1 /*****************************************************************************
4 * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY.
6 * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL
7 * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL,
8 * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES.
10 * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS.
12 *****************************************************************************
14 * This file is part of loclass. It is a reconstructon of the cipher engine
15 * used in iClass, and RFID techology.
17 * The implementation is based on the work performed by
18 * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
19 * Milosch Meriac in the paper "Dismantling IClass".
21 * Copyright (C) 2014 Martin Holst Swende
23 * This is free software: you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License version 2 as published
25 * by the Free Software Foundation.
27 * This file is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
30 * GNU General Public License for more details.
32 * You should have received a copy of the GNU General Public License
33 * along with loclass. If not, see <http://www.gnu.org/licenses/>.
37 ****************************************************************************/
41 #include "cipherutils.h"
47 #include "fileutils.h"
52 * Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2
53 * consisting of the following four components:
54 * 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ;
55 * 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ;
56 * 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 .
57 * 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 .
67 * Definition 2. The feedback function for the top register T : F 16/2 → F 2
69 * T (x 0 x 1 . . . . . . x 15 ) = x 0 ⊕ x 1 ⊕ x 5 ⊕ x 7 ⊕ x 10 ⊕ x 11 ⊕ x 14 ⊕ x 15 .
73 bool x0
= state
.t
& 0x8000;
74 bool x1
= state
.t
& 0x4000;
75 bool x5
= state
.t
& 0x0400;
76 bool x7
= state
.t
& 0x0100;
77 bool x10
= state
.t
& 0x0020;
78 bool x11
= state
.t
& 0x0010;
79 bool x14
= state
.t
& 0x0002;
80 bool x15
= state
.t
& 0x0001;
81 return x0
^ x1
^ x5
^ x7
^ x10
^ x11
^ x14
^ x15
;
84 * Similarly, the feedback function for the bottom register B : F 8/2 → F 2 is defined as
85 * B(x 0 x 1 . . . x 7 ) = x 1 ⊕ x 2 ⊕ x 3 ⊕ x 7 .
89 bool x1
= state
.b
& 0x40;
90 bool x2
= state
.b
& 0x20;
91 bool x3
= state
.b
& 0x10;
92 bool x7
= state
.b
& 0x01;
94 return x1
^ x2
^ x3
^ x7
;
100 * Definition 3 (Selection function). The selection function select : F 2 × F 2 ×
101 * F 8/2 → F 3/2 is defined as select(x, y, r) = z 0 z 1 z 2 where
102 * z 0 = (r 0 ∧ r 2 ) ⊕ (r 1 ∧ r 3 ) ⊕ (r 2 ∨ r 4 )
103 * z 1 = (r 0 ∨ r 2 ) ⊕ (r 5 ∨ r 7 ) ⊕ r 1 ⊕ r 6 ⊕ x ⊕ y
104 * z 2 = (r 3 ∧ r 5 ) ⊕ (r 4 ∧ r 6 ) ⊕ r 7 ⊕ x
106 uint8_t _select(bool x
, bool y
, uint8_t r
)
108 bool r0
= r
>> 7 & 0x1;
109 bool r1
= r
>> 6 & 0x1;
110 bool r2
= r
>> 5 & 0x1;
111 bool r3
= r
>> 4 & 0x1;
112 bool r4
= r
>> 3 & 0x1;
113 bool r5
= r
>> 2 & 0x1;
114 bool r6
= r
>> 1 & 0x1;
117 bool z0
= (r0
& r2
) ^ (r1
& ~r3
) ^ (r2
| r4
);
118 bool z1
= (r0
| r2
) ^ ( r5
| r7
) ^ r1
^ r6
^ x
^ y
;
119 bool z2
= (r3
& ~r5
) ^ (r4
& r6
) ^ r7
^ x
;
121 // The three bitz z0.. z1 are packed into a uint8_t:
123 //Return value is a uint8_t
125 retval
|= (z0
<< 2) & 4;
126 retval
|= (z1
<< 1) & 2;
129 // Return value 0 <= retval <= 7
134 * Definition 4 (Successor state). Let s = l, r, t, b be a cipher state, k ∈ (F 82 ) 8
135 * be a key and y ∈ F 2 be the input bit. Then, the successor cipher state s ′ =
136 * l ′ , r ′ , t ′ , b ′ is defined as
137 * t ′ := (T (t) ⊕ r 0 ⊕ r 4 )t 0 . . . t 14 l ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l ⊞ r
138 * b ′ := (B(b) ⊕ r 7 )b 0 . . . b 6 r ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l
141 * @param k - array containing 8 bytes
143 State
successor(uint8_t* k
, State s
, bool y
)
145 bool r0
= s
.r
>> 7 & 0x1;
146 bool r4
= s
.r
>> 3 & 0x1;
149 State successor
= {0,0,0,0};
151 successor
.t
= s
.t
>> 1;
152 successor
.t
|= (T(s
) ^ r0
^ r4
) << 15;
154 successor
.b
= s
.b
>> 1;
155 successor
.b
|= (B(s
) ^ r7
) << 7;
159 successor
.l
= ((k
[_select(Tt
,y
,s
.r
)] ^ successor
.b
) + s
.l
+s
.r
) & 0xFF;
160 successor
.r
= ((k
[_select(Tt
,y
,s
.r
)] ^ successor
.b
) + s
.l
) & 0xFF;
165 * We define the successor function suc which takes a key k ∈ (F 82 ) 8 , a state s and
166 * an input y ∈ F 2 and outputs the successor state s ′ . We overload the function suc
167 * to multiple bit input x ∈ F n 2 which we define as
168 * @param k - array containing 8 bytes
170 State
suc(uint8_t* k
,State s
, BitstreamIn
*bitstream
)
172 if(bitsLeft(bitstream
) == 0)
176 bool lastbit
= tailBit(bitstream
);
177 return successor(k
,suc(k
,s
,bitstream
), lastbit
);
181 * Definition 5 (Output). Define the function output which takes an internal
182 * state s =< l, r, t, b > and returns the bit r 5 . We also define the function output
183 * on multiple bits input which takes a key k, a state s and an input x ∈ F n 2 as
184 * output(k, s, ǫ) = ǫ
185 * output(k, s, x 0 . . . x n ) = output(s) · output(k, s ′ , x 1 . . . x n )
186 * where s ′ = suc(k, s, x 0 ).
188 void output(uint8_t* k
,State s
, BitstreamIn
* in
, BitstreamOut
* out
)
190 if(bitsLeft(in
) == 0)
194 pushBit(out
,(s
.r
>> 2) & 1);
196 uint8_t x0
= headBit(in
);
197 State ss
= successor(k
,s
,x0
);
198 output(k
,ss
,in
, out
);
202 * Definition 6 (Initial state). Define the function init which takes as input a
203 * key k ∈ (F 82 ) 8 and outputs the initial cipher state s =< l, r, t, b >
206 State
init(uint8_t* k
)
209 ((k
[0] ^ 0x4c) + 0xEC) & 0xFF,// l
210 ((k
[0] ^ 0x4c) + 0x21) & 0xFF,// r
216 void MAC(uint8_t* k
, BitstreamIn input
, BitstreamOut out
)
218 uint8_t zeroes_32
[] = {0,0,0,0};
219 BitstreamIn input_32_zeroes
= {zeroes_32
,sizeof(zeroes_32
)*8,0};
220 State initState
= suc(k
,init(k
),&input
);
221 output(k
,initState
,&input_32_zeroes
,&out
);
224 void doMAC(uint8_t *cc_nr_p
, uint8_t *div_key_p
, uint8_t mac
[4])
226 uint8_t cc_nr
[13] = { 0 };
228 //cc_nr=(uint8_t*)malloc(length+1);
230 memcpy(cc_nr
,cc_nr_p
,12);
231 memcpy(div_key
,div_key_p
,8);
233 reverse_arraybytes(cc_nr
,12);
234 BitstreamIn bitstream
= {cc_nr
,12 * 8,0};
235 uint8_t dest
[]= {0,0,0,0,0,0,0,0};
236 BitstreamOut out
= { dest
, sizeof(dest
)*8, 0 };
237 MAC(div_key
,bitstream
, out
);
238 //The output MAC must also be reversed
239 reverse_arraybytes(dest
, sizeof(dest
));
240 memcpy(mac
, dest
, 4);
244 void doMAC_N(uint8_t *cc_nr_p
,uint8_t cc_nr_size
, uint8_t *div_key_p
, uint8_t mac
[4])
248 cc_nr
= (uint8_t*) malloc(cc_nr_size
);
250 memcpy(cc_nr
,cc_nr_p
,cc_nr_size
);
251 memcpy(div_key
,div_key_p
,8);
253 reverse_arraybytes(cc_nr
,cc_nr_size
);
254 BitstreamIn bitstream
= {cc_nr
,cc_nr_size
* 8,0};
255 uint8_t dest
[]= {0,0,0,0,0,0,0,0};
256 BitstreamOut out
= { dest
, sizeof(dest
)*8, 0 };
257 MAC(div_key
,bitstream
, out
);
258 //The output MAC must also be reversed
259 reverse_arraybytes(dest
, sizeof(dest
));
260 memcpy(mac
, dest
, 4);
268 prnlog("[+] Testing MAC calculation...");
270 //From the "dismantling.IClass" paper:
271 uint8_t cc_nr
[] = {0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0,0,0,0};
273 uint8_t div_key
[8] = {0xE0,0x33,0xCA,0x41,0x9A,0xEE,0x43,0xF9};
274 uint8_t correct_MAC
[4] = {0x1d,0x49,0xC9,0xDA};
276 uint8_t calculated_mac
[4] = {0};
277 doMAC(cc_nr
,div_key
, calculated_mac
);
279 if(memcmp(calculated_mac
, correct_MAC
,4) == 0)
281 prnlog("[+] MAC calculation OK!");
285 prnlog("[+] FAILED: MAC calculation failed:");
286 printarr(" Calculated_MAC", calculated_mac
, 4);
287 printarr(" Correct_MAC ", correct_MAC
, 4);