1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
21 * Does the sample acquisition. If threshold is specified, the actual sampling
22 * is not commenced until the threshold has been reached.
23 * @param trigger_threshold - the threshold
24 * @param silent - is true, now outputs are made. If false, dbprints the status
26 void DoAcquisition125k_internal(int trigger_threshold
,bool silent
)
28 uint8_t *dest
= BigBuf_get_addr();
29 int n
= BigBuf_max_traceLen();
35 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
36 AT91C_BASE_SSC
->SSC_THR
= 0x43;
39 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
40 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
42 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
45 trigger_threshold
= -1;
51 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
52 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
57 * Perform sample aquisition.
59 void DoAcquisition125k(int trigger_threshold
)
61 DoAcquisition125k_internal(trigger_threshold
, false);
65 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
66 * if not already loaded, sets divisor and starts up the antenna.
67 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
71 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
73 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
74 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
75 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
76 else if (divisor
== 0)
77 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
79 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
83 // Connect the A/D to the peak-detected low-frequency path.
84 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
85 // Give it a bit of time for the resonant antenna to settle.
87 // Now set up the SSC to get the ADC samples that are now streaming at us.
91 * Initializes the FPGA, and acquires the samples.
93 void AcquireRawAdcSamples125k(int divisor
)
95 LFSetupFPGAForADC(divisor
, true);
96 // Now call the acquisition routine
97 DoAcquisition125k_internal(-1,false);
100 * Initializes the FPGA for snoop-mode, and acquires the samples.
103 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
105 LFSetupFPGAForADC(divisor
, false);
106 DoAcquisition125k(trigger_threshold
);
109 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
112 /* Make sure the tag is reset */
113 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
118 int divisor_used
= 95; // 125 KHz
119 // see if 'h' was specified
121 if (command
[strlen((char *) command
) - 1] == 'h')
122 divisor_used
= 88; // 134.8 KHz
125 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
127 // Give it a bit of time for the resonant antenna to settle.
130 // And a little more time for the tag to fully power up
133 // Now set up the SSC to get the ADC samples that are now streaming at us.
136 // now modulate the reader field
137 while(*command
!= '\0' && *command
!= ' ') {
138 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
140 SpinDelayUs(delay_off
);
141 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
143 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
145 if(*(command
++) == '0')
146 SpinDelayUs(period_0
);
148 SpinDelayUs(period_1
);
150 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
152 SpinDelayUs(delay_off
);
153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
155 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
158 DoAcquisition125k(-1);
161 /* blank r/w tag data stream
162 ...0000000000000000 01111111
163 1010101010101010101010101010101010101010101010101010101010101010
166 101010101010101[0]000...
168 [5555fe852c5555555555555555fe0000]
172 // some hardcoded initial params
173 // when we read a TI tag we sample the zerocross line at 2Mhz
174 // TI tags modulate a 1 as 16 cycles of 123.2Khz
175 // TI tags modulate a 0 as 16 cycles of 134.2Khz
176 #define FSAMPLE 2000000
177 #define FREQLO 123200
178 #define FREQHI 134200
180 signed char *dest
= (signed char *)BigBuf_get_addr();
181 uint16_t n
= BigBuf_max_traceLen();
182 // 128 bit shift register [shift3:shift2:shift1:shift0]
183 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
185 int i
, cycles
=0, samples
=0;
186 // how many sample points fit in 16 cycles of each frequency
187 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
188 // when to tell if we're close enough to one freq or another
189 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
191 // TI tags charge at 134.2Khz
192 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
193 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
195 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
196 // connects to SSP_DIN and the SSP_DOUT logic level controls
197 // whether we're modulating the antenna (high)
198 // or listening to the antenna (low)
199 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
201 // get TI tag data into the buffer
204 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
206 for (i
=0; i
<n
-1; i
++) {
207 // count cycles by looking for lo to hi zero crossings
208 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
210 // after 16 cycles, measure the frequency
213 samples
=i
-samples
; // number of samples in these 16 cycles
215 // TI bits are coming to us lsb first so shift them
216 // right through our 128 bit right shift register
217 shift0
= (shift0
>>1) | (shift1
<< 31);
218 shift1
= (shift1
>>1) | (shift2
<< 31);
219 shift2
= (shift2
>>1) | (shift3
<< 31);
222 // check if the cycles fall close to the number
223 // expected for either the low or high frequency
224 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
225 // low frequency represents a 1
227 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
228 // high frequency represents a 0
230 // probably detected a gay waveform or noise
231 // use this as gaydar or discard shift register and start again
232 shift3
= shift2
= shift1
= shift0
= 0;
236 // for each bit we receive, test if we've detected a valid tag
238 // if we see 17 zeroes followed by 6 ones, we might have a tag
239 // remember the bits are backwards
240 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
241 // if start and end bytes match, we have a tag so break out of the loop
242 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
243 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
251 // if flag is set we have a tag
253 DbpString("Info: No valid tag detected.");
255 // put 64 bit data into shift1 and shift0
256 shift0
= (shift0
>>24) | (shift1
<< 8);
257 shift1
= (shift1
>>24) | (shift2
<< 8);
259 // align 16 bit crc into lower half of shift2
260 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
262 // if r/w tag, check ident match
263 if (shift3
& (1<<15) ) {
264 DbpString("Info: TI tag is rewriteable");
265 // only 15 bits compare, last bit of ident is not valid
266 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
267 DbpString("Error: Ident mismatch!");
269 DbpString("Info: TI tag ident is valid");
272 DbpString("Info: TI tag is readonly");
275 // WARNING the order of the bytes in which we calc crc below needs checking
276 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
277 // bytes in reverse or something
281 crc
= update_crc16(crc
, (shift0
)&0xff);
282 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
283 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
284 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
285 crc
= update_crc16(crc
, (shift1
)&0xff);
286 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
287 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
288 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
290 Dbprintf("Info: Tag data: %x%08x, crc=%x",
291 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
292 if (crc
!= (shift2
&0xffff)) {
293 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
295 DbpString("Info: CRC is good");
300 void WriteTIbyte(uint8_t b
)
304 // modulate 8 bits out to the antenna
308 // stop modulating antenna
315 // stop modulating antenna
325 void AcquireTiType(void)
328 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
329 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
330 #define TIBUFLEN 1250
333 uint32_t *BigBuf
= (uint32_t *)BigBuf_get_addr();
334 memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t));
336 // Set up the synchronous serial port
337 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
338 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
340 // steal this pin from the SSP and use it to control the modulation
341 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
342 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
344 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
345 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
347 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
348 // 48/2 = 24 MHz clock must be divided by 12
349 AT91C_BASE_SSC
->SSC_CMR
= 12;
351 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
352 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
353 AT91C_BASE_SSC
->SSC_TCMR
= 0;
354 AT91C_BASE_SSC
->SSC_TFMR
= 0;
361 // Charge TI tag for 50ms.
364 // stop modulating antenna and listen
371 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
372 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
373 i
++; if(i
>= TIBUFLEN
) break;
378 // return stolen pin to SSP
379 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
380 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
382 char *dest
= (char *)BigBuf_get_addr();
385 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
386 for (j
=0; j
<32; j
++) {
387 if(BigBuf
[i
] & (1 << j
)) {
396 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
397 // if crc provided, it will be written with the data verbatim (even if bogus)
398 // if not provided a valid crc will be computed from the data and written.
399 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
401 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
403 crc
= update_crc16(crc
, (idlo
)&0xff);
404 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
405 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
406 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
407 crc
= update_crc16(crc
, (idhi
)&0xff);
408 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
409 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
410 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
412 Dbprintf("Writing to tag: %x%08x, crc=%x",
413 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
415 // TI tags charge at 134.2Khz
416 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
417 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
418 // connects to SSP_DIN and the SSP_DOUT logic level controls
419 // whether we're modulating the antenna (high)
420 // or listening to the antenna (low)
421 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
424 // steal this pin from the SSP and use it to control the modulation
425 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
426 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
428 // writing algorithm:
429 // a high bit consists of a field off for 1ms and field on for 1ms
430 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
431 // initiate a charge time of 50ms (field on) then immediately start writing bits
432 // start by writing 0xBB (keyword) and 0xEB (password)
433 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
434 // finally end with 0x0300 (write frame)
435 // all data is sent lsb firts
436 // finish with 15ms programming time
440 SpinDelay(50); // charge time
442 WriteTIbyte(0xbb); // keyword
443 WriteTIbyte(0xeb); // password
444 WriteTIbyte( (idlo
)&0xff );
445 WriteTIbyte( (idlo
>>8 )&0xff );
446 WriteTIbyte( (idlo
>>16)&0xff );
447 WriteTIbyte( (idlo
>>24)&0xff );
448 WriteTIbyte( (idhi
)&0xff );
449 WriteTIbyte( (idhi
>>8 )&0xff );
450 WriteTIbyte( (idhi
>>16)&0xff );
451 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
452 WriteTIbyte( (crc
)&0xff ); // crc lo
453 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
454 WriteTIbyte(0x00); // write frame lo
455 WriteTIbyte(0x03); // write frame hi
457 SpinDelay(50); // programming time
461 // get TI tag data into the buffer
464 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
465 DbpString("Now use tiread to check");
468 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
471 uint8_t *tab
= BigBuf_get_addr();
473 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
474 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
476 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
478 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
479 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
481 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
482 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
486 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
488 DbpString("Stopped");
505 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
507 DbpString("Stopped");
524 #define DEBUG_FRAME_CONTENTS 1
525 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
529 // compose fc/8 fc/10 waveform
530 static void fc(int c
, int *n
) {
531 uint8_t *dest
= BigBuf_get_addr();
534 // for when we want an fc8 pattern every 4 logical bits
545 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
547 for (idx
=0; idx
<6; idx
++) {
559 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
561 for (idx
=0; idx
<5; idx
++) {
576 // prepare a waveform pattern in the buffer based on the ID given then
577 // simulate a HID tag until the button is pressed
578 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
582 HID tag bitstream format
583 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
584 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
585 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
586 A fc8 is inserted before every 4 bits
587 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
588 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
592 DbpString("Tags can only have 44 bits.");
596 // special start of frame marker containing invalid bit sequences
597 fc(8, &n
); fc(8, &n
); // invalid
598 fc(8, &n
); fc(10, &n
); // logical 0
599 fc(10, &n
); fc(10, &n
); // invalid
600 fc(8, &n
); fc(10, &n
); // logical 0
603 // manchester encode bits 43 to 32
604 for (i
=11; i
>=0; i
--) {
605 if ((i
%4)==3) fc(0,&n
);
607 fc(10, &n
); fc(8, &n
); // low-high transition
609 fc(8, &n
); fc(10, &n
); // high-low transition
614 // manchester encode bits 31 to 0
615 for (i
=31; i
>=0; i
--) {
616 if ((i
%4)==3) fc(0,&n
);
618 fc(10, &n
); fc(8, &n
); // low-high transition
620 fc(8, &n
); fc(10, &n
); // high-low transition
626 SimulateTagLowFrequency(n
, 0, ledcontrol
);
632 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
633 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
635 uint8_t *dest
= BigBuf_get_addr();
637 size_t size
= BigBuf_max_traceLen();
638 uint32_t hi2
=0, hi
=0, lo
=0;
640 // Configure to go in 125Khz listen mode
641 LFSetupFPGAForADC(95, true);
643 while(!BUTTON_PRESS()) {
646 if (ledcontrol
) LED_A_ON();
648 DoAcquisition125k_internal(-1,true);
650 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
653 // final loop, go over previously decoded manchester data and decode into usable tag ID
654 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
655 if (hi2
!= 0){ //extra large HID tags
656 Dbprintf("TAG ID: %x%08x%08x (%d)",
657 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
658 }else { //standard HID tags <38 bits
659 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
662 uint32_t cardnum
= 0;
663 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
665 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
667 while(lo2
> 1){ //find last bit set to 1 (format len bit)
675 cardnum
= (lo
>>1)&0xFFFF;
679 cardnum
= (lo
>>1)&0x7FFFF;
680 fc
= ((hi
&0xF)<<12)|(lo
>>20);
683 cardnum
= (lo
>>1)&0xFFFF;
684 fc
= ((hi
&1)<<15)|(lo
>>17);
687 cardnum
= (lo
>>1)&0xFFFFF;
688 fc
= ((hi
&1)<<11)|(lo
>>21);
691 else { //if bit 38 is not set then 37 bit format is used
696 cardnum
= (lo
>>1)&0x7FFFF;
697 fc
= ((hi
&0xF)<<12)|(lo
>>20);
700 //Dbprintf("TAG ID: %x%08x (%d)",
701 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
702 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
703 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
704 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
707 if (ledcontrol
) LED_A_OFF();
715 DbpString("Stopped");
716 if (ledcontrol
) LED_A_OFF();
719 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
721 uint8_t *dest
= BigBuf_get_addr();
723 size_t size
=0, idx
=0;
724 int clk
=0, invert
=0, errCnt
=0;
726 // Configure to go in 125Khz listen mode
727 LFSetupFPGAForADC(95, true);
729 while(!BUTTON_PRESS()) {
732 if (ledcontrol
) LED_A_ON();
734 DoAcquisition125k_internal(-1,true);
735 size
= BigBuf_max_traceLen();
736 //Dbprintf("DEBUG: Buffer got");
737 //askdemod and manchester decode
738 errCnt
= askmandemod(dest
, &size
, &clk
, &invert
);
739 //Dbprintf("DEBUG: ASK Got");
743 lo
= Em410xDecode(dest
, &size
, &idx
);
744 //Dbprintf("DEBUG: EM GOT");
746 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
749 (uint32_t)(lo
&0xFFFF),
750 (uint32_t)((lo
>>16LL) & 0xFF),
751 (uint32_t)(lo
& 0xFFFFFF));
754 if (ledcontrol
) LED_A_OFF();
758 //Dbprintf("DEBUG: No Tag");
767 DbpString("Stopped");
768 if (ledcontrol
) LED_A_OFF();
771 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
773 uint8_t *dest
= BigBuf_get_addr();
775 uint32_t code
=0, code2
=0;
777 uint8_t facilitycode
=0;
779 // Configure to go in 125Khz listen mode
780 LFSetupFPGAForADC(95, true);
782 while(!BUTTON_PRESS()) {
784 if (ledcontrol
) LED_A_ON();
785 DoAcquisition125k_internal(-1,true);
786 //fskdemod and get start index
788 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
793 //0 10 20 30 40 50 60
795 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
796 //-----------------------------------------------------------------------------
797 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
799 //XSF(version)facility:codeone+codetwo
801 if(findone
){ //only print binary if we are doing one
802 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
803 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
804 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
805 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
806 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
807 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
808 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
810 code
= bytebits_to_byte(dest
+idx
,32);
811 code2
= bytebits_to_byte(dest
+idx
+32,32);
812 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
813 facilitycode
= bytebits_to_byte(dest
+idx
+18,8) ;
814 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
816 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
817 // if we're only looking for one tag
819 if (ledcontrol
) LED_A_OFF();
824 version
=facilitycode
=0;
830 DbpString("Stopped");
831 if (ledcontrol
) LED_A_OFF();
834 /*------------------------------
835 * T5555/T5557/T5567 routines
836 *------------------------------
839 /* T55x7 configuration register definitions */
840 #define T55x7_POR_DELAY 0x00000001
841 #define T55x7_ST_TERMINATOR 0x00000008
842 #define T55x7_PWD 0x00000010
843 #define T55x7_MAXBLOCK_SHIFT 5
844 #define T55x7_AOR 0x00000200
845 #define T55x7_PSKCF_RF_2 0
846 #define T55x7_PSKCF_RF_4 0x00000400
847 #define T55x7_PSKCF_RF_8 0x00000800
848 #define T55x7_MODULATION_DIRECT 0
849 #define T55x7_MODULATION_PSK1 0x00001000
850 #define T55x7_MODULATION_PSK2 0x00002000
851 #define T55x7_MODULATION_PSK3 0x00003000
852 #define T55x7_MODULATION_FSK1 0x00004000
853 #define T55x7_MODULATION_FSK2 0x00005000
854 #define T55x7_MODULATION_FSK1a 0x00006000
855 #define T55x7_MODULATION_FSK2a 0x00007000
856 #define T55x7_MODULATION_MANCHESTER 0x00008000
857 #define T55x7_MODULATION_BIPHASE 0x00010000
858 #define T55x7_BITRATE_RF_8 0
859 #define T55x7_BITRATE_RF_16 0x00040000
860 #define T55x7_BITRATE_RF_32 0x00080000
861 #define T55x7_BITRATE_RF_40 0x000C0000
862 #define T55x7_BITRATE_RF_50 0x00100000
863 #define T55x7_BITRATE_RF_64 0x00140000
864 #define T55x7_BITRATE_RF_100 0x00180000
865 #define T55x7_BITRATE_RF_128 0x001C0000
867 /* T5555 (Q5) configuration register definitions */
868 #define T5555_ST_TERMINATOR 0x00000001
869 #define T5555_MAXBLOCK_SHIFT 0x00000001
870 #define T5555_MODULATION_MANCHESTER 0
871 #define T5555_MODULATION_PSK1 0x00000010
872 #define T5555_MODULATION_PSK2 0x00000020
873 #define T5555_MODULATION_PSK3 0x00000030
874 #define T5555_MODULATION_FSK1 0x00000040
875 #define T5555_MODULATION_FSK2 0x00000050
876 #define T5555_MODULATION_BIPHASE 0x00000060
877 #define T5555_MODULATION_DIRECT 0x00000070
878 #define T5555_INVERT_OUTPUT 0x00000080
879 #define T5555_PSK_RF_2 0
880 #define T5555_PSK_RF_4 0x00000100
881 #define T5555_PSK_RF_8 0x00000200
882 #define T5555_USE_PWD 0x00000400
883 #define T5555_USE_AOR 0x00000800
884 #define T5555_BITRATE_SHIFT 12
885 #define T5555_FAST_WRITE 0x00004000
886 #define T5555_PAGE_SELECT 0x00008000
889 * Relevant times in microsecond
890 * To compensate antenna falling times shorten the write times
891 * and enlarge the gap ones.
893 #define START_GAP 250
894 #define WRITE_GAP 160
895 #define WRITE_0 144 // 192
896 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
898 // Write one bit to card
899 void T55xxWriteBit(int bit
)
901 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
902 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
903 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
905 SpinDelayUs(WRITE_0
);
907 SpinDelayUs(WRITE_1
);
908 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
909 SpinDelayUs(WRITE_GAP
);
912 // Write one card block in page 0, no lock
913 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
915 //unsigned int i; //enio adjustment 12/10/14
918 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
919 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
920 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
922 // Give it a bit of time for the resonant antenna to settle.
923 // And for the tag to fully power up
926 // Now start writting
927 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
928 SpinDelayUs(START_GAP
);
932 T55xxWriteBit(0); //Page 0
935 for (i
= 0x80000000; i
!= 0; i
>>= 1)
936 T55xxWriteBit(Pwd
& i
);
942 for (i
= 0x80000000; i
!= 0; i
>>= 1)
943 T55xxWriteBit(Data
& i
);
946 for (i
= 0x04; i
!= 0; i
>>= 1)
947 T55xxWriteBit(Block
& i
);
949 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
950 // so wait a little more)
951 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
952 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
954 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
957 // Read one card block in page 0
958 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
960 uint8_t *dest
= BigBuf_get_addr();
961 //int m=0, i=0; //enio adjustment 12/10/14
963 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
964 m
= BigBuf_max_traceLen();
965 // Clear destination buffer before sending the command
966 memset(dest
, 128, m
);
967 // Connect the A/D to the peak-detected low-frequency path.
968 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
969 // Now set up the SSC to get the ADC samples that are now streaming at us.
973 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
974 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
976 // Give it a bit of time for the resonant antenna to settle.
977 // And for the tag to fully power up
980 // Now start writting
981 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
982 SpinDelayUs(START_GAP
);
986 T55xxWriteBit(0); //Page 0
989 for (i
= 0x80000000; i
!= 0; i
>>= 1)
990 T55xxWriteBit(Pwd
& i
);
995 for (i
= 0x04; i
!= 0; i
>>= 1)
996 T55xxWriteBit(Block
& i
);
998 // Turn field on to read the response
999 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1000 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1002 // Now do the acquisition
1005 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1006 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1008 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1009 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1010 // we don't care about actual value, only if it's more or less than a
1011 // threshold essentially we capture zero crossings for later analysis
1012 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1018 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1023 // Read card traceability data (page 1)
1024 void T55xxReadTrace(void){
1025 uint8_t *dest
= BigBuf_get_addr();
1028 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1029 m
= BigBuf_max_traceLen();
1030 // Clear destination buffer before sending the command
1031 memset(dest
, 128, m
);
1032 // Connect the A/D to the peak-detected low-frequency path.
1033 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1034 // Now set up the SSC to get the ADC samples that are now streaming at us.
1038 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1039 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1041 // Give it a bit of time for the resonant antenna to settle.
1042 // And for the tag to fully power up
1045 // Now start writting
1046 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1047 SpinDelayUs(START_GAP
);
1051 T55xxWriteBit(1); //Page 1
1053 // Turn field on to read the response
1054 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1055 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1057 // Now do the acquisition
1060 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1061 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1063 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1064 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1070 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1075 /*-------------- Cloning routines -----------*/
1076 // Copy HID id to card and setup block 0 config
1077 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1079 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1083 // Ensure no more than 84 bits supplied
1085 DbpString("Tags can only have 84 bits.");
1088 // Build the 6 data blocks for supplied 84bit ID
1090 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1091 for (int i
=0;i
<4;i
++) {
1092 if (hi2
& (1<<(19-i
)))
1093 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1095 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1099 for (int i
=0;i
<16;i
++) {
1100 if (hi2
& (1<<(15-i
)))
1101 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1103 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1107 for (int i
=0;i
<16;i
++) {
1108 if (hi
& (1<<(31-i
)))
1109 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1111 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1115 for (int i
=0;i
<16;i
++) {
1116 if (hi
& (1<<(15-i
)))
1117 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1119 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1123 for (int i
=0;i
<16;i
++) {
1124 if (lo
& (1<<(31-i
)))
1125 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1127 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1131 for (int i
=0;i
<16;i
++) {
1132 if (lo
& (1<<(15-i
)))
1133 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1135 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1139 // Ensure no more than 44 bits supplied
1141 DbpString("Tags can only have 44 bits.");
1145 // Build the 3 data blocks for supplied 44bit ID
1148 data1
= 0x1D000000; // load preamble
1150 for (int i
=0;i
<12;i
++) {
1151 if (hi
& (1<<(11-i
)))
1152 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1154 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1158 for (int i
=0;i
<16;i
++) {
1159 if (lo
& (1<<(31-i
)))
1160 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1162 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1166 for (int i
=0;i
<16;i
++) {
1167 if (lo
& (1<<(15-i
)))
1168 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1170 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1175 // Program the data blocks for supplied ID
1176 // and the block 0 for HID format
1177 T55xxWriteBlock(data1
,1,0,0);
1178 T55xxWriteBlock(data2
,2,0,0);
1179 T55xxWriteBlock(data3
,3,0,0);
1181 if (longFMT
) { // if long format there are 6 blocks
1182 T55xxWriteBlock(data4
,4,0,0);
1183 T55xxWriteBlock(data5
,5,0,0);
1184 T55xxWriteBlock(data6
,6,0,0);
1187 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1188 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1189 T55x7_MODULATION_FSK2a
|
1190 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1198 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1200 int data1
=0, data2
=0; //up to six blocks for long format
1202 data1
= hi
; // load preamble
1206 // Program the data blocks for supplied ID
1207 // and the block 0 for HID format
1208 T55xxWriteBlock(data1
,1,0,0);
1209 T55xxWriteBlock(data2
,2,0,0);
1212 T55xxWriteBlock(0x00147040,0,0,0);
1218 // Define 9bit header for EM410x tags
1219 #define EM410X_HEADER 0x1FF
1220 #define EM410X_ID_LENGTH 40
1222 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1225 uint64_t id
= EM410X_HEADER
;
1226 uint64_t rev_id
= 0; // reversed ID
1227 int c_parity
[4]; // column parity
1228 int r_parity
= 0; // row parity
1231 // Reverse ID bits given as parameter (for simpler operations)
1232 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1234 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1237 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1242 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1243 id_bit
= rev_id
& 1;
1246 // Don't write row parity bit at start of parsing
1248 id
= (id
<< 1) | r_parity
;
1249 // Start counting parity for new row
1256 // First elements in column?
1258 // Fill out first elements
1259 c_parity
[i
] = id_bit
;
1261 // Count column parity
1262 c_parity
[i
% 4] ^= id_bit
;
1265 id
= (id
<< 1) | id_bit
;
1269 // Insert parity bit of last row
1270 id
= (id
<< 1) | r_parity
;
1272 // Fill out column parity at the end of tag
1273 for (i
= 0; i
< 4; ++i
)
1274 id
= (id
<< 1) | c_parity
[i
];
1279 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1283 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1284 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1286 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1288 // Clock rate is stored in bits 8-15 of the card value
1289 clock
= (card
& 0xFF00) >> 8;
1290 Dbprintf("Clock rate: %d", clock
);
1294 clock
= T55x7_BITRATE_RF_32
;
1297 clock
= T55x7_BITRATE_RF_16
;
1300 // A value of 0 is assumed to be 64 for backwards-compatibility
1303 clock
= T55x7_BITRATE_RF_64
;
1306 Dbprintf("Invalid clock rate: %d", clock
);
1310 // Writing configuration for T55x7 tag
1311 T55xxWriteBlock(clock
|
1312 T55x7_MODULATION_MANCHESTER
|
1313 2 << T55x7_MAXBLOCK_SHIFT
,
1317 // Writing configuration for T5555(Q5) tag
1318 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1319 T5555_MODULATION_MANCHESTER
|
1320 2 << T5555_MAXBLOCK_SHIFT
,
1324 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1325 (uint32_t)(id
>> 32), (uint32_t)id
);
1328 // Clone Indala 64-bit tag by UID to T55x7
1329 void CopyIndala64toT55x7(int hi
, int lo
)
1332 //Program the 2 data blocks for supplied 64bit UID
1333 // and the block 0 for Indala64 format
1334 T55xxWriteBlock(hi
,1,0,0);
1335 T55xxWriteBlock(lo
,2,0,0);
1336 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1337 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1338 T55x7_MODULATION_PSK1
|
1339 2 << T55x7_MAXBLOCK_SHIFT
,
1341 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1342 // T5567WriteBlock(0x603E1042,0);
1348 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1351 //Program the 7 data blocks for supplied 224bit UID
1352 // and the block 0 for Indala224 format
1353 T55xxWriteBlock(uid1
,1,0,0);
1354 T55xxWriteBlock(uid2
,2,0,0);
1355 T55xxWriteBlock(uid3
,3,0,0);
1356 T55xxWriteBlock(uid4
,4,0,0);
1357 T55xxWriteBlock(uid5
,5,0,0);
1358 T55xxWriteBlock(uid6
,6,0,0);
1359 T55xxWriteBlock(uid7
,7,0,0);
1360 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1361 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1362 T55x7_MODULATION_PSK1
|
1363 7 << T55x7_MAXBLOCK_SHIFT
,
1365 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1366 // T5567WriteBlock(0x603E10E2,0);
1373 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1374 #define max(x,y) ( x<y ? y:x)
1376 int DemodPCF7931(uint8_t **outBlocks
) {
1377 uint8_t BitStream
[256];
1378 uint8_t Blocks
[8][16];
1379 uint8_t *GraphBuffer
= BigBuf_get_addr();
1380 int GraphTraceLen
= BigBuf_max_traceLen();
1381 int i
, j
, lastval
, bitidx
, half_switch
;
1383 int tolerance
= clock
/ 8;
1384 int pmc
, block_done
;
1385 int lc
, warnings
= 0;
1387 int lmin
=128, lmax
=128;
1390 AcquireRawAdcSamples125k(0);
1397 /* Find first local max/min */
1398 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1399 while(i
< GraphTraceLen
) {
1400 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1407 while(i
< GraphTraceLen
) {
1408 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1420 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1422 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1427 // Switch depending on lc length:
1428 // Tolerance is 1/8 of clock rate (arbitrary)
1429 if (abs(lc
-clock
/4) < tolerance
) {
1431 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1433 i
+= (128+127+16+32+33+16)-1;
1441 } else if (abs(lc
-clock
/2) < tolerance
) {
1443 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1445 i
+= (128+127+16+32+33)-1;
1450 else if(half_switch
== 1) {
1451 BitStream
[bitidx
++] = 0;
1456 } else if (abs(lc
-clock
) < tolerance
) {
1458 BitStream
[bitidx
++] = 1;
1464 Dbprintf("Error: too many detection errors, aborting.");
1469 if(block_done
== 1) {
1471 for(j
=0; j
<16; j
++) {
1472 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1473 64*BitStream
[j
*8+6]+
1474 32*BitStream
[j
*8+5]+
1475 16*BitStream
[j
*8+4]+
1487 if(i
< GraphTraceLen
)
1489 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1496 if(num_blocks
== 4) break;
1498 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1502 int IsBlock0PCF7931(uint8_t *Block
) {
1503 // Assume RFU means 0 :)
1504 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1506 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1511 int IsBlock1PCF7931(uint8_t *Block
) {
1512 // Assume RFU means 0 :)
1513 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1514 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1522 void ReadPCF7931() {
1523 uint8_t Blocks
[8][17];
1524 uint8_t tmpBlocks
[4][16];
1525 int i
, j
, ind
, ind2
, n
;
1532 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1535 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1536 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1539 if(error
==10 && num_blocks
== 0) {
1540 Dbprintf("Error, no tag or bad tag");
1543 else if (tries
==20 || error
==10) {
1544 Dbprintf("Error reading the tag");
1545 Dbprintf("Here is the partial content");
1550 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1551 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1552 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1554 for(i
=0; i
<n
; i
++) {
1555 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1557 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1561 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1562 Blocks
[0][ALLOC
] = 1;
1563 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1564 Blocks
[1][ALLOC
] = 1;
1565 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1567 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1569 // Handle following blocks
1570 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1573 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1574 Blocks
[ind2
][ALLOC
] = 1;
1582 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1583 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1584 for(j
=0; j
<max_blocks
; j
++) {
1585 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1586 // Found an identical block
1587 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1590 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1591 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1592 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1593 Blocks
[ind2
][ALLOC
] = 1;
1595 if(num_blocks
== max_blocks
) goto end
;
1598 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1599 if(ind2
> max_blocks
)
1601 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1602 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1603 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1604 Blocks
[ind2
][ALLOC
] = 1;
1606 if(num_blocks
== max_blocks
) goto end
;
1615 if (BUTTON_PRESS()) return;
1616 } while (num_blocks
!= max_blocks
);
1618 Dbprintf("-----------------------------------------");
1619 Dbprintf("Memory content:");
1620 Dbprintf("-----------------------------------------");
1621 for(i
=0; i
<max_blocks
; i
++) {
1622 if(Blocks
[i
][ALLOC
]==1)
1623 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1624 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1625 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1627 Dbprintf("<missing block %d>", i
);
1629 Dbprintf("-----------------------------------------");
1635 //-----------------------------------
1636 // EM4469 / EM4305 routines
1637 //-----------------------------------
1638 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1639 #define FWD_CMD_WRITE 0xA
1640 #define FWD_CMD_READ 0x9
1641 #define FWD_CMD_DISABLE 0x5
1644 uint8_t forwardLink_data
[64]; //array of forwarded bits
1645 uint8_t * forward_ptr
; //ptr for forward message preparation
1646 uint8_t fwd_bit_sz
; //forwardlink bit counter
1647 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1649 //====================================================================
1650 // prepares command bits
1652 //====================================================================
1653 //--------------------------------------------------------------------
1654 uint8_t Prepare_Cmd( uint8_t cmd
) {
1655 //--------------------------------------------------------------------
1657 *forward_ptr
++ = 0; //start bit
1658 *forward_ptr
++ = 0; //second pause for 4050 code
1660 *forward_ptr
++ = cmd
;
1662 *forward_ptr
++ = cmd
;
1664 *forward_ptr
++ = cmd
;
1666 *forward_ptr
++ = cmd
;
1668 return 6; //return number of emited bits
1671 //====================================================================
1672 // prepares address bits
1674 //====================================================================
1676 //--------------------------------------------------------------------
1677 uint8_t Prepare_Addr( uint8_t addr
) {
1678 //--------------------------------------------------------------------
1680 register uint8_t line_parity
;
1685 *forward_ptr
++ = addr
;
1686 line_parity
^= addr
;
1690 *forward_ptr
++ = (line_parity
& 1);
1692 return 7; //return number of emited bits
1695 //====================================================================
1696 // prepares data bits intreleaved with parity bits
1698 //====================================================================
1700 //--------------------------------------------------------------------
1701 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1702 //--------------------------------------------------------------------
1704 register uint8_t line_parity
;
1705 register uint8_t column_parity
;
1706 register uint8_t i
, j
;
1707 register uint16_t data
;
1712 for(i
=0; i
<4; i
++) {
1714 for(j
=0; j
<8; j
++) {
1715 line_parity
^= data
;
1716 column_parity
^= (data
& 1) << j
;
1717 *forward_ptr
++ = data
;
1720 *forward_ptr
++ = line_parity
;
1725 for(j
=0; j
<8; j
++) {
1726 *forward_ptr
++ = column_parity
;
1727 column_parity
>>= 1;
1731 return 45; //return number of emited bits
1734 //====================================================================
1735 // Forward Link send function
1736 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1737 // fwd_bit_count set with number of bits to be sent
1738 //====================================================================
1739 void SendForward(uint8_t fwd_bit_count
) {
1741 fwd_write_ptr
= forwardLink_data
;
1742 fwd_bit_sz
= fwd_bit_count
;
1747 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1748 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1749 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1751 // Give it a bit of time for the resonant antenna to settle.
1752 // And for the tag to fully power up
1755 // force 1st mod pulse (start gap must be longer for 4305)
1756 fwd_bit_sz
--; //prepare next bit modulation
1758 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1759 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1760 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1761 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1762 SpinDelayUs(16*8); //16 cycles on (8us each)
1764 // now start writting
1765 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1766 if(((*fwd_write_ptr
++) & 1) == 1)
1767 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1769 //These timings work for 4469/4269/4305 (with the 55*8 above)
1770 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1771 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1772 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1773 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1774 SpinDelayUs(9*8); //16 cycles on (8us each)
1779 void EM4xLogin(uint32_t Password
) {
1781 uint8_t fwd_bit_count
;
1783 forward_ptr
= forwardLink_data
;
1784 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1785 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1787 SendForward(fwd_bit_count
);
1789 //Wait for command to complete
1794 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1796 uint8_t fwd_bit_count
;
1797 uint8_t *dest
= BigBuf_get_addr();
1800 //If password mode do login
1801 if (PwdMode
== 1) EM4xLogin(Pwd
);
1803 forward_ptr
= forwardLink_data
;
1804 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1805 fwd_bit_count
+= Prepare_Addr( Address
);
1807 m
= BigBuf_max_traceLen();
1808 // Clear destination buffer before sending the command
1809 memset(dest
, 128, m
);
1810 // Connect the A/D to the peak-detected low-frequency path.
1811 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1812 // Now set up the SSC to get the ADC samples that are now streaming at us.
1815 SendForward(fwd_bit_count
);
1817 // Now do the acquisition
1820 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1821 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1823 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1824 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1829 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1833 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1835 uint8_t fwd_bit_count
;
1837 //If password mode do login
1838 if (PwdMode
== 1) EM4xLogin(Pwd
);
1840 forward_ptr
= forwardLink_data
;
1841 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1842 fwd_bit_count
+= Prepare_Addr( Address
);
1843 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1845 SendForward(fwd_bit_count
);
1847 //Wait for write to complete
1849 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off