1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
12 #include "proxmark3.h"
26 * @brief Pushes bit onto the stream
30 void pushBit( BitstreamOut
* stream
, bool bit
)
32 int bytepos
= stream
->position
>> 3; // divide by 8
33 int bitpos
= stream
->position
& 7;
34 *(stream
->buffer
+bytepos
) |= (bit
& 1) << (7 - bitpos
);
38 void DoAcquisition(int decimation
, int quantization
, int trigger_threshold
, bool averaging
)
40 //A decimation of 2 means we keep every 2nd sample
41 //A decimation of 3 means we keep 1 in 3 samples.
42 //A quantization of 1 means one bit is discarded from the sample (division by 2).
43 uint8_t *dest
= (uint8_t *)BigBuf
;
44 int bufsize
= BIGBUF_SIZE
;
45 memset(dest
, 0, bufsize
);
46 // You can't decimate 8 bits more than 7 times
47 if(quantization
> 7) quantization
= 7;
48 // Use a bit stream to handle the output
49 BitstreamOut data
= { dest
, 0, 0};
50 int sample_counter
= 0;
52 //If we want to do averaging
53 uint32_t sample_sum
=0 ;
54 uint32_t sample_total_numbers
=0 ;
55 uint32_t sample_total_saved
=0 ;
59 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
60 AT91C_BASE_SSC
->SSC_THR
= 0x43;
63 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
64 sample
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
65 sample_total_numbers
++;
66 if (trigger_threshold
!= -1 && sample
< trigger_threshold
)
70 trigger_threshold
= -1;
74 if(sample_counter
< decimation
) continue;
76 if(averaging
) sample
= sample_sum
/ decimation
;
80 sample_total_saved
++;
81 pushBit(&data
, sample
& 0x80);
82 if(quantization
< 7) pushBit(&data
, sample
& 0x40);
83 if(quantization
< 6) pushBit(&data
, sample
& 0x20);
84 if(quantization
< 5) pushBit(&data
, sample
& 0x10);
85 if(quantization
< 4) pushBit(&data
, sample
& 0x08);
86 if(quantization
< 3) pushBit(&data
, sample
& 0x04);
87 if(quantization
< 2) pushBit(&data
, sample
& 0x02);
88 if(quantization
< 1) pushBit(&data
, sample
& 0x01);
90 if(data
.numbits
+1 >= bufsize
) break;
93 Dbprintf("Done, saved %l out of %l seen samples.",sample_total_saved
, sample_total_numbers
);
99 * Does the sample acquisition. If threshold is specified, the actual sampling
100 * is not commenced until the threshold has been reached.
101 * @param trigger_threshold - the threshold
102 * @param silent - is true, now outputs are made. If false, dbprints the status
104 void DoAcquisition125k_internal(int trigger_threshold
,bool silent
)
106 uint8_t *dest
= (uint8_t *)BigBuf
;
107 int n
= sizeof(BigBuf
);
113 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
114 AT91C_BASE_SSC
->SSC_THR
= 0x43;
117 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
118 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
120 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
123 trigger_threshold
= -1;
129 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
130 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
135 * Perform sample aquisition.
137 void DoAcquisition125k(int trigger_threshold
)
139 DoAcquisition125k_internal(trigger_threshold
, false);
143 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
144 * if not already loaded, sets divisor and starts up the antenna.
145 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
146 * 0 or 95 ==> 125 KHz
149 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
151 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
152 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
154 else if (divisor
== 0)
155 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
157 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
159 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
161 // Connect the A/D to the peak-detected low-frequency path.
162 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
163 // Give it a bit of time for the resonant antenna to settle.
165 // Now set up the SSC to get the ADC samples that are now streaming at us.
169 * Initializes the FPGA, and acquires the samples.
171 void AcquireRawAdcSamples125k(int divisor
)
173 LFSetupFPGAForADC(divisor
, true);
174 // Now call the acquisition routine
175 DoAcquisition125k_internal(-1,false);
178 * Initializes the FPGA for snoop-mode, and acquires the samples.
181 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
183 LFSetupFPGAForADC(divisor
, false);
184 DoAcquisition125k(trigger_threshold
);
187 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
190 /* Make sure the tag is reset */
191 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
192 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
196 int divisor_used
= 95; // 125 KHz
197 // see if 'h' was specified
199 if (command
[strlen((char *) command
) - 1] == 'h')
200 divisor_used
= 88; // 134.8 KHz
203 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
204 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
205 // Give it a bit of time for the resonant antenna to settle.
208 // And a little more time for the tag to fully power up
211 // Now set up the SSC to get the ADC samples that are now streaming at us.
214 // now modulate the reader field
215 while(*command
!= '\0' && *command
!= ' ') {
216 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
218 SpinDelayUs(delay_off
);
219 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
221 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
223 if(*(command
++) == '0')
224 SpinDelayUs(period_0
);
226 SpinDelayUs(period_1
);
228 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
230 SpinDelayUs(delay_off
);
231 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
233 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
236 DoAcquisition125k(-1);
239 /* blank r/w tag data stream
240 ...0000000000000000 01111111
241 1010101010101010101010101010101010101010101010101010101010101010
244 101010101010101[0]000...
246 [5555fe852c5555555555555555fe0000]
250 // some hardcoded initial params
251 // when we read a TI tag we sample the zerocross line at 2Mhz
252 // TI tags modulate a 1 as 16 cycles of 123.2Khz
253 // TI tags modulate a 0 as 16 cycles of 134.2Khz
254 #define FSAMPLE 2000000
255 #define FREQLO 123200
256 #define FREQHI 134200
258 signed char *dest
= (signed char *)BigBuf
;
259 int n
= sizeof(BigBuf
);
260 // 128 bit shift register [shift3:shift2:shift1:shift0]
261 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
263 int i
, cycles
=0, samples
=0;
264 // how many sample points fit in 16 cycles of each frequency
265 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
266 // when to tell if we're close enough to one freq or another
267 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
269 // TI tags charge at 134.2Khz
270 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
271 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
273 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
274 // connects to SSP_DIN and the SSP_DOUT logic level controls
275 // whether we're modulating the antenna (high)
276 // or listening to the antenna (low)
277 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
279 // get TI tag data into the buffer
282 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
284 for (i
=0; i
<n
-1; i
++) {
285 // count cycles by looking for lo to hi zero crossings
286 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
288 // after 16 cycles, measure the frequency
291 samples
=i
-samples
; // number of samples in these 16 cycles
293 // TI bits are coming to us lsb first so shift them
294 // right through our 128 bit right shift register
295 shift0
= (shift0
>>1) | (shift1
<< 31);
296 shift1
= (shift1
>>1) | (shift2
<< 31);
297 shift2
= (shift2
>>1) | (shift3
<< 31);
300 // check if the cycles fall close to the number
301 // expected for either the low or high frequency
302 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
303 // low frequency represents a 1
305 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
306 // high frequency represents a 0
308 // probably detected a gay waveform or noise
309 // use this as gaydar or discard shift register and start again
310 shift3
= shift2
= shift1
= shift0
= 0;
314 // for each bit we receive, test if we've detected a valid tag
316 // if we see 17 zeroes followed by 6 ones, we might have a tag
317 // remember the bits are backwards
318 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
319 // if start and end bytes match, we have a tag so break out of the loop
320 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
321 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
329 // if flag is set we have a tag
331 DbpString("Info: No valid tag detected.");
333 // put 64 bit data into shift1 and shift0
334 shift0
= (shift0
>>24) | (shift1
<< 8);
335 shift1
= (shift1
>>24) | (shift2
<< 8);
337 // align 16 bit crc into lower half of shift2
338 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
340 // if r/w tag, check ident match
341 if (shift3
& (1<<15) ) {
342 DbpString("Info: TI tag is rewriteable");
343 // only 15 bits compare, last bit of ident is not valid
344 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
345 DbpString("Error: Ident mismatch!");
347 DbpString("Info: TI tag ident is valid");
350 DbpString("Info: TI tag is readonly");
353 // WARNING the order of the bytes in which we calc crc below needs checking
354 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
355 // bytes in reverse or something
359 crc
= update_crc16(crc
, (shift0
)&0xff);
360 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
361 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
362 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
363 crc
= update_crc16(crc
, (shift1
)&0xff);
364 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
365 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
366 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
368 Dbprintf("Info: Tag data: %x%08x, crc=%x",
369 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
370 if (crc
!= (shift2
&0xffff)) {
371 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
373 DbpString("Info: CRC is good");
378 void WriteTIbyte(uint8_t b
)
382 // modulate 8 bits out to the antenna
386 // stop modulating antenna
393 // stop modulating antenna
403 void AcquireTiType(void)
406 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
407 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
408 #define TIBUFLEN 1250
411 memset(BigBuf
,0,sizeof(BigBuf
));
413 // Set up the synchronous serial port
414 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
415 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
417 // steal this pin from the SSP and use it to control the modulation
418 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
419 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
421 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
422 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
424 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
425 // 48/2 = 24 MHz clock must be divided by 12
426 AT91C_BASE_SSC
->SSC_CMR
= 12;
428 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
429 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
430 AT91C_BASE_SSC
->SSC_TCMR
= 0;
431 AT91C_BASE_SSC
->SSC_TFMR
= 0;
438 // Charge TI tag for 50ms.
441 // stop modulating antenna and listen
448 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
449 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
450 i
++; if(i
>= TIBUFLEN
) break;
455 // return stolen pin to SSP
456 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
457 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
459 char *dest
= (char *)BigBuf
;
462 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
463 for (j
=0; j
<32; j
++) {
464 if(BigBuf
[i
] & (1 << j
)) {
473 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
474 // if crc provided, it will be written with the data verbatim (even if bogus)
475 // if not provided a valid crc will be computed from the data and written.
476 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
478 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
480 crc
= update_crc16(crc
, (idlo
)&0xff);
481 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
482 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
483 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
484 crc
= update_crc16(crc
, (idhi
)&0xff);
485 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
486 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
487 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
489 Dbprintf("Writing to tag: %x%08x, crc=%x",
490 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
492 // TI tags charge at 134.2Khz
493 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
494 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
495 // connects to SSP_DIN and the SSP_DOUT logic level controls
496 // whether we're modulating the antenna (high)
497 // or listening to the antenna (low)
498 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
501 // steal this pin from the SSP and use it to control the modulation
502 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
503 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
505 // writing algorithm:
506 // a high bit consists of a field off for 1ms and field on for 1ms
507 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
508 // initiate a charge time of 50ms (field on) then immediately start writing bits
509 // start by writing 0xBB (keyword) and 0xEB (password)
510 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
511 // finally end with 0x0300 (write frame)
512 // all data is sent lsb firts
513 // finish with 15ms programming time
517 SpinDelay(50); // charge time
519 WriteTIbyte(0xbb); // keyword
520 WriteTIbyte(0xeb); // password
521 WriteTIbyte( (idlo
)&0xff );
522 WriteTIbyte( (idlo
>>8 )&0xff );
523 WriteTIbyte( (idlo
>>16)&0xff );
524 WriteTIbyte( (idlo
>>24)&0xff );
525 WriteTIbyte( (idhi
)&0xff );
526 WriteTIbyte( (idhi
>>8 )&0xff );
527 WriteTIbyte( (idhi
>>16)&0xff );
528 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
529 WriteTIbyte( (crc
)&0xff ); // crc lo
530 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
531 WriteTIbyte(0x00); // write frame lo
532 WriteTIbyte(0x03); // write frame hi
534 SpinDelay(50); // programming time
538 // get TI tag data into the buffer
541 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
542 DbpString("Now use tiread to check");
545 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
548 uint8_t *tab
= (uint8_t *)BigBuf
;
550 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
551 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
553 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
555 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
556 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
558 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
559 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
563 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
565 DbpString("Stopped");
582 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
584 DbpString("Stopped");
601 #define DEBUG_FRAME_CONTENTS 1
602 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
606 // compose fc/8 fc/10 waveform
607 static void fc(int c
, int *n
) {
608 uint8_t *dest
= (uint8_t *)BigBuf
;
611 // for when we want an fc8 pattern every 4 logical bits
622 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
624 for (idx
=0; idx
<6; idx
++) {
636 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
638 for (idx
=0; idx
<5; idx
++) {
653 // prepare a waveform pattern in the buffer based on the ID given then
654 // simulate a HID tag until the button is pressed
655 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
659 HID tag bitstream format
660 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
661 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
662 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
663 A fc8 is inserted before every 4 bits
664 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
665 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
669 DbpString("Tags can only have 44 bits.");
673 // special start of frame marker containing invalid bit sequences
674 fc(8, &n
); fc(8, &n
); // invalid
675 fc(8, &n
); fc(10, &n
); // logical 0
676 fc(10, &n
); fc(10, &n
); // invalid
677 fc(8, &n
); fc(10, &n
); // logical 0
680 // manchester encode bits 43 to 32
681 for (i
=11; i
>=0; i
--) {
682 if ((i
%4)==3) fc(0,&n
);
684 fc(10, &n
); fc(8, &n
); // low-high transition
686 fc(8, &n
); fc(10, &n
); // high-low transition
691 // manchester encode bits 31 to 0
692 for (i
=31; i
>=0; i
--) {
693 if ((i
%4)==3) fc(0,&n
);
695 fc(10, &n
); fc(8, &n
); // low-high transition
697 fc(8, &n
); fc(10, &n
); // high-low transition
703 SimulateTagLowFrequency(n
, 0, ledcontrol
);
709 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
710 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
712 uint8_t *dest
= (uint8_t *)BigBuf
;
714 size_t size
=0; //, found=0;
715 uint32_t hi2
=0, hi
=0, lo
=0;
717 // Configure to go in 125Khz listen mode
718 LFSetupFPGAForADC(95, true);
720 while(!BUTTON_PRESS()) {
723 if (ledcontrol
) LED_A_ON();
725 DoAcquisition125k_internal(-1,true);
727 size
= HIDdemodFSK(dest
, sizeof(BigBuf
), &hi2
, &hi
, &lo
);
732 // final loop, go over previously decoded manchester data and decode into usable tag ID
733 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
734 if (hi2
!= 0){ //extra large HID tags
735 Dbprintf("TAG ID: %x%08x%08x (%d)",
736 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
737 }else { //standard HID tags <38 bits
738 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
741 uint32_t cardnum
= 0;
742 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
744 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
746 while(lo2
> 1){ //find last bit set to 1 (format len bit)
754 cardnum
= (lo
>>1)&0xFFFF;
758 cardnum
= (lo
>>1)&0x7FFFF;
759 fc
= ((hi
&0xF)<<12)|(lo
>>20);
762 cardnum
= (lo
>>1)&0xFFFF;
763 fc
= ((hi
&1)<<15)|(lo
>>17);
766 cardnum
= (lo
>>1)&0xFFFFF;
767 fc
= ((hi
&1)<<11)|(lo
>>21);
770 else { //if bit 38 is not set then 37 bit format is used
775 cardnum
= (lo
>>1)&0x7FFFF;
776 fc
= ((hi
&0xF)<<12)|(lo
>>20);
779 //Dbprintf("TAG ID: %x%08x (%d)",
780 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
781 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
782 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
783 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
786 if (ledcontrol
) LED_A_OFF();
794 DbpString("Stopped");
795 if (ledcontrol
) LED_A_OFF();
798 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
800 uint8_t *dest
= (uint8_t *)BigBuf
;
803 int clk
=0, invert
=0, errCnt
=0;
805 // Configure to go in 125Khz listen mode
806 LFSetupFPGAForADC(95, true);
808 while(!BUTTON_PRESS()) {
811 if (ledcontrol
) LED_A_ON();
813 DoAcquisition125k_internal(-1,true);
814 size
= sizeof(BigBuf
);
815 //Dbprintf("DEBUG: Buffer got");
816 //askdemod and manchester decode
817 errCnt
= askmandemod(dest
, &size
, &clk
, &invert
);
818 //Dbprintf("DEBUG: ASK Got");
822 lo
= Em410xDecode(dest
,size
);
823 //Dbprintf("DEBUG: EM GOT");
825 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
828 (uint32_t)(lo
&0xFFFF),
829 (uint32_t)((lo
>>16LL) & 0xFF),
830 (uint32_t)(lo
& 0xFFFFFF));
833 if (ledcontrol
) LED_A_OFF();
837 //Dbprintf("DEBUG: No Tag");
846 DbpString("Stopped");
847 if (ledcontrol
) LED_A_OFF();
850 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
852 uint8_t *dest
= (uint8_t *)BigBuf
;
854 uint32_t code
=0, code2
=0;
856 uint8_t facilitycode
=0;
858 // Configure to go in 125Khz listen mode
859 LFSetupFPGAForADC(95, true);
861 while(!BUTTON_PRESS()) {
863 if (ledcontrol
) LED_A_ON();
864 DoAcquisition125k_internal(-1,true);
865 //fskdemod and get start index
867 idx
= IOdemodFSK(dest
,sizeof(BigBuf
));
872 //0 10 20 30 40 50 60
874 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
875 //-----------------------------------------------------------------------------
876 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
878 //XSF(version)facility:codeone+codetwo
880 if(findone
){ //only print binary if we are doing one
881 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
882 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
883 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
884 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
885 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
886 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
887 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
889 code
= bytebits_to_byte(dest
+idx
,32);
890 code2
= bytebits_to_byte(dest
+idx
+32,32);
891 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
892 facilitycode
= bytebits_to_byte(dest
+idx
+18,8) ;
893 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
895 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
896 // if we're only looking for one tag
898 if (ledcontrol
) LED_A_OFF();
903 version
=facilitycode
=0;
909 DbpString("Stopped");
910 if (ledcontrol
) LED_A_OFF();
913 /*------------------------------
914 * T5555/T5557/T5567 routines
915 *------------------------------
918 /* T55x7 configuration register definitions */
919 #define T55x7_POR_DELAY 0x00000001
920 #define T55x7_ST_TERMINATOR 0x00000008
921 #define T55x7_PWD 0x00000010
922 #define T55x7_MAXBLOCK_SHIFT 5
923 #define T55x7_AOR 0x00000200
924 #define T55x7_PSKCF_RF_2 0
925 #define T55x7_PSKCF_RF_4 0x00000400
926 #define T55x7_PSKCF_RF_8 0x00000800
927 #define T55x7_MODULATION_DIRECT 0
928 #define T55x7_MODULATION_PSK1 0x00001000
929 #define T55x7_MODULATION_PSK2 0x00002000
930 #define T55x7_MODULATION_PSK3 0x00003000
931 #define T55x7_MODULATION_FSK1 0x00004000
932 #define T55x7_MODULATION_FSK2 0x00005000
933 #define T55x7_MODULATION_FSK1a 0x00006000
934 #define T55x7_MODULATION_FSK2a 0x00007000
935 #define T55x7_MODULATION_MANCHESTER 0x00008000
936 #define T55x7_MODULATION_BIPHASE 0x00010000
937 #define T55x7_BITRATE_RF_8 0
938 #define T55x7_BITRATE_RF_16 0x00040000
939 #define T55x7_BITRATE_RF_32 0x00080000
940 #define T55x7_BITRATE_RF_40 0x000C0000
941 #define T55x7_BITRATE_RF_50 0x00100000
942 #define T55x7_BITRATE_RF_64 0x00140000
943 #define T55x7_BITRATE_RF_100 0x00180000
944 #define T55x7_BITRATE_RF_128 0x001C0000
946 /* T5555 (Q5) configuration register definitions */
947 #define T5555_ST_TERMINATOR 0x00000001
948 #define T5555_MAXBLOCK_SHIFT 0x00000001
949 #define T5555_MODULATION_MANCHESTER 0
950 #define T5555_MODULATION_PSK1 0x00000010
951 #define T5555_MODULATION_PSK2 0x00000020
952 #define T5555_MODULATION_PSK3 0x00000030
953 #define T5555_MODULATION_FSK1 0x00000040
954 #define T5555_MODULATION_FSK2 0x00000050
955 #define T5555_MODULATION_BIPHASE 0x00000060
956 #define T5555_MODULATION_DIRECT 0x00000070
957 #define T5555_INVERT_OUTPUT 0x00000080
958 #define T5555_PSK_RF_2 0
959 #define T5555_PSK_RF_4 0x00000100
960 #define T5555_PSK_RF_8 0x00000200
961 #define T5555_USE_PWD 0x00000400
962 #define T5555_USE_AOR 0x00000800
963 #define T5555_BITRATE_SHIFT 12
964 #define T5555_FAST_WRITE 0x00004000
965 #define T5555_PAGE_SELECT 0x00008000
968 * Relevant times in microsecond
969 * To compensate antenna falling times shorten the write times
970 * and enlarge the gap ones.
972 #define START_GAP 250
973 #define WRITE_GAP 160
974 #define WRITE_0 144 // 192
975 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
977 // Write one bit to card
978 void T55xxWriteBit(int bit
)
980 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
981 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
982 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
984 SpinDelayUs(WRITE_0
);
986 SpinDelayUs(WRITE_1
);
987 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
988 SpinDelayUs(WRITE_GAP
);
991 // Write one card block in page 0, no lock
992 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
994 //unsigned int i; //enio adjustment 12/10/14
997 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
998 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
999 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1001 // Give it a bit of time for the resonant antenna to settle.
1002 // And for the tag to fully power up
1005 // Now start writting
1006 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1007 SpinDelayUs(START_GAP
);
1011 T55xxWriteBit(0); //Page 0
1014 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1015 T55xxWriteBit(Pwd
& i
);
1021 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1022 T55xxWriteBit(Data
& i
);
1025 for (i
= 0x04; i
!= 0; i
>>= 1)
1026 T55xxWriteBit(Block
& i
);
1028 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1029 // so wait a little more)
1030 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1031 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1033 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1036 // Read one card block in page 0
1037 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1039 uint8_t *dest
= (uint8_t *)BigBuf
;
1040 //int m=0, i=0; //enio adjustment 12/10/14
1042 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1044 // Clear destination buffer before sending the command
1045 memset(dest
, 128, m
);
1046 // Connect the A/D to the peak-detected low-frequency path.
1047 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1048 // Now set up the SSC to get the ADC samples that are now streaming at us.
1052 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1053 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1055 // Give it a bit of time for the resonant antenna to settle.
1056 // And for the tag to fully power up
1059 // Now start writting
1060 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1061 SpinDelayUs(START_GAP
);
1065 T55xxWriteBit(0); //Page 0
1068 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1069 T55xxWriteBit(Pwd
& i
);
1074 for (i
= 0x04; i
!= 0; i
>>= 1)
1075 T55xxWriteBit(Block
& i
);
1077 // Turn field on to read the response
1078 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1079 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1081 // Now do the acquisition
1084 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1085 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1087 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1088 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1089 // we don't care about actual value, only if it's more or less than a
1090 // threshold essentially we capture zero crossings for later analysis
1091 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1097 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1102 // Read card traceability data (page 1)
1103 void T55xxReadTrace(void){
1104 uint8_t *dest
= (uint8_t *)BigBuf
;
1107 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1109 // Clear destination buffer before sending the command
1110 memset(dest
, 128, m
);
1111 // Connect the A/D to the peak-detected low-frequency path.
1112 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1113 // Now set up the SSC to get the ADC samples that are now streaming at us.
1117 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1118 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1120 // Give it a bit of time for the resonant antenna to settle.
1121 // And for the tag to fully power up
1124 // Now start writting
1125 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1126 SpinDelayUs(START_GAP
);
1130 T55xxWriteBit(1); //Page 1
1132 // Turn field on to read the response
1133 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1134 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1136 // Now do the acquisition
1139 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1140 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1142 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1143 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1149 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1154 /*-------------- Cloning routines -----------*/
1155 // Copy HID id to card and setup block 0 config
1156 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1158 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1162 // Ensure no more than 84 bits supplied
1164 DbpString("Tags can only have 84 bits.");
1167 // Build the 6 data blocks for supplied 84bit ID
1169 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1170 for (int i
=0;i
<4;i
++) {
1171 if (hi2
& (1<<(19-i
)))
1172 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1174 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1178 for (int i
=0;i
<16;i
++) {
1179 if (hi2
& (1<<(15-i
)))
1180 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1182 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1186 for (int i
=0;i
<16;i
++) {
1187 if (hi
& (1<<(31-i
)))
1188 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1190 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1194 for (int i
=0;i
<16;i
++) {
1195 if (hi
& (1<<(15-i
)))
1196 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1198 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1202 for (int i
=0;i
<16;i
++) {
1203 if (lo
& (1<<(31-i
)))
1204 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1206 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1210 for (int i
=0;i
<16;i
++) {
1211 if (lo
& (1<<(15-i
)))
1212 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1214 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1218 // Ensure no more than 44 bits supplied
1220 DbpString("Tags can only have 44 bits.");
1224 // Build the 3 data blocks for supplied 44bit ID
1227 data1
= 0x1D000000; // load preamble
1229 for (int i
=0;i
<12;i
++) {
1230 if (hi
& (1<<(11-i
)))
1231 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1233 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1237 for (int i
=0;i
<16;i
++) {
1238 if (lo
& (1<<(31-i
)))
1239 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1241 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1245 for (int i
=0;i
<16;i
++) {
1246 if (lo
& (1<<(15-i
)))
1247 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1249 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1254 // Program the data blocks for supplied ID
1255 // and the block 0 for HID format
1256 T55xxWriteBlock(data1
,1,0,0);
1257 T55xxWriteBlock(data2
,2,0,0);
1258 T55xxWriteBlock(data3
,3,0,0);
1260 if (longFMT
) { // if long format there are 6 blocks
1261 T55xxWriteBlock(data4
,4,0,0);
1262 T55xxWriteBlock(data5
,5,0,0);
1263 T55xxWriteBlock(data6
,6,0,0);
1266 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1267 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1268 T55x7_MODULATION_FSK2a
|
1269 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1277 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1279 int data1
=0, data2
=0; //up to six blocks for long format
1281 data1
= hi
; // load preamble
1285 // Program the data blocks for supplied ID
1286 // and the block 0 for HID format
1287 T55xxWriteBlock(data1
,1,0,0);
1288 T55xxWriteBlock(data2
,2,0,0);
1291 T55xxWriteBlock(0x00147040,0,0,0);
1297 // Define 9bit header for EM410x tags
1298 #define EM410X_HEADER 0x1FF
1299 #define EM410X_ID_LENGTH 40
1301 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1304 uint64_t id
= EM410X_HEADER
;
1305 uint64_t rev_id
= 0; // reversed ID
1306 int c_parity
[4]; // column parity
1307 int r_parity
= 0; // row parity
1310 // Reverse ID bits given as parameter (for simpler operations)
1311 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1313 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1316 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1321 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1322 id_bit
= rev_id
& 1;
1325 // Don't write row parity bit at start of parsing
1327 id
= (id
<< 1) | r_parity
;
1328 // Start counting parity for new row
1335 // First elements in column?
1337 // Fill out first elements
1338 c_parity
[i
] = id_bit
;
1340 // Count column parity
1341 c_parity
[i
% 4] ^= id_bit
;
1344 id
= (id
<< 1) | id_bit
;
1348 // Insert parity bit of last row
1349 id
= (id
<< 1) | r_parity
;
1351 // Fill out column parity at the end of tag
1352 for (i
= 0; i
< 4; ++i
)
1353 id
= (id
<< 1) | c_parity
[i
];
1358 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1362 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1363 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1365 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1367 // Clock rate is stored in bits 8-15 of the card value
1368 clock
= (card
& 0xFF00) >> 8;
1369 Dbprintf("Clock rate: %d", clock
);
1373 clock
= T55x7_BITRATE_RF_32
;
1376 clock
= T55x7_BITRATE_RF_16
;
1379 // A value of 0 is assumed to be 64 for backwards-compatibility
1382 clock
= T55x7_BITRATE_RF_64
;
1385 Dbprintf("Invalid clock rate: %d", clock
);
1389 // Writing configuration for T55x7 tag
1390 T55xxWriteBlock(clock
|
1391 T55x7_MODULATION_MANCHESTER
|
1392 2 << T55x7_MAXBLOCK_SHIFT
,
1396 // Writing configuration for T5555(Q5) tag
1397 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1398 T5555_MODULATION_MANCHESTER
|
1399 2 << T5555_MAXBLOCK_SHIFT
,
1403 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1404 (uint32_t)(id
>> 32), (uint32_t)id
);
1407 // Clone Indala 64-bit tag by UID to T55x7
1408 void CopyIndala64toT55x7(int hi
, int lo
)
1411 //Program the 2 data blocks for supplied 64bit UID
1412 // and the block 0 for Indala64 format
1413 T55xxWriteBlock(hi
,1,0,0);
1414 T55xxWriteBlock(lo
,2,0,0);
1415 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1416 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1417 T55x7_MODULATION_PSK1
|
1418 2 << T55x7_MAXBLOCK_SHIFT
,
1420 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1421 // T5567WriteBlock(0x603E1042,0);
1427 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1430 //Program the 7 data blocks for supplied 224bit UID
1431 // and the block 0 for Indala224 format
1432 T55xxWriteBlock(uid1
,1,0,0);
1433 T55xxWriteBlock(uid2
,2,0,0);
1434 T55xxWriteBlock(uid3
,3,0,0);
1435 T55xxWriteBlock(uid4
,4,0,0);
1436 T55xxWriteBlock(uid5
,5,0,0);
1437 T55xxWriteBlock(uid6
,6,0,0);
1438 T55xxWriteBlock(uid7
,7,0,0);
1439 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1440 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1441 T55x7_MODULATION_PSK1
|
1442 7 << T55x7_MAXBLOCK_SHIFT
,
1444 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1445 // T5567WriteBlock(0x603E10E2,0);
1452 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1453 #define max(x,y) ( x<y ? y:x)
1455 int DemodPCF7931(uint8_t **outBlocks
) {
1456 uint8_t BitStream
[256];
1457 uint8_t Blocks
[8][16];
1458 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1459 int GraphTraceLen
= sizeof(BigBuf
);
1460 int i
, j
, lastval
, bitidx
, half_switch
;
1462 int tolerance
= clock
/ 8;
1463 int pmc
, block_done
;
1464 int lc
, warnings
= 0;
1466 int lmin
=128, lmax
=128;
1469 AcquireRawAdcSamples125k(0);
1476 /* Find first local max/min */
1477 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1478 while(i
< GraphTraceLen
) {
1479 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1486 while(i
< GraphTraceLen
) {
1487 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1499 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1501 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1506 // Switch depending on lc length:
1507 // Tolerance is 1/8 of clock rate (arbitrary)
1508 if (abs(lc
-clock
/4) < tolerance
) {
1510 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1512 i
+= (128+127+16+32+33+16)-1;
1520 } else if (abs(lc
-clock
/2) < tolerance
) {
1522 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1524 i
+= (128+127+16+32+33)-1;
1529 else if(half_switch
== 1) {
1530 BitStream
[bitidx
++] = 0;
1535 } else if (abs(lc
-clock
) < tolerance
) {
1537 BitStream
[bitidx
++] = 1;
1543 Dbprintf("Error: too many detection errors, aborting.");
1548 if(block_done
== 1) {
1550 for(j
=0; j
<16; j
++) {
1551 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1552 64*BitStream
[j
*8+6]+
1553 32*BitStream
[j
*8+5]+
1554 16*BitStream
[j
*8+4]+
1566 if(i
< GraphTraceLen
)
1568 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1575 if(num_blocks
== 4) break;
1577 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1581 int IsBlock0PCF7931(uint8_t *Block
) {
1582 // Assume RFU means 0 :)
1583 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1585 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1590 int IsBlock1PCF7931(uint8_t *Block
) {
1591 // Assume RFU means 0 :)
1592 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1593 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1601 void ReadPCF7931() {
1602 uint8_t Blocks
[8][17];
1603 uint8_t tmpBlocks
[4][16];
1604 int i
, j
, ind
, ind2
, n
;
1611 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1614 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1615 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1618 if(error
==10 && num_blocks
== 0) {
1619 Dbprintf("Error, no tag or bad tag");
1622 else if (tries
==20 || error
==10) {
1623 Dbprintf("Error reading the tag");
1624 Dbprintf("Here is the partial content");
1629 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1630 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1631 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1633 for(i
=0; i
<n
; i
++) {
1634 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1636 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1640 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1641 Blocks
[0][ALLOC
] = 1;
1642 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1643 Blocks
[1][ALLOC
] = 1;
1644 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1646 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1648 // Handle following blocks
1649 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1652 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1653 Blocks
[ind2
][ALLOC
] = 1;
1661 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1662 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1663 for(j
=0; j
<max_blocks
; j
++) {
1664 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1665 // Found an identical block
1666 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1669 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1670 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1671 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1672 Blocks
[ind2
][ALLOC
] = 1;
1674 if(num_blocks
== max_blocks
) goto end
;
1677 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1678 if(ind2
> max_blocks
)
1680 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1681 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1682 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1683 Blocks
[ind2
][ALLOC
] = 1;
1685 if(num_blocks
== max_blocks
) goto end
;
1694 if (BUTTON_PRESS()) return;
1695 } while (num_blocks
!= max_blocks
);
1697 Dbprintf("-----------------------------------------");
1698 Dbprintf("Memory content:");
1699 Dbprintf("-----------------------------------------");
1700 for(i
=0; i
<max_blocks
; i
++) {
1701 if(Blocks
[i
][ALLOC
]==1)
1702 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1703 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1704 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1706 Dbprintf("<missing block %d>", i
);
1708 Dbprintf("-----------------------------------------");
1714 //-----------------------------------
1715 // EM4469 / EM4305 routines
1716 //-----------------------------------
1717 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1718 #define FWD_CMD_WRITE 0xA
1719 #define FWD_CMD_READ 0x9
1720 #define FWD_CMD_DISABLE 0x5
1723 uint8_t forwardLink_data
[64]; //array of forwarded bits
1724 uint8_t * forward_ptr
; //ptr for forward message preparation
1725 uint8_t fwd_bit_sz
; //forwardlink bit counter
1726 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1728 //====================================================================
1729 // prepares command bits
1731 //====================================================================
1732 //--------------------------------------------------------------------
1733 uint8_t Prepare_Cmd( uint8_t cmd
) {
1734 //--------------------------------------------------------------------
1736 *forward_ptr
++ = 0; //start bit
1737 *forward_ptr
++ = 0; //second pause for 4050 code
1739 *forward_ptr
++ = cmd
;
1741 *forward_ptr
++ = cmd
;
1743 *forward_ptr
++ = cmd
;
1745 *forward_ptr
++ = cmd
;
1747 return 6; //return number of emited bits
1750 //====================================================================
1751 // prepares address bits
1753 //====================================================================
1755 //--------------------------------------------------------------------
1756 uint8_t Prepare_Addr( uint8_t addr
) {
1757 //--------------------------------------------------------------------
1759 register uint8_t line_parity
;
1764 *forward_ptr
++ = addr
;
1765 line_parity
^= addr
;
1769 *forward_ptr
++ = (line_parity
& 1);
1771 return 7; //return number of emited bits
1774 //====================================================================
1775 // prepares data bits intreleaved with parity bits
1777 //====================================================================
1779 //--------------------------------------------------------------------
1780 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1781 //--------------------------------------------------------------------
1783 register uint8_t line_parity
;
1784 register uint8_t column_parity
;
1785 register uint8_t i
, j
;
1786 register uint16_t data
;
1791 for(i
=0; i
<4; i
++) {
1793 for(j
=0; j
<8; j
++) {
1794 line_parity
^= data
;
1795 column_parity
^= (data
& 1) << j
;
1796 *forward_ptr
++ = data
;
1799 *forward_ptr
++ = line_parity
;
1804 for(j
=0; j
<8; j
++) {
1805 *forward_ptr
++ = column_parity
;
1806 column_parity
>>= 1;
1810 return 45; //return number of emited bits
1813 //====================================================================
1814 // Forward Link send function
1815 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1816 // fwd_bit_count set with number of bits to be sent
1817 //====================================================================
1818 void SendForward(uint8_t fwd_bit_count
) {
1820 fwd_write_ptr
= forwardLink_data
;
1821 fwd_bit_sz
= fwd_bit_count
;
1826 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1827 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1828 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1830 // Give it a bit of time for the resonant antenna to settle.
1831 // And for the tag to fully power up
1834 // force 1st mod pulse (start gap must be longer for 4305)
1835 fwd_bit_sz
--; //prepare next bit modulation
1837 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1838 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1839 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1840 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1841 SpinDelayUs(16*8); //16 cycles on (8us each)
1843 // now start writting
1844 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1845 if(((*fwd_write_ptr
++) & 1) == 1)
1846 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1848 //These timings work for 4469/4269/4305 (with the 55*8 above)
1849 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1850 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1851 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1852 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1853 SpinDelayUs(9*8); //16 cycles on (8us each)
1858 void EM4xLogin(uint32_t Password
) {
1860 uint8_t fwd_bit_count
;
1862 forward_ptr
= forwardLink_data
;
1863 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1864 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1866 SendForward(fwd_bit_count
);
1868 //Wait for command to complete
1873 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1875 uint8_t fwd_bit_count
;
1876 uint8_t *dest
= (uint8_t *)BigBuf
;
1879 //If password mode do login
1880 if (PwdMode
== 1) EM4xLogin(Pwd
);
1882 forward_ptr
= forwardLink_data
;
1883 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1884 fwd_bit_count
+= Prepare_Addr( Address
);
1887 // Clear destination buffer before sending the command
1888 memset(dest
, 128, m
);
1889 // Connect the A/D to the peak-detected low-frequency path.
1890 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1891 // Now set up the SSC to get the ADC samples that are now streaming at us.
1894 SendForward(fwd_bit_count
);
1896 // Now do the acquisition
1899 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1900 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1902 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1903 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1908 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1912 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1914 uint8_t fwd_bit_count
;
1916 //If password mode do login
1917 if (PwdMode
== 1) EM4xLogin(Pwd
);
1919 forward_ptr
= forwardLink_data
;
1920 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1921 fwd_bit_count
+= Prepare_Addr( Address
);
1922 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1924 SendForward(fwd_bit_count
);
1926 //Wait for write to complete
1928 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off