte NR + 4 Byte MAC = 16 Byte response).
1298 memcpy(emulator
, datain
+(i
*8), 8);
1299 if (doIClassSimulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC
, mac_responses
+i
*16)) {
1303 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1304 datain
[i
*8+0], datain
[i
*8+1], datain
[i
*8+2], datain
[i
*8+3],
1305 datain
[i
*8+4], datain
[i
*8+5], datain
[i
*8+6], datain
[i
*8+7]);
1306 Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x",
1307 mac_responses
[i
*16+ 8], mac_responses
[i
*16+ 9], mac_responses
[i
*16+10], mac_responses
[i
*16+11],
1308 mac_responses
[i
*16+12], mac_responses
[i
*16+13], mac_responses
[i
*16+14], mac_responses
[i
*16+15]);
1309 SpinDelay(100); // give the reader some time to prepare for next CSN
1311 cmd_send(CMD_ACK
, CMD_SIMULATE_TAG_ICLASS
, i
, 0, mac_responses
, i
*16);
1312 } else if (simType
== ICLASS_SIM_MODE_FULL
) {
1313 //This is 'full sim' mode, where we use the emulator storage for data.
1314 doIClassSimulation(ICLASS_SIM_MODE_FULL
, NULL
);
1316 // We may want a mode here where we hardcode the csns to use (from proxclone).
1317 // That will speed things up a little, but not required just yet.
1318 Dbprintf("The mode is not implemented, reserved for future use");
1321 Dbprintf("Done...");
1329 static void ReaderTransmitIClass(uint8_t *frame
, int len
, uint32_t *start_time
) {
1331 CodeIso15693AsReader(frame
, len
);
1333 TransmitTo15693Tag(ToSend
, ToSendMax
, start_time
);
1335 uint32_t end_time
= *start_time
+ 32*(8*ToSendMax
-4); // substract the 4 padding bits after EOF
1336 LogTrace_ISO15693(frame
, len
, *start_time
*4, end_time
*4, NULL
, true);
1340 static bool sendCmdGetResponseWithRetries(uint8_t* command
, size_t cmdsize
, uint8_t* resp
, size_t max_resp_size
,
1341 uint8_t expected_size
, uint8_t retries
, uint32_t start_time
, uint32_t *eof_time
) {
1342 while (retries
-- > 0) {
1343 ReaderTransmitIClass(command
, cmdsize
, &start_time
);
1344 if (expected_size
== GetIso15693AnswerFromTag(resp
, max_resp_size
, ICLASS_READER_TIMEOUT_OTHERS
, eof_time
)) {
1348 return false;//Error
1352 * @brief Selects an iclass tag
1353 * @param card_data where the CSN is stored for return
1354 * @return false = fail
1357 static bool selectIclassTag(uint8_t *card_data
, uint32_t *eof_time
) {
1358 uint8_t act_all
[] = { 0x0a };
1359 uint8_t identify
[] = { 0x0c };
1360 uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1362 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1364 uint32_t start_time
= GetCountSspClk();
1367 ReaderTransmitIClass(act_all
, 1, &start_time
);
1369 if (GetIso15693AnswerFromTag(resp
, sizeof(resp
), ICLASS_READER_TIMEOUT_ACTALL
, eof_time
) < 0) return false;//Fail
1372 start_time
= *eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1373 ReaderTransmitIClass(identify
, 1, &start_time
);
1374 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1375 uint8_t len
= GetIso15693AnswerFromTag(resp
, sizeof(resp
), ICLASS_READER_TIMEOUT_OTHERS
, eof_time
);
1376 if (len
!= 10) return false;//Fail
1378 //Copy the Anti-collision CSN to our select-packet
1379 memcpy(&select
[1], resp
, 8);
1381 start_time
= *eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1382 ReaderTransmitIClass(select
, sizeof(select
), &start_time
);
1383 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1384 len
= GetIso15693AnswerFromTag(resp
, sizeof(resp
), ICLASS_READER_TIMEOUT_OTHERS
, eof_time
);
1385 if (len
!= 10) return false;//Fail
1387 //Success - we got CSN
1388 //Save CSN in response data
1389 memcpy(card_data
, resp
, 8);
1395 // Select an iClass tag and read all blocks which are always readable without authentication
1396 void ReaderIClass(uint8_t arg0
) {
1400 uint8_t card_data
[6 * 8] = {0};
1401 memset(card_data
, 0xFF, sizeof(card_data
));
1402 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1403 //Read conf block CRC(0x01) => 0xfa 0x22
1404 uint8_t readConf
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, 0x01, 0xfa, 0x22};
1405 //Read e-purse block CRC(0x02) => 0x61 0x10
1406 uint8_t readEpurse
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, 0x02, 0x61, 0x10};
1407 //Read App Issuer Area block CRC(0x05) => 0xde 0x64
1408 uint8_t readAA
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, 0x05, 0xde, 0x64};
1410 uint8_t result_status
= 0;
1412 // test flags for what blocks to be sure to read
1413 uint8_t flagReadConfig
= arg0
& FLAG_ICLASS_READER_CONF
;
1414 uint8_t flagReadCC
= arg0
& FLAG_ICLASS_READER_CC
;
1415 uint8_t flagReadAA
= arg0
& FLAG_ICLASS_READER_AA
;
1419 Iso15693InitReader();
1422 uint32_t start_time
= 0;
1423 uint32_t eof_time
= 0;
1425 if (selectIclassTag(resp
, &eof_time
)) {
1426 result_status
= FLAG_ICLASS_READER_CSN
;
1427 memcpy(card_data
, resp
, 8);
1430 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1432 //Read block 1, config
1433 if (flagReadConfig
) {
1434 if (sendCmdGetResponseWithRetries(readConf
, sizeof(readConf
), resp
, sizeof(resp
), 10, 10, start_time
, &eof_time
)) {
1435 result_status
|= FLAG_ICLASS_READER_CONF
;
1436 memcpy(card_data
+8, resp
, 8);
1438 Dbprintf("Failed to read config block");
1440 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1443 //Read block 2, e-purse
1445 if (sendCmdGetResponseWithRetries(readEpurse
, sizeof(readEpurse
), resp
, sizeof(resp
), 10, 10, start_time
, &eof_time
)) {
1446 result_status
|= FLAG_ICLASS_READER_CC
;
1447 memcpy(card_data
+ (8*2), resp
, 8);
1449 Dbprintf("Failed to read e-purse");
1451 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1456 if (sendCmdGetResponseWithRetries(readAA
, sizeof(readAA
), resp
, sizeof(resp
), 10, 10, start_time
, &eof_time
)) {
1457 result_status
|= FLAG_ICLASS_READER_AA
;
1458 memcpy(card_data
+ (8*5), resp
, 8);
1460 Dbprintf("Failed to read AA block");
1464 cmd_send(CMD_ACK
, result_status
, 0, 0, card_data
, sizeof(card_data
));
1470 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1474 bool use_credit_key
= false;
1475 uint8_t card_data
[USB_CMD_DATA_SIZE
]={0};
1476 uint16_t block_crc_LUT
[255] = {0};
1478 //Generate a lookup table for block crc
1479 for (int block
= 0; block
< 255; block
++){
1481 block_crc_LUT
[block
] = iclass_crc16(&bl
,1);
1483 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1485 uint8_t readcheck_cc
[] = { ICLASS_CMD_READCHECK_KD
, 0x02 };
1487 readcheck_cc
[0] = ICLASS_CMD_READCHECK_KC
;
1488 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1489 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1492 uint8_t cardsize
= 0;
1495 static struct memory_t
{
1503 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1507 Iso15693InitReader();
1510 uint32_t start_time
= 0;
1511 uint32_t eof_time
= 0;
1513 while (!BUTTON_PRESS()) {
1517 if (!get_tracing()) {
1518 DbpString("Trace full");
1522 if (!selectIclassTag(card_data
, &eof_time
)) continue;
1524 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1525 if (!sendCmdGetResponseWithRetries(readcheck_cc
, sizeof(readcheck_cc
), resp
, sizeof(resp
), 8, 3, start_time
, &eof_time
)) continue;
1527 // replay captured auth (cc must not have been updated)
1528 memcpy(check
+5, MAC
, 4);
1530 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1531 if (!sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, sizeof(resp
), 4, 5, start_time
, &eof_time
)) {
1532 Dbprintf("Error: Authentication Fail!");
1536 //first get configuration block (block 1)
1537 crc
= block_crc_LUT
[1];
1540 read
[3] = crc
& 0xff;
1542 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1543 if (!sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, sizeof(resp
), 10, 10, start_time
, &eof_time
)) {
1544 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1545 Dbprintf("Dump config (block 1) failed");
1550 memory
.k16
= (mem
& 0x80);
1551 memory
.book
= (mem
& 0x20);
1552 memory
.k2
= (mem
& 0x8);
1553 memory
.lockauth
= (mem
& 0x2);
1554 memory
.keyaccess
= (mem
& 0x1);
1556 cardsize
= memory
.k16
? 255 : 32;
1558 //Set card_data to all zeroes, we'll fill it with data
1559 memset(card_data
, 0x0, USB_CMD_DATA_SIZE
);
1560 uint8_t failedRead
= 0;
1561 uint32_t stored_data_length
= 0;
1562 //then loop around remaining blocks
1563 for (int block
= 0; block
< cardsize
; block
++) {
1565 crc
= block_crc_LUT
[block
];
1567 read
[3] = crc
& 0xff;
1569 start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1570 if (sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, sizeof(resp
), 10, 10, start_time
, &eof_time
)) {
1571 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1572 block
, resp
[0], resp
[1], resp
[2],
1573 resp
[3], resp
[4], resp
[5],
1576 //Fill up the buffer
1577 memcpy(card_data
+stored_data_length
, resp
, 8);
1578 stored_data_length
+= 8;
1579 if (stored_data_length
+8 > USB_CMD_DATA_SIZE
) {
1580 //Time to send this off and start afresh
1582 stored_data_length
,//data length
1583 failedRead
,//Failed blocks?
1585 card_data
, stored_data_length
);
1587 stored_data_length
= 0;
1593 stored_data_length
+= 8;//Otherwise, data becomes misaligned
1594 Dbprintf("Failed to dump block %d", block
);
1598 //Send off any remaining data
1599 if (stored_data_length
> 0) {
1601 stored_data_length
,//data length
1602 failedRead
,//Failed blocks?
1605 stored_data_length
);
1607 //If we got here, let's break
1610 //Signal end of transmission
1618 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1624 void iClass_Check(uint8_t *MAC
) {
1625 uint8_t check
[9] = {ICLASS_CMD_CHECK_KD
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
1627 memcpy(check
+5, MAC
, 4);
1629 bool isOK
= sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, sizeof(resp
), 4, 6, 0, &eof_time
);
1630 cmd_send(CMD_ACK
, isOK
, 0, 0, resp
, sizeof(resp
));
1634 void iClass_Readcheck(uint8_t block
, bool use_credit_key
) {
1635 uint8_t readcheck
[2] = {ICLASS_CMD_READCHECK_KD
, block
};
1636 if (use_credit_key
) {
1637 readcheck
[0] = ICLASS_CMD_READCHECK_KC
;
1641 bool isOK
= sendCmdGetResponseWithRetries(readcheck
, sizeof(readcheck
), resp
, sizeof(resp
), 8, 6, 0, &eof_time
);
1642 cmd_send(CMD_ACK
, isOK
, 0, 0, resp
, sizeof(resp
));
1646 static bool iClass_ReadBlock(uint8_t blockNo
, uint8_t *readdata
) {
1647 uint8_t readcmd
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, blockNo
, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1649 uint16_t rdCrc
= iclass_crc16(&bl
, 1);
1650 readcmd
[2] = rdCrc
>> 8;
1651 readcmd
[3] = rdCrc
& 0xff;
1656 isOK
= sendCmdGetResponseWithRetries(readcmd
, sizeof(readcmd
), resp
, sizeof(resp
), 10, 10, 0, &eof_time
);
1657 memcpy(readdata
, resp
, sizeof(resp
));
1663 void iClass_ReadBlk(uint8_t blockno
) {
1667 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1669 isOK
= iClass_ReadBlock(blockno
, readblockdata
);
1670 cmd_send(CMD_ACK
, isOK
, 0, 0, readblockdata
, 8);
1671 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1677 void iClass_Dump(uint8_t blockno
, uint8_t numblks
) {
1681 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1686 uint8_t *dataout
= BigBuf_malloc(255*8);
1687 if (dataout
== NULL
) {
1688 Dbprintf("out of memory");
1689 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1691 cmd_send(CMD_ACK
, 0, 1, 0, 0, 0);
1695 memset(dataout
, 0xFF, 255*8);
1697 for ( ; blkCnt
< numblks
; blkCnt
++) {
1698 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1699 if (!isOK
|| (readblockdata
[0] == 0xBB || readblockdata
[7] == 0xBB || readblockdata
[2] == 0xBB)) { //try again
1700 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1702 Dbprintf("Block %02X failed to read", blkCnt
+blockno
);
1706 memcpy(dataout
+ (blkCnt
*8), readblockdata
, 8);
1708 //return pointer to dump memory in arg3
1709 cmd_send(CMD_ACK
, isOK
, blkCnt
, BigBuf_max_traceLen(), 0, 0);
1711 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1719 static bool iClass_WriteBlock_ext(uint8_t blockNo
, uint8_t *data
) {
1723 uint8_t write
[] = { ICLASS_CMD_UPDATE
, blockNo
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1724 //uint8_t readblockdata[10];
1725 //write[1] = blockNo;
1726 memcpy(write
+2, data
, 12); // data + mac
1727 char *wrCmd
= (char *)(write
+1);
1728 uint16_t wrCrc
= iclass_crc16(wrCmd
, 13);
1729 write
[14] = wrCrc
>> 8;
1730 write
[15] = wrCrc
& 0xff;
1733 uint32_t eof_time
= 0;
1735 isOK
= sendCmdGetResponseWithRetries(write
, sizeof(write
), resp
, sizeof(resp
), 10, 10, 0, &eof_time
);
1736 uint32_t start_time
= eof_time
+ DELAY_ICLASS_VICC_TO_VCD_READER
;
1737 if (isOK
) { //if reader responded correctly
1738 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
1739 if (memcmp(write
+2, resp
, 8)) { //if response is not equal to write values
1740 if (blockNo
!= 3 && blockNo
!= 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
1742 isOK
= sendCmdGetResponseWithRetries(write
, sizeof(write
), resp
, sizeof(resp
), 10, 10, start_time
, &eof_time
);
1753 void iClass_WriteBlock(uint8_t blockNo
, uint8_t *data
) {
1757 bool isOK
= iClass_WriteBlock_ext(blockNo
, data
);
1759 Dbprintf("Write block [%02x] successful", blockNo
);
1761 Dbprintf("Write block [%02x] failed", blockNo
);
1763 cmd_send(CMD_ACK
, isOK
, 0, 0, 0, 0);
1765 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1771 void iClass_Clone(uint8_t startblock
, uint8_t endblock
, uint8_t *data
) {
1774 int total_block
= (endblock
- startblock
) + 1;
1775 for (i
= 0; i
< total_block
; i
++) {
1777 if (iClass_WriteBlock_ext(i
+startblock
, data
+ (i
*12))){
1778 Dbprintf("Write block [%02x] successful", i
+ startblock
);
1781 if (iClass_WriteBlock_ext(i
+startblock
, data
+ (i
*12))){
1782 Dbprintf("Write block [%02x] successful", i
+ startblock
);
1785 Dbprintf("Write block [%02x] failed", i
+ startblock
);
1789 if (written
== total_block
)
1790 Dbprintf("Clone complete");
1792 Dbprintf("Clone incomplete");
1794 cmd_send(CMD_ACK
, 1, 0, 0, 0, 0);
1795 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);