1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
41 #include "proxmark3.h"
47 #include "iso14443a.h"
48 // Needed for CRC in emulation mode;
49 // same construction as in ISO 14443;
50 // different initial value (CRC_ICLASS)
51 #include "iso14443crc.h"
52 #include "iso15693tools.h"
53 #include "protocols.h"
54 #include "optimized_cipher.h"
55 #include "usb_cdc.h" // for usb_poll_validate_length
56 #include "fpgaloader.h"
58 static int timeout
= 4096;
60 //-----------------------------------------------------------------------------
61 // The software UART that receives commands from the reader, and its state
63 //-----------------------------------------------------------------------------
67 STATE_START_OF_COMMUNICATION
,
87 static RAMFUNC
int OutOfNDecoding(int bit
) {
91 if (!Uart
.bitBuffer
) {
92 Uart
.bitBuffer
= bit
^ 0xFF0;
96 Uart
.bitBuffer
^= bit
;
100 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
103 if (Uart.byteCnt > 15) { return true; }
109 if (Uart
.state
!= STATE_UNSYNCD
) {
112 if ((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
117 if (((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
122 if (bit
!= bitright
) {
127 // So, now we only have to deal with *bit*, lets see...
128 if (Uart
.posCnt
== 1) {
129 // measurement first half bitperiod
131 // Drop in first half means that we are either seeing
134 if (Uart
.nOutOfCnt
== 1) {
135 // End of Communication
136 Uart
.state
= STATE_UNSYNCD
;
138 if (Uart
.byteCnt
== 0) {
139 // Its not straightforward to show single EOFs
140 // So just leave it and do not return true
141 Uart
.output
[0] = 0xf0;
146 } else if (Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
147 // When not part of SOF or EOF, it is an error
148 Uart
.state
= STATE_UNSYNCD
;
154 // measurement second half bitperiod
155 // Count the bitslot we are in... (ISO 15693)
159 if (Uart
.dropPosition
) {
160 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) {
165 // It is an error if we already have seen a drop in current frame
166 Uart
.state
= STATE_UNSYNCD
;
169 Uart
.dropPosition
= Uart
.nOutOfCnt
;
176 if (Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
179 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) {
180 if (Uart
.dropPosition
== 4) {
181 Uart
.state
= STATE_RECEIVING
;
183 } else if (Uart
.dropPosition
== 3) {
184 Uart
.state
= STATE_RECEIVING
;
186 //Uart.output[Uart.byteCnt] = 0xdd;
189 Uart
.state
= STATE_UNSYNCD
;
192 Uart
.dropPosition
= 0;
196 if (!Uart
.dropPosition
) {
197 Uart
.state
= STATE_UNSYNCD
;
205 //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; }
206 //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; }
208 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
210 Uart
.dropPosition
= 0;
212 if (Uart
.bitCnt
== 8) {
213 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
220 } else if (Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
223 if (!Uart
.dropPosition
) {
224 Uart
.state
= STATE_UNSYNCD
;
229 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
234 Uart
.dropPosition
= 0;
239 Uart.output[Uart.byteCnt] = 0xAA;
241 Uart.output[Uart.byteCnt] = error & 0xFF;
243 Uart.output[Uart.byteCnt] = 0xAA;
245 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
247 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
249 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
251 Uart.output[Uart.byteCnt] = 0xAA;
258 bit
= Uart
.bitBuffer
& 0xf0;
260 bit
^= 0x0F; // drops become 1s ;-)
262 // should have been high or at least (4 * 128) / fc
263 // according to ISO this should be at least (9 * 128 + 20) / fc
264 if (Uart
.highCnt
== 8) {
265 // we went low, so this could be start of communication
266 // it turns out to be safer to choose a less significant
267 // syncbit... so we check whether the neighbour also represents the drop
268 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
269 Uart
.syncBit
= bit
& 8;
271 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
272 else if (bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
273 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
274 else if (bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
275 if (!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
276 if (Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
279 // the first half bit period is expected in next sample
283 } else if (bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
286 Uart
.state
= STATE_START_OF_COMMUNICATION
;
290 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
291 Uart
.dropPosition
= 0;
297 } else if (Uart
.highCnt
< 8) {
306 //=============================================================================
308 //=============================================================================
313 DEMOD_START_OF_COMMUNICATION
,
314 DEMOD_START_OF_COMMUNICATION2
,
315 DEMOD_START_OF_COMMUNICATION3
,
319 DEMOD_END_OF_COMMUNICATION
,
320 DEMOD_END_OF_COMMUNICATION2
,
343 static RAMFUNC
int ManchesterDecoding(int v
) {
349 Demod
.buffer
= Demod
.buffer2
;
350 Demod
.buffer2
= Demod
.buffer3
;
353 if (Demod
.buff
< 3) {
358 if (Demod
.state
==DEMOD_UNSYNCD
) {
359 Demod
.output
[Demod
.len
] = 0xfa;
362 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
365 Demod
.syncBit
= 0x08;
372 Demod
.syncBit
= 0x04;
379 Demod
.syncBit
= 0x02;
382 if (bit
& 0x01 && Demod
.syncBit
) {
383 Demod
.syncBit
= 0x01;
388 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
389 Demod
.sub
= SUB_FIRST_HALF
;
393 if (Demod
.posCount
) {
394 switch (Demod
.syncBit
) {
395 case 0x08: Demod
.samples
= 3; break;
396 case 0x04: Demod
.samples
= 2; break;
397 case 0x02: Demod
.samples
= 1; break;
398 case 0x01: Demod
.samples
= 0; break;
400 // SOF must be long burst... otherwise stay unsynced!!!
401 if (!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
402 Demod
.state
= DEMOD_UNSYNCD
;
405 // SOF must be long burst... otherwise stay unsynced!!!
406 if (!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
407 Demod
.state
= DEMOD_UNSYNCD
;
416 // state is DEMOD is in SYNC from here on.
417 modulation
= bit
& Demod
.syncBit
;
418 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
422 if (Demod
.posCount
== 0) {
425 Demod
.sub
= SUB_FIRST_HALF
;
427 Demod
.sub
= SUB_NONE
;
432 if (Demod
.sub
== SUB_FIRST_HALF
) {
433 Demod
.sub
= SUB_BOTH
;
435 Demod
.sub
= SUB_SECOND_HALF
;
437 } else if (Demod
.sub
== SUB_NONE
) {
438 if (Demod
.state
== DEMOD_SOF_COMPLETE
) {
439 Demod
.output
[Demod
.len
] = 0x0f;
441 Demod
.state
= DEMOD_UNSYNCD
;
444 Demod
.state
= DEMOD_ERROR_WAIT
;
449 switch(Demod
.state
) {
450 case DEMOD_START_OF_COMMUNICATION
:
451 if (Demod
.sub
== SUB_BOTH
) {
452 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
454 Demod
.sub
= SUB_NONE
;
456 Demod
.output
[Demod
.len
] = 0xab;
457 Demod
.state
= DEMOD_ERROR_WAIT
;
461 case DEMOD_START_OF_COMMUNICATION2
:
462 if (Demod
.sub
== SUB_SECOND_HALF
) {
463 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
465 Demod
.output
[Demod
.len
] = 0xab;
466 Demod
.state
= DEMOD_ERROR_WAIT
;
470 case DEMOD_START_OF_COMMUNICATION3
:
471 if (Demod
.sub
== SUB_SECOND_HALF
) {
472 Demod
.state
= DEMOD_SOF_COMPLETE
;
474 Demod
.output
[Demod
.len
] = 0xab;
475 Demod
.state
= DEMOD_ERROR_WAIT
;
479 case DEMOD_SOF_COMPLETE
:
480 case DEMOD_MANCHESTER_D
:
481 case DEMOD_MANCHESTER_E
:
482 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
483 // 00001111 = 1 (0 in 14443)
484 if (Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
486 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
487 Demod
.state
= DEMOD_MANCHESTER_D
;
488 } else if (Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
490 Demod
.shiftReg
>>= 1;
491 Demod
.state
= DEMOD_MANCHESTER_E
;
492 } else if (Demod
.sub
== SUB_BOTH
) {
493 Demod
.state
= DEMOD_MANCHESTER_F
;
495 Demod
.state
= DEMOD_ERROR_WAIT
;
500 case DEMOD_MANCHESTER_F
:
501 // Tag response does not need to be a complete byte!
502 if (Demod
.len
> 0 || Demod
.bitCount
> 0) {
503 if (Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
504 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align data
505 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
509 Demod
.state
= DEMOD_UNSYNCD
;
512 Demod
.output
[Demod
.len
] = 0xad;
513 Demod
.state
= DEMOD_ERROR_WAIT
;
518 case DEMOD_ERROR_WAIT
:
519 Demod
.state
= DEMOD_UNSYNCD
;
523 Demod
.output
[Demod
.len
] = 0xdd;
524 Demod
.state
= DEMOD_UNSYNCD
;
528 if (Demod
.bitCount
>= 8) {
529 Demod
.shiftReg
>>= 1;
530 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
537 Demod
.output
[Demod
.len
] = 0xBB;
539 Demod
.output
[Demod
.len
] = error
& 0xFF;
541 Demod
.output
[Demod
.len
] = 0xBB;
543 Demod
.output
[Demod
.len
] = bit
& 0xFF;
545 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
548 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
550 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
552 Demod
.output
[Demod
.len
] = 0xBB;
559 } // end (state != UNSYNCED)
564 //=============================================================================
565 // Finally, a `sniffer' for iClass communication
566 // Both sides of communication!
567 //=============================================================================
569 //-----------------------------------------------------------------------------
570 // Record the sequence of commands sent by the reader to the tag, with
571 // triggering so that we start recording at the point that the tag is moved
573 //-----------------------------------------------------------------------------
574 void RAMFUNC
SnoopIClass(void) {
576 // We won't start recording the frames that we acquire until we trigger;
577 // a good trigger condition to get started is probably when we see a
578 // response from the tag.
579 //int triggered = false; // false to wait first for card
581 // The command (reader -> tag) that we're receiving.
582 // The length of a received command will in most cases be no more than 18 bytes.
583 // So 32 should be enough!
584 #define ICLASS_BUFFER_SIZE 32
585 uint8_t readerToTagCmd
[ICLASS_BUFFER_SIZE
];
586 // The response (tag -> reader) that we're receiving.
587 uint8_t tagToReaderResponse
[ICLASS_BUFFER_SIZE
];
589 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
591 // free all BigBuf memory
593 // The DMA buffer, used to stream samples from the FPGA
594 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
598 iso14a_set_trigger(false);
605 // Count of samples received so far, so that we can include timing
606 // information in the trace buffer.
610 // Set up the demodulator for tag -> reader responses.
611 Demod
.output
= tagToReaderResponse
;
613 Demod
.state
= DEMOD_UNSYNCD
;
615 // Setup for the DMA.
616 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
618 lastRxCounter
= DMA_BUFFER_SIZE
;
619 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
621 // And the reader -> tag commands
622 memset(&Uart
, 0, sizeof(Uart
));
623 Uart
.output
= readerToTagCmd
;
624 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
625 Uart
.state
= STATE_UNSYNCD
;
627 // And put the FPGA in the appropriate mode
628 // Signal field is off with the appropriate LED
630 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
631 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
633 uint32_t time_0
= GetCountSspClk();
634 uint32_t time_start
= 0;
635 uint32_t time_stop
= 0;
642 // And now we loop, receiving samples.
646 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) & (DMA_BUFFER_SIZE
-1);
647 if (behindBy
> maxBehindBy
) {
648 maxBehindBy
= behindBy
;
649 if (behindBy
> (9 * DMA_BUFFER_SIZE
/ 10)) {
650 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
654 if (behindBy
< 1) continue;
660 if (upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
661 upTo
-= DMA_BUFFER_SIZE
;
662 lastRxCounter
+= DMA_BUFFER_SIZE
;
663 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
664 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
671 decbyte
^= (1 << (3 - div
));
674 // FOR READER SIDE COMMUMICATION...
677 decbyter
^= (smpl
& 0x30);
681 if ((div
+ 1) % 2 == 0) {
683 if (OutOfNDecoding((smpl
& 0xF0) >> 4)) {
684 rsamples
= samples
- Uart
.samples
;
685 time_stop
= (GetCountSspClk()-time_0
) << 4;
688 //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
689 //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
690 uint8_t parity
[MAX_PARITY_SIZE
];
691 GetParity(Uart
.output
, Uart
.byteCnt
, parity
);
692 LogTrace(Uart
.output
, Uart
.byteCnt
, time_start
, time_stop
, parity
, true);
694 /* And ready to receive another command. */
695 Uart
.state
= STATE_UNSYNCD
;
696 /* And also reset the demod code, which might have been */
697 /* false-triggered by the commands from the reader. */
698 Demod
.state
= DEMOD_UNSYNCD
;
702 time_start
= (GetCountSspClk()-time_0
) << 4;
709 if (ManchesterDecoding(smpl
& 0x0F)) {
710 time_stop
= (GetCountSspClk()-time_0
) << 4;
712 rsamples
= samples
- Demod
.samples
;
715 uint8_t parity
[MAX_PARITY_SIZE
];
716 GetParity(Demod
.output
, Demod
.len
, parity
);
717 LogTrace(Demod
.output
, Demod
.len
, time_start
, time_stop
, parity
, false);
719 // And ready to receive another response.
720 memset(&Demod
, 0, sizeof(Demod
));
721 Demod
.output
= tagToReaderResponse
;
722 Demod
.state
= DEMOD_UNSYNCD
;
725 time_start
= (GetCountSspClk()-time_0
) << 4;
732 if (BUTTON_PRESS()) {
733 DbpString("cancelled_a");
738 DbpString("COMMAND FINISHED");
740 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
741 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
744 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
745 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
746 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
750 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
752 for (i
= 0; i
< 8; i
++) {
753 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
757 //-----------------------------------------------------------------------------
758 // Wait for commands from reader
759 // Stop when button is pressed
760 // Or return true when command is captured
761 //-----------------------------------------------------------------------------
762 static int GetIClassCommandFromReader(uint8_t *received
, int *len
, int maxLen
) {
763 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
764 // only, since we are receiving, not transmitting).
765 // Signal field is off with the appropriate LED
767 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
769 // Now run a `software UART' on the stream of incoming samples.
770 Uart
.output
= received
;
771 Uart
.byteCntMax
= maxLen
;
772 Uart
.state
= STATE_UNSYNCD
;
777 if (BUTTON_PRESS()) return false;
779 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
780 AT91C_BASE_SSC
->SSC_THR
= 0x00;
782 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
783 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
785 if (OutOfNDecoding(b
& 0x0f)) {
793 static uint8_t encode4Bits(const uint8_t b
) {
795 // OTA, the least significant bits first
797 // 1 - Bit value to send
798 // 2 - Reversed (big-endian)
799 // 3 - Manchester Encoded
804 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
805 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
806 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
807 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
808 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
809 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
810 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
811 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
812 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
813 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
814 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
815 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
816 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
817 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
818 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
819 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
824 //-----------------------------------------------------------------------------
825 // Prepare tag messages
826 //-----------------------------------------------------------------------------
827 static void CodeIClassTagAnswer(const uint8_t *cmd
, int len
) {
830 * SOF comprises 3 parts;
831 * * An unmodulated time of 56.64 us
832 * * 24 pulses of 423.75 kHz (fc/32)
833 * * A logic 1, which starts with an unmodulated time of 18.88us
834 * followed by 8 pulses of 423.75kHz (fc/32)
837 * EOF comprises 3 parts:
838 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
840 * - 24 pulses of fc/32
841 * - An unmodulated time of 56.64 us
844 * A logic 0 starts with 8 pulses of fc/32
845 * followed by an unmodulated time of 256/fc (~18,88us).
847 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
848 * 8 pulses of fc/32 (also 18.88us)
850 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
852 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
853 * - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us
855 * In this mode the SOF can be written as 00011101 = 0x1D
856 * The EOF can be written as 10111000 = 0xb8
867 ToSend
[++ToSendMax
] = 0x1D;
869 for (i
= 0; i
< len
; i
++) {
871 ToSend
[++ToSendMax
] = encode4Bits(b
& 0xF); // Least significant half
872 ToSend
[++ToSendMax
] = encode4Bits((b
>>4) & 0xF); // Most significant half
876 ToSend
[++ToSendMax
] = 0xB8;
877 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
878 // Convert from last byte pos to length
883 static void CodeIClassTagSOF() {
884 //So far a dummy implementation, not used
885 //int lastProxToAirDuration =0;
889 ToSend
[++ToSendMax
] = 0x1D;
890 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
892 // Convert from last byte pos to length
896 static void AppendCrc(uint8_t *data
, int len
) {
897 ComputeCrc14443(CRC_ICLASS
, data
, len
, data
+len
, data
+len
+1);
900 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
) {
901 int i
= 0, d
= 0;//, u = 0, d = 0;
904 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
905 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_424K_8BIT
);
907 AT91C_BASE_SSC
->SSC_THR
= 0x00;
908 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
910 if ((AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)){
911 b
= AT91C_BASE_SSC
->SSC_RHR
;
914 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)){
917 // send 0x00 byte (causing a 2048/13,56MHz = 151us delay)
925 AT91C_BASE_SSC
->SSC_THR
= b
;
928 // if (i > respLen +4) break;
929 if (i
> respLen
+ 1) break;
930 // send 2 more 0x00 bytes (causing a 302us delay)
939 * @brief Does the actual simulation
940 * @param csn - csn to use
941 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
943 int doIClassSimulation(int simulationMode
, uint8_t *reader_mac_buf
) {
945 // free eventually allocated BigBuf memory
946 BigBuf_free_keep_EM();
950 uint8_t *emulator
= BigBuf_get_EM_addr();
951 uint8_t *csn
= emulator
;
952 uint8_t sof_data
[] = { 0x0F } ;
954 // CSN followed by two CRC bytes
955 uint8_t anticoll_data
[10] = { 0 };
956 uint8_t csn_data
[10] = { 0 };
957 memcpy(csn_data
, csn
, sizeof(csn_data
));
958 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn
[0], csn
[1], csn
[2], csn
[3], csn
[4], csn
[5], csn
[6], csn
[7]);
960 // Construct anticollision-CSN
961 rotateCSN(csn_data
, anticoll_data
);
963 // Compute CRC on both CSNs
964 AppendCrc(anticoll_data
, 8);
965 AppendCrc(csn_data
, 8);
967 uint8_t diversified_key
[8] = { 0 };
969 uint8_t card_challenge_data
[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
970 //uint8_t card_challenge_data[8] = { 0 };
971 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
972 // The diversified key should be stored on block 3
973 // Get the diversified key from emulator memory
974 memcpy(diversified_key
, emulator
+ (8 * 3), 8);
975 // Card challenge, a.k.a e-purse is on block 2
976 memcpy(card_challenge_data
, emulator
+ (8 * 2), 8);
977 // Precalculate the cipher state, feeding it the CC
978 cipher_state
= opt_doTagMAC_1(card_challenge_data
, diversified_key
);
980 // save card challenge for sim2,4 attack
981 if (reader_mac_buf
!= NULL
) {
982 memcpy(reader_mac_buf
, card_challenge_data
, 8);
990 // Reader 81 anticoll. CSN
993 uint8_t *modulated_response
;
994 int modulated_response_size
= 0;
995 uint8_t *trace_data
= NULL
;
996 int trace_data_size
= 0;
998 // Respond SOF -- takes 1 bytes
999 uint8_t *resp_sof
= BigBuf_malloc(2);
1002 // Anticollision CSN (rotated CSN)
1003 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1004 uint8_t *resp_anticoll
= BigBuf_malloc(22);
1005 int resp_anticoll_len
;
1008 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1009 uint8_t *resp_csn
= BigBuf_malloc(22);
1012 // configuration (block 1) picopass 2ks
1013 uint8_t *resp_conf
= BigBuf_malloc(22);
1015 uint8_t conf_data
[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
1016 AppendCrc(conf_data
, 8);
1018 // e-Purse (block 2)
1019 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1020 uint8_t *resp_cc
= BigBuf_malloc(18);
1023 // Application Issuer Area (block 5)
1024 uint8_t *resp_aia
= BigBuf_malloc(22);
1026 uint8_t aia_data
[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
1027 AppendCrc(aia_data
, 8);
1029 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1032 // Prepare card messages
1035 // First card answer: SOF
1037 memcpy(resp_sof
, ToSend
, ToSendMax
);
1038 resp_sof_Len
= ToSendMax
;
1040 // Anticollision CSN
1041 CodeIClassTagAnswer(anticoll_data
, sizeof(anticoll_data
));
1042 memcpy(resp_anticoll
, ToSend
, ToSendMax
);
1043 resp_anticoll_len
= ToSendMax
;
1046 CodeIClassTagAnswer(csn_data
, sizeof(csn_data
));
1047 memcpy(resp_csn
, ToSend
, ToSendMax
);
1048 resp_csn_len
= ToSendMax
;
1050 // Configuration (block 1)
1051 CodeIClassTagAnswer(conf_data
, sizeof(conf_data
));
1052 memcpy(resp_conf
, ToSend
, ToSendMax
);
1053 resp_conf_len
= ToSendMax
;
1055 // e-Purse (block 2)
1056 CodeIClassTagAnswer(card_challenge_data
, sizeof(card_challenge_data
));
1057 memcpy(resp_cc
, ToSend
, ToSendMax
);
1058 resp_cc_len
= ToSendMax
;
1060 // Application Issuer Area (block 5)
1061 CodeIClassTagAnswer(aia_data
, sizeof(aia_data
));
1062 memcpy(resp_aia
, ToSend
, ToSendMax
);
1063 resp_aia_len
= ToSendMax
;
1065 //This is used for responding to READ-block commands or other data which is dynamically generated
1066 uint8_t *data_generic_trace
= BigBuf_malloc(8 + 2); // 8 bytes data + 2byte CRC is max tag answer
1067 uint8_t *data_response
= BigBuf_malloc( (8 + 2) * 2 + 2);
1069 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1072 // We need to listen to the high-frequency, peak-detected path.
1073 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1074 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1076 uint32_t time_0
= GetCountSspClk();
1077 uint32_t t2r_time
=0;
1078 uint32_t r2t_time
=0;
1081 bool buttonPressed
= false;
1082 uint8_t response_delay
= 1;
1088 // Can be used to get a trigger for an oscilloscope..
1091 if (!GetIClassCommandFromReader(receivedCmd
, &len
, 100)) {
1092 buttonPressed
= true;
1095 r2t_time
= GetCountSspClk();
1099 // Now look at the reader command and provide appropriate responses
1100 // default is no response:
1101 modulated_response
= NULL
;
1102 modulated_response_size
= 0;
1104 trace_data_size
= 0;
1105 if (receivedCmd
[0] == ICLASS_CMD_ACTALL
) {
1106 // Reader in anticollission phase
1107 modulated_response
= resp_sof
;
1108 modulated_response_size
= resp_sof_Len
;
1109 trace_data
= sof_data
;
1110 trace_data_size
= sizeof(sof_data
);
1112 } else if (receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 1) { // identify
1113 // Reader asks for anticollission CSN
1114 modulated_response
= resp_anticoll
;
1115 modulated_response_size
= resp_anticoll_len
;
1116 trace_data
= anticoll_data
;
1117 trace_data_size
= sizeof(anticoll_data
);
1118 //DbpString("Reader requests anticollission CSN:");
1120 } else if (receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 4) { // read block
1121 uint16_t blockNo
= receivedCmd
[1];
1122 if (simulationMode
!= ICLASS_SIM_MODE_FULL
) {
1123 // provide defaults for blocks 0, 1, 2, 5
1125 case 0: // csn (block 00)
1126 modulated_response
= resp_csn
;
1127 modulated_response_size
= resp_csn_len
;
1128 trace_data
= csn_data
;
1129 trace_data_size
= sizeof(csn_data
);
1131 case 1: // configuration (block 01)
1132 modulated_response
= resp_conf
;
1133 modulated_response_size
= resp_conf_len
;
1134 trace_data
= conf_data
;
1135 trace_data_size
= sizeof(conf_data
);
1137 case 2: // e-purse (block 02)
1138 modulated_response
= resp_cc
;
1139 modulated_response_size
= resp_cc_len
;
1140 trace_data
= card_challenge_data
;
1141 trace_data_size
= sizeof(card_challenge_data
);
1142 // set epurse of sim2,4 attack
1143 if (reader_mac_buf
!= NULL
) {
1144 memcpy(reader_mac_buf
, card_challenge_data
, 8);
1147 case 5: // Application Issuer Area (block 05)
1148 modulated_response
= resp_aia
;
1149 modulated_response_size
= resp_aia_len
;
1150 trace_data
= aia_data
;
1151 trace_data_size
= sizeof(aia_data
);
1153 // default: don't respond
1155 } else { // use data from emulator memory
1156 memcpy(data_generic_trace
, emulator
+ (receivedCmd
[1] << 3), 8);
1157 AppendCrc(data_generic_trace
, 8);
1158 trace_data
= data_generic_trace
;
1159 trace_data_size
= 10;
1160 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1161 memcpy(data_response
, ToSend
, ToSendMax
);
1162 modulated_response
= data_response
;
1163 modulated_response_size
= ToSendMax
;
1166 } else if (receivedCmd
[0] == ICLASS_CMD_SELECT
) {
1167 // Reader selects anticollission CSN.
1168 // Tag sends the corresponding real CSN
1169 modulated_response
= resp_csn
;
1170 modulated_response_size
= resp_csn_len
;
1171 trace_data
= csn_data
;
1172 trace_data_size
= sizeof(csn_data
);
1174 } else if (receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
1175 || receivedCmd
[0] == ICLASS_CMD_READCHECK_KC
) {
1176 // Read e-purse (88 02 || 18 02)
1177 modulated_response
= resp_cc
;
1178 modulated_response_size
= resp_cc_len
;
1179 trace_data
= card_challenge_data
;
1180 trace_data_size
= sizeof(card_challenge_data
);
1183 } else if (receivedCmd
[0] == ICLASS_CMD_CHECK
) {
1184 // Reader random and reader MAC!!!
1185 if (simulationMode
== ICLASS_SIM_MODE_FULL
) {
1186 //NR, from reader, is in receivedCmd +1
1187 opt_doTagMAC_2(cipher_state
, receivedCmd
+1, data_generic_trace
, diversified_key
);
1188 trace_data
= data_generic_trace
;
1189 trace_data_size
= 4;
1190 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1191 memcpy(data_response
, ToSend
, ToSendMax
);
1192 modulated_response
= data_response
;
1193 modulated_response_size
= ToSendMax
;
1194 response_delay
= 0; //We need to hurry here... (but maybe not too much... ??)
1196 } else { // Not fullsim, we don't respond
1197 // We do not know what to answer, so lets keep quiet
1198 if (simulationMode
== ICLASS_SIM_MODE_EXIT_AFTER_MAC
) {
1200 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1201 ,csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1202 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len
,
1203 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1204 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1205 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1206 if (reader_mac_buf
!= NULL
) {
1207 // save NR and MAC for sim 2,4
1208 memcpy(reader_mac_buf
+ 8, receivedCmd
+ 1, 8);
1214 } else if (receivedCmd
[0] == ICLASS_CMD_HALT
&& len
== 1) {
1215 // Reader ends the session
1216 modulated_response
= resp_sof
;
1217 modulated_response_size
= 0;
1219 trace_data_size
= 0;
1221 } else if (receivedCmd
[0] == ICLASS_CMD_UPDATE
&& simulationMode
== ICLASS_SIM_MODE_FULL
) {
1222 // Probably the reader wants to update the nonce. Let's just ignore that for now.
1223 // OBS! If this is implemented, don't forget to regenerate the cipher_state
1224 // We're expected to respond with the data+crc, exactly what's already in the receivedCmd
1225 // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b
1228 memcpy(data_generic_trace
, receivedCmd
+ 2, 8);
1230 AppendCrc(data_generic_trace
, 8);
1231 trace_data
= data_generic_trace
;
1232 trace_data_size
= 10;
1233 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1234 memcpy(data_response
, ToSend
, ToSendMax
);
1235 modulated_response
= data_response
;
1236 modulated_response_size
= ToSendMax
;
1238 } else if (receivedCmd
[0] == ICLASS_CMD_PAGESEL
) {
1240 // Pagesel enables to select a page in the selected chip memory and return its configuration block
1241 // Chips with a single page will not answer to this command
1242 // It appears we're fine ignoring this.
1243 // Otherwise, we should answer 8bytes (block) + 2bytes CRC
1246 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1247 // Never seen this command before
1248 print_result("Unhandled command received from reader ", receivedCmd
, len
);
1253 A legit tag has about 330us delay between reader EOT and tag SOF.
1255 if (modulated_response_size
> 0) {
1256 SendIClassAnswer(modulated_response
, modulated_response_size
, response_delay
);
1257 t2r_time
= GetCountSspClk();
1260 uint8_t parity
[MAX_PARITY_SIZE
];
1261 GetParity(receivedCmd
, len
, parity
);
1262 LogTrace(receivedCmd
, len
, (r2t_time
-time_0
) << 4, (r2t_time
-time_0
) << 4, parity
, true);
1264 if (trace_data
!= NULL
) {
1265 GetParity(trace_data
, trace_data_size
, parity
);
1266 LogTrace(trace_data
, trace_data_size
, (t2r_time
-time_0
) << 4, (t2r_time
-time_0
) << 4, parity
, false);
1268 if (!get_tracing()) {
1269 DbpString("Trace full");
1280 DbpString("Button pressed");
1282 return buttonPressed
;
1286 * @brief SimulateIClass simulates an iClass card.
1287 * @param arg0 type of simulation
1288 * - 0 uses the first 8 bytes in usb data as CSN
1289 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
1290 * in the usb data. This mode collects MAC from the reader, in order to do an offline
1291 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
1292 * - Other : Uses the default CSN (031fec8af7ff12e0)
1293 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
1297 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
) {
1298 uint32_t simType
= arg0
;
1299 uint32_t numberOfCSNS
= arg1
;
1301 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1303 // Enable and clear the trace
1306 //Use the emulator memory for SIM
1307 uint8_t *emulator
= BigBuf_get_EM_addr();
1309 if (simType
== ICLASS_SIM_MODE_CSN
) {
1310 // Use the CSN from commandline
1311 memcpy(emulator
, datain
, 8);
1312 doIClassSimulation(ICLASS_SIM_MODE_CSN
, NULL
);
1313 } else if (simType
== ICLASS_SIM_MODE_CSN_DEFAULT
) {
1315 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1316 // Use the CSN from commandline
1317 memcpy(emulator
, csn_crc
, 8);
1318 doIClassSimulation(ICLASS_SIM_MODE_CSN
, NULL
);
1319 } else if (simType
== ICLASS_SIM_MODE_READER_ATTACK
) {
1320 uint8_t mac_responses
[USB_CMD_DATA_SIZE
] = { 0 };
1321 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS
);
1322 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1323 // in order to collect MAC's from the reader. This can later be used in an offline-attack
1324 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1326 for (i
= 0; i
< numberOfCSNS
&& i
*16+16 <= USB_CMD_DATA_SIZE
; i
++) {
1327 // The usb data is 512 bytes, fitting 32 responses (8 byte CC + 4 Byte NR + 4 Byte MAC = 16 Byte response).
1328 memcpy(emulator
, datain
+(i
*8), 8);
1329 if (doIClassSimulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC
, mac_responses
+i
*16)) {
1334 cmd_send(CMD_ACK
, CMD_SIMULATE_TAG_ICLASS
, i
, 0, mac_responses
, i
*16);
1335 } else if (simType
== ICLASS_SIM_MODE_FULL
) {
1336 //This is 'full sim' mode, where we use the emulator storage for data.
1337 doIClassSimulation(ICLASS_SIM_MODE_FULL
, NULL
);
1339 // We may want a mode here where we hardcode the csns to use (from proxclone).
1340 // That will speed things up a little, but not required just yet.
1341 Dbprintf("The mode is not implemented, reserved for future use");
1343 Dbprintf("Done...");
1350 //-----------------------------------------------------------------------------
1351 // Transmit the command (to the tag) that was placed in ToSend[].
1352 //-----------------------------------------------------------------------------
1353 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
) {
1355 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1356 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1357 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1360 if (*wait
< 10) *wait
= 10;
1362 for (c
= 0; c
< *wait
;) {
1363 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1364 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1367 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1368 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1376 bool firstpart
= true;
1379 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1381 // DOUBLE THE SAMPLES!
1383 sendbyte
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);
1385 sendbyte
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4);
1388 if (sendbyte
== 0xff) {
1391 AT91C_BASE_SSC
->SSC_THR
= sendbyte
;
1392 firstpart
= !firstpart
;
1398 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1399 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1404 if (samples
&& wait
) *samples
= (c
+ *wait
) << 3;
1408 //-----------------------------------------------------------------------------
1409 // Prepare iClass reader command to send to FPGA
1410 //-----------------------------------------------------------------------------
1411 void CodeIClassCommand(const uint8_t *cmd
, int len
) {
1416 // Start of Communication: 1 out of 4
1417 ToSend
[++ToSendMax
] = 0xf0;
1418 ToSend
[++ToSendMax
] = 0x00;
1419 ToSend
[++ToSendMax
] = 0x0f;
1420 ToSend
[++ToSendMax
] = 0x00;
1422 // Modulate the bytes
1423 for (i
= 0; i
< len
; i
++) {
1425 for (j
= 0; j
< 4; j
++) {
1426 for (k
= 0; k
< 4; k
++) {
1428 ToSend
[++ToSendMax
] = 0xf0;
1430 ToSend
[++ToSendMax
] = 0x00;
1437 // End of Communication
1438 ToSend
[++ToSendMax
] = 0x00;
1439 ToSend
[++ToSendMax
] = 0x00;
1440 ToSend
[++ToSendMax
] = 0xf0;
1441 ToSend
[++ToSendMax
] = 0x00;
1443 // Convert from last character reference to length
1447 static void ReaderTransmitIClass(uint8_t *frame
, int len
) {
1451 // This is tied to other size changes
1452 CodeIClassCommand(frame
, len
);
1455 TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
);
1459 // Store reader command in buffer
1460 uint8_t par
[MAX_PARITY_SIZE
];
1461 GetParity(frame
, len
, par
);
1462 LogTrace(frame
, len
, rsamples
, rsamples
, par
, true);
1465 //-----------------------------------------------------------------------------
1466 // Wait a certain time for tag response
1467 // If a response is captured return true
1468 // If it takes too long return false
1469 //-----------------------------------------------------------------------------
1470 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) {
1472 // buffer needs to be 512 bytes
1475 // Set FPGA mode to "reader listen mode", no modulation (listen
1476 // only, since we are receiving, not transmitting).
1477 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1479 // Now get the answer from the card
1480 Demod
.output
= receivedResponse
;
1482 Demod
.state
= DEMOD_UNSYNCD
;
1485 if (elapsed
) *elapsed
= 0;
1493 if (BUTTON_PRESS()) return false;
1495 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1496 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1497 if (elapsed
) (*elapsed
)++;
1499 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1505 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1509 if (ManchesterDecoding(b
& 0x0f)) {
1517 static int ReaderReceiveIClass(uint8_t *receivedAnswer
) {
1519 if (!GetIClassAnswer(receivedAnswer
, 160, &samples
, 0)) {
1522 rsamples
+= samples
;
1523 uint8_t parity
[MAX_PARITY_SIZE
];
1524 GetParity(receivedAnswer
, Demod
.len
, parity
);
1525 LogTrace(receivedAnswer
, Demod
.len
, rsamples
, rsamples
, parity
, false);
1526 if (samples
== 0) return false;
1530 static void setupIclassReader() {
1531 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1532 // Reset trace buffer
1537 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A
);
1538 // Start from off (no field generated)
1539 // Signal field is off with the appropriate LED
1541 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1544 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1546 // Now give it time to spin up.
1547 // Signal field is on with the appropriate LED
1548 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1554 static bool sendCmdGetResponseWithRetries(uint8_t* command
, size_t cmdsize
, uint8_t* resp
, uint8_t expected_size
, uint8_t retries
) {
1555 while (retries
-- > 0) {
1556 ReaderTransmitIClass(command
, cmdsize
);
1557 if (expected_size
== ReaderReceiveIClass(resp
)) {
1561 return false;//Error
1565 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1566 * @param card_data where the CSN and CC are stored for return
1569 * 2 = Got CSN and CC
1571 static uint8_t handshakeIclassTag_ext(uint8_t *card_data
, bool use_credit_key
) {
1572 static uint8_t act_all
[] = { 0x0a };
1573 //static uint8_t identify[] = { 0x0c };
1574 static uint8_t identify
[] = { 0x0c, 0x00, 0x73, 0x33 };
1575 static uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1576 static uint8_t readcheck_cc
[]= { 0x88, 0x02 };
1578 readcheck_cc
[0] = 0x18;
1580 readcheck_cc
[0] = 0x88;
1582 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1584 uint8_t read_status
= 0;
1587 ReaderTransmitIClass(act_all
, 1);
1589 if (!ReaderReceiveIClass(resp
)) return read_status
;//Fail
1591 ReaderTransmitIClass(identify
, 1);
1592 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1593 uint8_t len
= ReaderReceiveIClass(resp
);
1594 if (len
!= 10) return read_status
;//Fail
1596 //Copy the Anti-collision CSN to our select-packet
1597 memcpy(&select
[1], resp
, 8);
1599 ReaderTransmitIClass(select
, sizeof(select
));
1600 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1601 len
= ReaderReceiveIClass(resp
);
1602 if (len
!= 10) return read_status
;//Fail
1604 //Success - level 1, we got CSN
1605 //Save CSN in response data
1606 memcpy(card_data
, resp
, 8);
1608 //Flag that we got to at least stage 1, read CSN
1611 // Card selected, now read e-purse (cc) (only 8 bytes no CRC)
1612 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
));
1613 if (ReaderReceiveIClass(resp
) == 8) {
1614 //Save CC (e-purse) in response data
1615 memcpy(card_data
+8, resp
, 8);
1622 static uint8_t handshakeIclassTag(uint8_t *card_data
) {
1623 return handshakeIclassTag_ext(card_data
, false);
1627 // Reader iClass Anticollission
1628 void ReaderIClass(uint8_t arg0
) {
1630 uint8_t card_data
[6 * 8] = {0};
1631 memset(card_data
, 0xFF, sizeof(card_data
));
1632 uint8_t last_csn
[8] = {0,0,0,0,0,0,0,0};
1633 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1634 memset(resp
, 0xFF, sizeof(resp
));
1635 //Read conf block CRC(0x01) => 0xfa 0x22
1636 uint8_t readConf
[] = { ICLASS_CMD_READ_OR_IDENTIFY
, 0x01, 0xfa, 0x22};
1637 //Read App Issuer Area block CRC(0x05) => 0xde 0x64
1638 uint8_t readAA
[] = { ICLASS_CMD_READ_OR_IDENTIFY
, 0x05, 0xde, 0x64};
1641 uint8_t result_status
= 0;
1642 // flag to read until one tag is found successfully
1643 bool abort_after_read
= arg0
& FLAG_ICLASS_READER_ONLY_ONCE
;
1644 // flag to only try 5 times to find one tag then return
1645 bool try_once
= arg0
& FLAG_ICLASS_READER_ONE_TRY
;
1646 // if neither abort_after_read nor try_once then continue reading until button pressed.
1648 bool use_credit_key
= arg0
& FLAG_ICLASS_READER_CEDITKEY
;
1649 // test flags for what blocks to be sure to read
1650 uint8_t flagReadConfig
= arg0
& FLAG_ICLASS_READER_CONF
;
1651 uint8_t flagReadCC
= arg0
& FLAG_ICLASS_READER_CC
;
1652 uint8_t flagReadAA
= arg0
& FLAG_ICLASS_READER_AA
;
1655 setupIclassReader();
1657 uint16_t tryCnt
= 0;
1658 bool userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1659 while (!userCancelled
) {
1660 // if only looking for one card try 2 times if we missed it the first time
1661 if (try_once
&& tryCnt
> 2) {
1665 if (!get_tracing()) {
1666 DbpString("Trace full");
1671 read_status
= handshakeIclassTag_ext(card_data
, use_credit_key
);
1673 if (read_status
== 0) continue;
1674 if (read_status
== 1) result_status
= FLAG_ICLASS_READER_CSN
;
1675 if (read_status
== 2) result_status
= FLAG_ICLASS_READER_CSN
| FLAG_ICLASS_READER_CC
;
1677 // handshakeIclass returns CSN|CC, but the actual block
1678 // layout is CSN|CONFIG|CC, so here we reorder the data,
1679 // moving CC forward 8 bytes
1680 memcpy(card_data
+16, card_data
+8, 8);
1681 //Read block 1, config
1682 if (flagReadConfig
) {
1683 if (sendCmdGetResponseWithRetries(readConf
, sizeof(readConf
), resp
, 10, 10)) {
1684 result_status
|= FLAG_ICLASS_READER_CONF
;
1685 memcpy(card_data
+8, resp
, 8);
1687 Dbprintf("Failed to dump config block");
1693 if (sendCmdGetResponseWithRetries(readAA
, sizeof(readAA
), resp
, 10, 10)) {
1694 result_status
|= FLAG_ICLASS_READER_AA
;
1695 memcpy(card_data
+ (8*5), resp
, 8);
1697 //Dbprintf("Failed to dump AA block");
1702 // 1 : Configuration
1704 // 3 : kd / debit / aa2 (write-only)
1705 // 4 : kc / credit / aa1 (write-only)
1706 // 5 : AIA, Application issuer area
1707 //Then we can 'ship' back the 6 * 8 bytes of data,
1708 // with 0xFF:s in block 3 and 4.
1711 //Send back to client, but don't bother if we already sent this -
1712 // only useful if looping in arm (not try_once && not abort_after_read)
1713 if (memcmp(last_csn
, card_data
, 8) != 0) {
1714 // If caller requires that we get Conf, CC, AA, continue until we got it
1715 if ( (result_status
^ FLAG_ICLASS_READER_CSN
^ flagReadConfig
^ flagReadCC
^ flagReadAA
) == 0) {
1716 cmd_send(CMD_ACK
, result_status
, 0, 0, card_data
, sizeof(card_data
));
1717 if (abort_after_read
) {
1722 //Save that we already sent this....
1723 memcpy(last_csn
, card_data
, 8);
1728 userCancelled
= BUTTON_PRESS() || usb_poll_validate_length();
1730 if (userCancelled
) {
1731 cmd_send(CMD_ACK
, 0xFF, 0, 0, card_data
, 0);
1733 cmd_send(CMD_ACK
, 0, 0, 0, card_data
, 0);
1738 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1740 uint8_t card_data
[USB_CMD_DATA_SIZE
]={0};
1741 uint16_t block_crc_LUT
[255] = {0};
1743 //Generate a lookup table for block crc
1744 for (int block
= 0; block
< 255; block
++){
1746 block_crc_LUT
[block
] = iclass_crc16(&bl
,1);
1748 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1750 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1751 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1754 uint8_t cardsize
= 0;
1757 static struct memory_t
{
1765 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1767 setupIclassReader();
1770 while (!BUTTON_PRESS()) {
1774 if (!get_tracing()) {
1775 DbpString("Trace full");
1779 uint8_t read_status
= handshakeIclassTag(card_data
);
1780 if (read_status
< 2) continue;
1782 //for now replay captured auth (as cc not updated)
1783 memcpy(check
+5, MAC
, 4);
1785 if (!sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, 4, 5)) {
1786 Dbprintf("Error: Authentication Fail!");
1790 //first get configuration block (block 1)
1791 crc
= block_crc_LUT
[1];
1794 read
[3] = crc
& 0xff;
1796 if (!sendCmdGetResponseWithRetries(read
, sizeof(read
),resp
, 10, 10)) {
1797 Dbprintf("Dump config (block 1) failed");
1802 memory
.k16
= (mem
& 0x80);
1803 memory
.book
= (mem
& 0x20);
1804 memory
.k2
= (mem
& 0x8);
1805 memory
.lockauth
= (mem
& 0x2);
1806 memory
.keyaccess
= (mem
& 0x1);
1808 cardsize
= memory
.k16
? 255 : 32;
1810 //Set card_data to all zeroes, we'll fill it with data
1811 memset(card_data
, 0x0, USB_CMD_DATA_SIZE
);
1812 uint8_t failedRead
= 0;
1813 uint32_t stored_data_length
= 0;
1814 //then loop around remaining blocks
1815 for (int block
= 0; block
< cardsize
; block
++) {
1817 crc
= block_crc_LUT
[block
];
1819 read
[3] = crc
& 0xff;
1821 if (sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, 10, 10)) {
1822 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1823 block
, resp
[0], resp
[1], resp
[2],
1824 resp
[3], resp
[4], resp
[5],
1827 //Fill up the buffer
1828 memcpy(card_data
+stored_data_length
, resp
, 8);
1829 stored_data_length
+= 8;
1830 if (stored_data_length
+8 > USB_CMD_DATA_SIZE
) {
1831 //Time to send this off and start afresh
1833 stored_data_length
,//data length
1834 failedRead
,//Failed blocks?
1836 card_data
, stored_data_length
);
1838 stored_data_length
= 0;
1844 stored_data_length
+= 8;//Otherwise, data becomes misaligned
1845 Dbprintf("Failed to dump block %d", block
);
1849 //Send off any remaining data
1850 if (stored_data_length
> 0) {
1852 stored_data_length
,//data length
1853 failedRead
,//Failed blocks?
1856 stored_data_length
);
1858 //If we got here, let's break
1861 //Signal end of transmission
1872 void iClass_ReadCheck(uint8_t blockNo
, uint8_t keyType
) {
1873 uint8_t readcheck
[] = { keyType
, blockNo
};
1874 uint8_t resp
[] = {0,0,0,0,0,0,0,0};
1876 isOK
= sendCmdGetResponseWithRetries(readcheck
, sizeof(readcheck
), resp
, sizeof(resp
), 6);
1877 cmd_send(CMD_ACK
,isOK
, 0, 0, 0, 0);
1880 void iClass_Authentication(uint8_t *MAC
) {
1881 uint8_t check
[] = { ICLASS_CMD_CHECK
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1882 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1883 memcpy(check
+5, MAC
, 4);
1885 isOK
= sendCmdGetResponseWithRetries(check
, sizeof(check
), resp
, 4, 6);
1886 cmd_send(CMD_ACK
,isOK
, 0, 0, 0, 0);
1889 bool iClass_ReadBlock(uint8_t blockNo
, uint8_t *readdata
) {
1890 uint8_t readcmd
[] = {ICLASS_CMD_READ_OR_IDENTIFY
, blockNo
, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
1892 uint16_t rdCrc
= iclass_crc16(&bl
, 1);
1893 readcmd
[2] = rdCrc
>> 8;
1894 readcmd
[3] = rdCrc
& 0xff;
1895 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
1898 //readcmd[1] = blockNo;
1899 isOK
= sendCmdGetResponseWithRetries(readcmd
, sizeof(readcmd
), resp
, 10, 10);
1900 memcpy(readdata
, resp
, sizeof(resp
));
1905 void iClass_ReadBlk(uint8_t blockno
) {
1906 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1908 isOK
= iClass_ReadBlock(blockno
, readblockdata
);
1909 cmd_send(CMD_ACK
, isOK
, 0, 0, readblockdata
, 8);
1912 void iClass_Dump(uint8_t blockno
, uint8_t numblks
) {
1913 uint8_t readblockdata
[] = {0,0,0,0,0,0,0,0,0,0};
1918 uint8_t *dataout
= BigBuf_malloc(255*8);
1919 if (dataout
== NULL
) {
1920 Dbprintf("out of memory");
1921 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1923 cmd_send(CMD_ACK
, 0, 1, 0, 0, 0);
1927 memset(dataout
, 0xFF, 255*8);
1929 for ( ; blkCnt
< numblks
; blkCnt
++) {
1930 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1931 if (!isOK
|| (readblockdata
[0] == 0xBB || readblockdata
[7] == 0xBB || readblockdata
[2] == 0xBB)) { //try again
1932 isOK
= iClass_ReadBlock(blockno
+blkCnt
, readblockdata
);
1934 Dbprintf("Block %02X failed to read", blkCnt
+blockno
);
1938 memcpy(dataout
+ (blkCnt
*8), readblockdata
, 8);
1940 //return pointer to dump memory in arg3
1941 cmd_send(CMD_ACK
, isOK
, blkCnt
, BigBuf_max_traceLen(), 0, 0);
1942 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1947 static bool iClass_WriteBlock_ext(uint8_t blockNo
, uint8_t *data
) {
1948 uint8_t write
[] = { ICLASS_CMD_UPDATE
, blockNo
, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1949 //uint8_t readblockdata[10];
1950 //write[1] = blockNo;
1951 memcpy(write
+2, data
, 12); // data + mac
1952 char *wrCmd
= (char *)(write
+1);
1953 uint16_t wrCrc
= iclass_crc16(wrCmd
, 13);
1954 write
[14] = wrCrc
>> 8;
1955 write
[15] = wrCrc
& 0xff;
1956 uint8_t resp
[] = {0,0,0,0,0,0,0,0,0,0};
1959 isOK
= sendCmdGetResponseWithRetries(write
, sizeof(write
), resp
, sizeof(resp
), 10);
1960 if (isOK
) { //if reader responded correctly
1961 //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
1962 if (memcmp(write
+2, resp
, 8)) { //if response is not equal to write values
1963 if (blockNo
!= 3 && blockNo
!= 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
1965 isOK
= sendCmdGetResponseWithRetries(write
, sizeof(write
), resp
, sizeof(resp
), 10);
1972 void iClass_WriteBlock(uint8_t blockNo
, uint8_t *data
) {
1973 bool isOK
= iClass_WriteBlock_ext(blockNo
, data
);
1975 Dbprintf("Write block [%02x] successful", blockNo
);
1977 Dbprintf("Write block [%02x] failed", blockNo
);
1979 cmd_send(CMD_ACK
, isOK
, 0, 0, 0, 0);
1982 void iClass_Clone(uint8_t startblock
, uint8_t endblock
, uint8_t *data
) {
1985 int total_block
= (endblock
- startblock
) + 1;
1986 for (i
= 0; i
< total_block
; i
++) {
1988 if (iClass_WriteBlock_ext(i
+startblock
, data
+ (i
*12))){
1989 Dbprintf("Write block [%02x] successful", i
+ startblock
);
1992 if (iClass_WriteBlock_ext(i
+startblock
, data
+ (i
*12))){
1993 Dbprintf("Write block [%02x] successful", i
+ startblock
);
1996 Dbprintf("Write block [%02x] failed", i
+ startblock
);
2000 if (written
== total_block
)
2001 Dbprintf("Clone complete");
2003 Dbprintf("Clone incomplete");
2005 cmd_send(CMD_ACK
, 1, 0, 0, 0, 0);
2006 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);