]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/lfops.c
31ee63588155de129d640ab12b952385288d3773
[proxmark3-svn] / armsrc / lfops.c
1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
4 // the license.
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "apps.h"
13 #include "util.h"
14 #include "hitag2.h"
15 #include "crc16.h"
16 #include "string.h"
17 #include "lfdemod.h"
18
19
20 /**
21 * Does the sample acquisition. If threshold is specified, the actual sampling
22 * is not commenced until the threshold has been reached.
23 * @param trigger_threshold - the threshold
24 * @param silent - is true, now outputs are made. If false, dbprints the status
25 */
26 void DoAcquisition125k_internal(int trigger_threshold,bool silent)
27 {
28 uint8_t *dest = BigBuf_get_addr();
29 int n = BigBuf_max_traceLen();
30 int i;
31
32 memset(dest, 0, n);
33 i = 0;
34 for(;;) {
35 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
36 AT91C_BASE_SSC->SSC_THR = 0x43;
37 LED_D_ON();
38 }
39 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
40 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
41 LED_D_OFF();
42 if (trigger_threshold != -1 && dest[i] < trigger_threshold)
43 continue;
44 else
45 trigger_threshold = -1;
46 if (++i >= n) break;
47 }
48 }
49 if(!silent)
50 {
51 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
52 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
53
54 }
55 }
56 /**
57 * Perform sample aquisition.
58 */
59 void DoAcquisition125k(int trigger_threshold)
60 {
61 DoAcquisition125k_internal(trigger_threshold, false);
62 }
63
64 /**
65 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
66 * if not already loaded, sets divisor and starts up the antenna.
67 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
68 * 0 or 95 ==> 125 KHz
69 *
70 **/
71 void LFSetupFPGAForADC(int divisor, bool lf_field)
72 {
73 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
74 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
75 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
76 else if (divisor == 0)
77 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
78 else
79 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
80
81 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
82
83 // Connect the A/D to the peak-detected low-frequency path.
84 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
85 // Give it a bit of time for the resonant antenna to settle.
86 SpinDelay(50);
87 // Now set up the SSC to get the ADC samples that are now streaming at us.
88 FpgaSetupSsc();
89 }
90 /**
91 * Initializes the FPGA, and acquires the samples.
92 **/
93 void AcquireRawAdcSamples125k(int divisor)
94 {
95 LFSetupFPGAForADC(divisor, true);
96 // Now call the acquisition routine
97 DoAcquisition125k_internal(-1,false);
98 }
99 /**
100 * Initializes the FPGA for snoop-mode, and acquires the samples.
101 **/
102
103 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
104 {
105 LFSetupFPGAForADC(divisor, false);
106 DoAcquisition125k(trigger_threshold);
107 }
108
109 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
110 {
111
112 /* Make sure the tag is reset */
113 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
115 SpinDelay(2500);
116
117
118 int divisor_used = 95; // 125 KHz
119 // see if 'h' was specified
120
121 if (command[strlen((char *) command) - 1] == 'h')
122 divisor_used = 88; // 134.8 KHz
123
124
125 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
126 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
127 // Give it a bit of time for the resonant antenna to settle.
128 SpinDelay(50);
129
130 // And a little more time for the tag to fully power up
131 SpinDelay(2000);
132
133 // Now set up the SSC to get the ADC samples that are now streaming at us.
134 FpgaSetupSsc();
135
136 // now modulate the reader field
137 while(*command != '\0' && *command != ' ') {
138 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
139 LED_D_OFF();
140 SpinDelayUs(delay_off);
141 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
142
143 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
144 LED_D_ON();
145 if(*(command++) == '0')
146 SpinDelayUs(period_0);
147 else
148 SpinDelayUs(period_1);
149 }
150 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
151 LED_D_OFF();
152 SpinDelayUs(delay_off);
153 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
154
155 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
156
157 // now do the read
158 DoAcquisition125k(-1);
159 }
160
161 /* blank r/w tag data stream
162 ...0000000000000000 01111111
163 1010101010101010101010101010101010101010101010101010101010101010
164 0011010010100001
165 01111111
166 101010101010101[0]000...
167
168 [5555fe852c5555555555555555fe0000]
169 */
170 void ReadTItag(void)
171 {
172 // some hardcoded initial params
173 // when we read a TI tag we sample the zerocross line at 2Mhz
174 // TI tags modulate a 1 as 16 cycles of 123.2Khz
175 // TI tags modulate a 0 as 16 cycles of 134.2Khz
176 #define FSAMPLE 2000000
177 #define FREQLO 123200
178 #define FREQHI 134200
179
180 signed char *dest = (signed char *)BigBuf_get_addr();
181 uint16_t n = BigBuf_max_traceLen();
182 // 128 bit shift register [shift3:shift2:shift1:shift0]
183 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
184
185 int i, cycles=0, samples=0;
186 // how many sample points fit in 16 cycles of each frequency
187 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
188 // when to tell if we're close enough to one freq or another
189 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
190
191 // TI tags charge at 134.2Khz
192 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
193 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
194
195 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
196 // connects to SSP_DIN and the SSP_DOUT logic level controls
197 // whether we're modulating the antenna (high)
198 // or listening to the antenna (low)
199 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
200
201 // get TI tag data into the buffer
202 AcquireTiType();
203
204 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
205
206 for (i=0; i<n-1; i++) {
207 // count cycles by looking for lo to hi zero crossings
208 if ( (dest[i]<0) && (dest[i+1]>0) ) {
209 cycles++;
210 // after 16 cycles, measure the frequency
211 if (cycles>15) {
212 cycles=0;
213 samples=i-samples; // number of samples in these 16 cycles
214
215 // TI bits are coming to us lsb first so shift them
216 // right through our 128 bit right shift register
217 shift0 = (shift0>>1) | (shift1 << 31);
218 shift1 = (shift1>>1) | (shift2 << 31);
219 shift2 = (shift2>>1) | (shift3 << 31);
220 shift3 >>= 1;
221
222 // check if the cycles fall close to the number
223 // expected for either the low or high frequency
224 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
225 // low frequency represents a 1
226 shift3 |= (1<<31);
227 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
228 // high frequency represents a 0
229 } else {
230 // probably detected a gay waveform or noise
231 // use this as gaydar or discard shift register and start again
232 shift3 = shift2 = shift1 = shift0 = 0;
233 }
234 samples = i;
235
236 // for each bit we receive, test if we've detected a valid tag
237
238 // if we see 17 zeroes followed by 6 ones, we might have a tag
239 // remember the bits are backwards
240 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
241 // if start and end bytes match, we have a tag so break out of the loop
242 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
243 cycles = 0xF0B; //use this as a flag (ugly but whatever)
244 break;
245 }
246 }
247 }
248 }
249 }
250
251 // if flag is set we have a tag
252 if (cycles!=0xF0B) {
253 DbpString("Info: No valid tag detected.");
254 } else {
255 // put 64 bit data into shift1 and shift0
256 shift0 = (shift0>>24) | (shift1 << 8);
257 shift1 = (shift1>>24) | (shift2 << 8);
258
259 // align 16 bit crc into lower half of shift2
260 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
261
262 // if r/w tag, check ident match
263 if (shift3 & (1<<15) ) {
264 DbpString("Info: TI tag is rewriteable");
265 // only 15 bits compare, last bit of ident is not valid
266 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
267 DbpString("Error: Ident mismatch!");
268 } else {
269 DbpString("Info: TI tag ident is valid");
270 }
271 } else {
272 DbpString("Info: TI tag is readonly");
273 }
274
275 // WARNING the order of the bytes in which we calc crc below needs checking
276 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
277 // bytes in reverse or something
278 // calculate CRC
279 uint32_t crc=0;
280
281 crc = update_crc16(crc, (shift0)&0xff);
282 crc = update_crc16(crc, (shift0>>8)&0xff);
283 crc = update_crc16(crc, (shift0>>16)&0xff);
284 crc = update_crc16(crc, (shift0>>24)&0xff);
285 crc = update_crc16(crc, (shift1)&0xff);
286 crc = update_crc16(crc, (shift1>>8)&0xff);
287 crc = update_crc16(crc, (shift1>>16)&0xff);
288 crc = update_crc16(crc, (shift1>>24)&0xff);
289
290 Dbprintf("Info: Tag data: %x%08x, crc=%x",
291 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
292 if (crc != (shift2&0xffff)) {
293 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
294 } else {
295 DbpString("Info: CRC is good");
296 }
297 }
298 }
299
300 void WriteTIbyte(uint8_t b)
301 {
302 int i = 0;
303
304 // modulate 8 bits out to the antenna
305 for (i=0; i<8; i++)
306 {
307 if (b&(1<<i)) {
308 // stop modulating antenna
309 LOW(GPIO_SSC_DOUT);
310 SpinDelayUs(1000);
311 // modulate antenna
312 HIGH(GPIO_SSC_DOUT);
313 SpinDelayUs(1000);
314 } else {
315 // stop modulating antenna
316 LOW(GPIO_SSC_DOUT);
317 SpinDelayUs(300);
318 // modulate antenna
319 HIGH(GPIO_SSC_DOUT);
320 SpinDelayUs(1700);
321 }
322 }
323 }
324
325 void AcquireTiType(void)
326 {
327 int i, j, n;
328 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
329 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
330 #define TIBUFLEN 1250
331
332 // clear buffer
333 uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
334 memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
335
336 // Set up the synchronous serial port
337 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
338 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
339
340 // steal this pin from the SSP and use it to control the modulation
341 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
342 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
343
344 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
345 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
346
347 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
348 // 48/2 = 24 MHz clock must be divided by 12
349 AT91C_BASE_SSC->SSC_CMR = 12;
350
351 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
352 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
353 AT91C_BASE_SSC->SSC_TCMR = 0;
354 AT91C_BASE_SSC->SSC_TFMR = 0;
355
356 LED_D_ON();
357
358 // modulate antenna
359 HIGH(GPIO_SSC_DOUT);
360
361 // Charge TI tag for 50ms.
362 SpinDelay(50);
363
364 // stop modulating antenna and listen
365 LOW(GPIO_SSC_DOUT);
366
367 LED_D_OFF();
368
369 i = 0;
370 for(;;) {
371 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
372 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
373 i++; if(i >= TIBUFLEN) break;
374 }
375 WDT_HIT();
376 }
377
378 // return stolen pin to SSP
379 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
380 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
381
382 char *dest = (char *)BigBuf_get_addr();
383 n = TIBUFLEN*32;
384 // unpack buffer
385 for (i=TIBUFLEN-1; i>=0; i--) {
386 for (j=0; j<32; j++) {
387 if(BigBuf[i] & (1 << j)) {
388 dest[--n] = 1;
389 } else {
390 dest[--n] = -1;
391 }
392 }
393 }
394 }
395
396 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
397 // if crc provided, it will be written with the data verbatim (even if bogus)
398 // if not provided a valid crc will be computed from the data and written.
399 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
400 {
401 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
402 if(crc == 0) {
403 crc = update_crc16(crc, (idlo)&0xff);
404 crc = update_crc16(crc, (idlo>>8)&0xff);
405 crc = update_crc16(crc, (idlo>>16)&0xff);
406 crc = update_crc16(crc, (idlo>>24)&0xff);
407 crc = update_crc16(crc, (idhi)&0xff);
408 crc = update_crc16(crc, (idhi>>8)&0xff);
409 crc = update_crc16(crc, (idhi>>16)&0xff);
410 crc = update_crc16(crc, (idhi>>24)&0xff);
411 }
412 Dbprintf("Writing to tag: %x%08x, crc=%x",
413 (unsigned int) idhi, (unsigned int) idlo, crc);
414
415 // TI tags charge at 134.2Khz
416 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
417 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
418 // connects to SSP_DIN and the SSP_DOUT logic level controls
419 // whether we're modulating the antenna (high)
420 // or listening to the antenna (low)
421 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
422 LED_A_ON();
423
424 // steal this pin from the SSP and use it to control the modulation
425 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
426 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
427
428 // writing algorithm:
429 // a high bit consists of a field off for 1ms and field on for 1ms
430 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
431 // initiate a charge time of 50ms (field on) then immediately start writing bits
432 // start by writing 0xBB (keyword) and 0xEB (password)
433 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
434 // finally end with 0x0300 (write frame)
435 // all data is sent lsb firts
436 // finish with 15ms programming time
437
438 // modulate antenna
439 HIGH(GPIO_SSC_DOUT);
440 SpinDelay(50); // charge time
441
442 WriteTIbyte(0xbb); // keyword
443 WriteTIbyte(0xeb); // password
444 WriteTIbyte( (idlo )&0xff );
445 WriteTIbyte( (idlo>>8 )&0xff );
446 WriteTIbyte( (idlo>>16)&0xff );
447 WriteTIbyte( (idlo>>24)&0xff );
448 WriteTIbyte( (idhi )&0xff );
449 WriteTIbyte( (idhi>>8 )&0xff );
450 WriteTIbyte( (idhi>>16)&0xff );
451 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
452 WriteTIbyte( (crc )&0xff ); // crc lo
453 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
454 WriteTIbyte(0x00); // write frame lo
455 WriteTIbyte(0x03); // write frame hi
456 HIGH(GPIO_SSC_DOUT);
457 SpinDelay(50); // programming time
458
459 LED_A_OFF();
460
461 // get TI tag data into the buffer
462 AcquireTiType();
463
464 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
465 DbpString("Now use tiread to check");
466 }
467
468 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
469 {
470 int i;
471 uint8_t *tab = BigBuf_get_addr();
472
473 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
474 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
475
476 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
477
478 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
479 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
480
481 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
482 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
483
484 i = 0;
485 for(;;) {
486 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
487 if(BUTTON_PRESS()) {
488 DbpString("Stopped");
489 return;
490 }
491 WDT_HIT();
492 }
493
494 if (ledcontrol)
495 LED_D_ON();
496
497 if(tab[i])
498 OPEN_COIL();
499 else
500 SHORT_COIL();
501
502 if (ledcontrol)
503 LED_D_OFF();
504
505 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
506 if(BUTTON_PRESS()) {
507 DbpString("Stopped");
508 return;
509 }
510 WDT_HIT();
511 }
512
513 i++;
514 if(i == period) {
515 i = 0;
516 if (gap) {
517 SHORT_COIL();
518 SpinDelayUs(gap);
519 }
520 }
521 }
522 }
523
524 #define DEBUG_FRAME_CONTENTS 1
525 void SimulateTagLowFrequencyBidir(int divisor, int t0)
526 {
527 }
528
529 // compose fc/8 fc/10 waveform
530 static void fc(int c, int *n) {
531 uint8_t *dest = BigBuf_get_addr();
532 int idx;
533
534 // for when we want an fc8 pattern every 4 logical bits
535 if(c==0) {
536 dest[((*n)++)]=1;
537 dest[((*n)++)]=1;
538 dest[((*n)++)]=0;
539 dest[((*n)++)]=0;
540 dest[((*n)++)]=0;
541 dest[((*n)++)]=0;
542 dest[((*n)++)]=0;
543 dest[((*n)++)]=0;
544 }
545 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
546 if(c==8) {
547 for (idx=0; idx<6; idx++) {
548 dest[((*n)++)]=1;
549 dest[((*n)++)]=1;
550 dest[((*n)++)]=0;
551 dest[((*n)++)]=0;
552 dest[((*n)++)]=0;
553 dest[((*n)++)]=0;
554 dest[((*n)++)]=0;
555 dest[((*n)++)]=0;
556 }
557 }
558
559 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
560 if(c==10) {
561 for (idx=0; idx<5; idx++) {
562 dest[((*n)++)]=1;
563 dest[((*n)++)]=1;
564 dest[((*n)++)]=1;
565 dest[((*n)++)]=0;
566 dest[((*n)++)]=0;
567 dest[((*n)++)]=0;
568 dest[((*n)++)]=0;
569 dest[((*n)++)]=0;
570 dest[((*n)++)]=0;
571 dest[((*n)++)]=0;
572 }
573 }
574 }
575
576 // prepare a waveform pattern in the buffer based on the ID given then
577 // simulate a HID tag until the button is pressed
578 void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
579 {
580 int n=0, i=0;
581 /*
582 HID tag bitstream format
583 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
584 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
585 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
586 A fc8 is inserted before every 4 bits
587 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
588 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
589 */
590
591 if (hi>0xFFF) {
592 DbpString("Tags can only have 44 bits.");
593 return;
594 }
595 fc(0,&n);
596 // special start of frame marker containing invalid bit sequences
597 fc(8, &n); fc(8, &n); // invalid
598 fc(8, &n); fc(10, &n); // logical 0
599 fc(10, &n); fc(10, &n); // invalid
600 fc(8, &n); fc(10, &n); // logical 0
601
602 WDT_HIT();
603 // manchester encode bits 43 to 32
604 for (i=11; i>=0; i--) {
605 if ((i%4)==3) fc(0,&n);
606 if ((hi>>i)&1) {
607 fc(10, &n); fc(8, &n); // low-high transition
608 } else {
609 fc(8, &n); fc(10, &n); // high-low transition
610 }
611 }
612
613 WDT_HIT();
614 // manchester encode bits 31 to 0
615 for (i=31; i>=0; i--) {
616 if ((i%4)==3) fc(0,&n);
617 if ((lo>>i)&1) {
618 fc(10, &n); fc(8, &n); // low-high transition
619 } else {
620 fc(8, &n); fc(10, &n); // high-low transition
621 }
622 }
623
624 if (ledcontrol)
625 LED_A_ON();
626 SimulateTagLowFrequency(n, 0, ledcontrol);
627
628 if (ledcontrol)
629 LED_A_OFF();
630 }
631
632 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
633 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
634 {
635 uint8_t *dest = BigBuf_get_addr();
636
637 size_t size = BigBuf_max_traceLen();
638 uint32_t hi2=0, hi=0, lo=0;
639 int idx=0;
640 // Configure to go in 125Khz listen mode
641 LFSetupFPGAForADC(95, true);
642
643 while(!BUTTON_PRESS()) {
644
645 WDT_HIT();
646 if (ledcontrol) LED_A_ON();
647
648 DoAcquisition125k_internal(-1,true);
649 // FSK demodulator
650 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
651
652 if (idx>0 && lo>0){
653 // final loop, go over previously decoded manchester data and decode into usable tag ID
654 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
655 if (hi2 != 0){ //extra large HID tags
656 Dbprintf("TAG ID: %x%08x%08x (%d)",
657 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
658 }else { //standard HID tags <38 bits
659 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
660 uint8_t bitlen = 0;
661 uint32_t fc = 0;
662 uint32_t cardnum = 0;
663 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
664 uint32_t lo2=0;
665 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
666 uint8_t idx3 = 1;
667 while(lo2 > 1){ //find last bit set to 1 (format len bit)
668 lo2=lo2 >> 1;
669 idx3++;
670 }
671 bitlen = idx3+19;
672 fc =0;
673 cardnum=0;
674 if(bitlen == 26){
675 cardnum = (lo>>1)&0xFFFF;
676 fc = (lo>>17)&0xFF;
677 }
678 if(bitlen == 37){
679 cardnum = (lo>>1)&0x7FFFF;
680 fc = ((hi&0xF)<<12)|(lo>>20);
681 }
682 if(bitlen == 34){
683 cardnum = (lo>>1)&0xFFFF;
684 fc= ((hi&1)<<15)|(lo>>17);
685 }
686 if(bitlen == 35){
687 cardnum = (lo>>1)&0xFFFFF;
688 fc = ((hi&1)<<11)|(lo>>21);
689 }
690 }
691 else { //if bit 38 is not set then 37 bit format is used
692 bitlen= 37;
693 fc =0;
694 cardnum=0;
695 if(bitlen==37){
696 cardnum = (lo>>1)&0x7FFFF;
697 fc = ((hi&0xF)<<12)|(lo>>20);
698 }
699 }
700 //Dbprintf("TAG ID: %x%08x (%d)",
701 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
702 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
703 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
704 (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
705 }
706 if (findone){
707 if (ledcontrol) LED_A_OFF();
708 return;
709 }
710 // reset
711 hi2 = hi = lo = 0;
712 }
713 WDT_HIT();
714 }
715 DbpString("Stopped");
716 if (ledcontrol) LED_A_OFF();
717 }
718
719 void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
720 {
721 uint8_t *dest = BigBuf_get_addr();
722
723 size_t size=0, idx=0;
724 int clk=0, invert=0, errCnt=0;
725 uint64_t lo=0;
726 // Configure to go in 125Khz listen mode
727 LFSetupFPGAForADC(95, true);
728
729 while(!BUTTON_PRESS()) {
730
731 WDT_HIT();
732 if (ledcontrol) LED_A_ON();
733
734 DoAcquisition125k_internal(-1,true);
735 size = BigBuf_max_traceLen();
736 //Dbprintf("DEBUG: Buffer got");
737 //askdemod and manchester decode
738 errCnt = askmandemod(dest, &size, &clk, &invert);
739 //Dbprintf("DEBUG: ASK Got");
740 WDT_HIT();
741
742 if (errCnt>=0){
743 lo = Em410xDecode(dest, &size, &idx);
744 //Dbprintf("DEBUG: EM GOT");
745 if (lo>0){
746 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
747 (uint32_t)(lo>>32),
748 (uint32_t)lo,
749 (uint32_t)(lo&0xFFFF),
750 (uint32_t)((lo>>16LL) & 0xFF),
751 (uint32_t)(lo & 0xFFFFFF));
752 }
753 if (findone){
754 if (ledcontrol) LED_A_OFF();
755 return;
756 }
757 } else{
758 //Dbprintf("DEBUG: No Tag");
759 }
760 WDT_HIT();
761 lo = 0;
762 clk=0;
763 invert=0;
764 errCnt=0;
765 size=0;
766 }
767 DbpString("Stopped");
768 if (ledcontrol) LED_A_OFF();
769 }
770
771 void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
772 {
773 uint8_t *dest = BigBuf_get_addr();
774 int idx=0;
775 uint32_t code=0, code2=0;
776 uint8_t version=0;
777 uint8_t facilitycode=0;
778 uint16_t number=0;
779 // Configure to go in 125Khz listen mode
780 LFSetupFPGAForADC(95, true);
781
782 while(!BUTTON_PRESS()) {
783 WDT_HIT();
784 if (ledcontrol) LED_A_ON();
785 DoAcquisition125k_internal(-1,true);
786 //fskdemod and get start index
787 WDT_HIT();
788 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
789 if (idx>0){
790 //valid tag found
791
792 //Index map
793 //0 10 20 30 40 50 60
794 //| | | | | | |
795 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
796 //-----------------------------------------------------------------------------
797 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
798 //
799 //XSF(version)facility:codeone+codetwo
800 //Handle the data
801 if(findone){ //only print binary if we are doing one
802 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
803 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
804 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
805 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
806 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
807 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
808 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
809 }
810 code = bytebits_to_byte(dest+idx,32);
811 code2 = bytebits_to_byte(dest+idx+32,32);
812 version = bytebits_to_byte(dest+idx+27,8); //14,4
813 facilitycode = bytebits_to_byte(dest+idx+18,8) ;
814 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
815
816 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
817 // if we're only looking for one tag
818 if (findone){
819 if (ledcontrol) LED_A_OFF();
820 //LED_A_OFF();
821 return;
822 }
823 code=code2=0;
824 version=facilitycode=0;
825 number=0;
826 idx=0;
827 }
828 WDT_HIT();
829 }
830 DbpString("Stopped");
831 if (ledcontrol) LED_A_OFF();
832 }
833
834 /*------------------------------
835 * T5555/T5557/T5567 routines
836 *------------------------------
837 */
838
839 /* T55x7 configuration register definitions */
840 #define T55x7_POR_DELAY 0x00000001
841 #define T55x7_ST_TERMINATOR 0x00000008
842 #define T55x7_PWD 0x00000010
843 #define T55x7_MAXBLOCK_SHIFT 5
844 #define T55x7_AOR 0x00000200
845 #define T55x7_PSKCF_RF_2 0
846 #define T55x7_PSKCF_RF_4 0x00000400
847 #define T55x7_PSKCF_RF_8 0x00000800
848 #define T55x7_MODULATION_DIRECT 0
849 #define T55x7_MODULATION_PSK1 0x00001000
850 #define T55x7_MODULATION_PSK2 0x00002000
851 #define T55x7_MODULATION_PSK3 0x00003000
852 #define T55x7_MODULATION_FSK1 0x00004000
853 #define T55x7_MODULATION_FSK2 0x00005000
854 #define T55x7_MODULATION_FSK1a 0x00006000
855 #define T55x7_MODULATION_FSK2a 0x00007000
856 #define T55x7_MODULATION_MANCHESTER 0x00008000
857 #define T55x7_MODULATION_BIPHASE 0x00010000
858 #define T55x7_BITRATE_RF_8 0
859 #define T55x7_BITRATE_RF_16 0x00040000
860 #define T55x7_BITRATE_RF_32 0x00080000
861 #define T55x7_BITRATE_RF_40 0x000C0000
862 #define T55x7_BITRATE_RF_50 0x00100000
863 #define T55x7_BITRATE_RF_64 0x00140000
864 #define T55x7_BITRATE_RF_100 0x00180000
865 #define T55x7_BITRATE_RF_128 0x001C0000
866
867 /* T5555 (Q5) configuration register definitions */
868 #define T5555_ST_TERMINATOR 0x00000001
869 #define T5555_MAXBLOCK_SHIFT 0x00000001
870 #define T5555_MODULATION_MANCHESTER 0
871 #define T5555_MODULATION_PSK1 0x00000010
872 #define T5555_MODULATION_PSK2 0x00000020
873 #define T5555_MODULATION_PSK3 0x00000030
874 #define T5555_MODULATION_FSK1 0x00000040
875 #define T5555_MODULATION_FSK2 0x00000050
876 #define T5555_MODULATION_BIPHASE 0x00000060
877 #define T5555_MODULATION_DIRECT 0x00000070
878 #define T5555_INVERT_OUTPUT 0x00000080
879 #define T5555_PSK_RF_2 0
880 #define T5555_PSK_RF_4 0x00000100
881 #define T5555_PSK_RF_8 0x00000200
882 #define T5555_USE_PWD 0x00000400
883 #define T5555_USE_AOR 0x00000800
884 #define T5555_BITRATE_SHIFT 12
885 #define T5555_FAST_WRITE 0x00004000
886 #define T5555_PAGE_SELECT 0x00008000
887
888 /*
889 * Relevant times in microsecond
890 * To compensate antenna falling times shorten the write times
891 * and enlarge the gap ones.
892 */
893 #define START_GAP 250
894 #define WRITE_GAP 160
895 #define WRITE_0 144 // 192
896 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
897
898 // Write one bit to card
899 void T55xxWriteBit(int bit)
900 {
901 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
902 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
903 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
904 if (bit == 0)
905 SpinDelayUs(WRITE_0);
906 else
907 SpinDelayUs(WRITE_1);
908 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
909 SpinDelayUs(WRITE_GAP);
910 }
911
912 // Write one card block in page 0, no lock
913 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
914 {
915 //unsigned int i; //enio adjustment 12/10/14
916 uint32_t i;
917
918 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
919 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
920 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
921
922 // Give it a bit of time for the resonant antenna to settle.
923 // And for the tag to fully power up
924 SpinDelay(150);
925
926 // Now start writting
927 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
928 SpinDelayUs(START_GAP);
929
930 // Opcode
931 T55xxWriteBit(1);
932 T55xxWriteBit(0); //Page 0
933 if (PwdMode == 1){
934 // Pwd
935 for (i = 0x80000000; i != 0; i >>= 1)
936 T55xxWriteBit(Pwd & i);
937 }
938 // Lock bit
939 T55xxWriteBit(0);
940
941 // Data
942 for (i = 0x80000000; i != 0; i >>= 1)
943 T55xxWriteBit(Data & i);
944
945 // Block
946 for (i = 0x04; i != 0; i >>= 1)
947 T55xxWriteBit(Block & i);
948
949 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
950 // so wait a little more)
951 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
952 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
953 SpinDelay(20);
954 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
955 }
956
957 // Read one card block in page 0
958 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
959 {
960 uint8_t *dest = BigBuf_get_addr();
961 //int m=0, i=0; //enio adjustment 12/10/14
962 uint32_t m=0, i=0;
963 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
964 m = BigBuf_max_traceLen();
965 // Clear destination buffer before sending the command
966 memset(dest, 128, m);
967 // Connect the A/D to the peak-detected low-frequency path.
968 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
969 // Now set up the SSC to get the ADC samples that are now streaming at us.
970 FpgaSetupSsc();
971
972 LED_D_ON();
973 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
974 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
975
976 // Give it a bit of time for the resonant antenna to settle.
977 // And for the tag to fully power up
978 SpinDelay(150);
979
980 // Now start writting
981 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
982 SpinDelayUs(START_GAP);
983
984 // Opcode
985 T55xxWriteBit(1);
986 T55xxWriteBit(0); //Page 0
987 if (PwdMode == 1){
988 // Pwd
989 for (i = 0x80000000; i != 0; i >>= 1)
990 T55xxWriteBit(Pwd & i);
991 }
992 // Lock bit
993 T55xxWriteBit(0);
994 // Block
995 for (i = 0x04; i != 0; i >>= 1)
996 T55xxWriteBit(Block & i);
997
998 // Turn field on to read the response
999 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1000 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1001
1002 // Now do the acquisition
1003 i = 0;
1004 for(;;) {
1005 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1006 AT91C_BASE_SSC->SSC_THR = 0x43;
1007 }
1008 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1009 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1010 // we don't care about actual value, only if it's more or less than a
1011 // threshold essentially we capture zero crossings for later analysis
1012 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1013 i++;
1014 if (i >= m) break;
1015 }
1016 }
1017
1018 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1019 LED_D_OFF();
1020 DbpString("DONE!");
1021 }
1022
1023 // Read card traceability data (page 1)
1024 void T55xxReadTrace(void){
1025 uint8_t *dest = BigBuf_get_addr();
1026 int m=0, i=0;
1027
1028 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1029 m = BigBuf_max_traceLen();
1030 // Clear destination buffer before sending the command
1031 memset(dest, 128, m);
1032 // Connect the A/D to the peak-detected low-frequency path.
1033 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1034 // Now set up the SSC to get the ADC samples that are now streaming at us.
1035 FpgaSetupSsc();
1036
1037 LED_D_ON();
1038 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1039 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1040
1041 // Give it a bit of time for the resonant antenna to settle.
1042 // And for the tag to fully power up
1043 SpinDelay(150);
1044
1045 // Now start writting
1046 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1047 SpinDelayUs(START_GAP);
1048
1049 // Opcode
1050 T55xxWriteBit(1);
1051 T55xxWriteBit(1); //Page 1
1052
1053 // Turn field on to read the response
1054 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1055 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1056
1057 // Now do the acquisition
1058 i = 0;
1059 for(;;) {
1060 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1061 AT91C_BASE_SSC->SSC_THR = 0x43;
1062 }
1063 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1064 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1065 i++;
1066 if (i >= m) break;
1067 }
1068 }
1069
1070 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1071 LED_D_OFF();
1072 DbpString("DONE!");
1073 }
1074
1075 /*-------------- Cloning routines -----------*/
1076 // Copy HID id to card and setup block 0 config
1077 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1078 {
1079 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1080 int last_block = 0;
1081
1082 if (longFMT){
1083 // Ensure no more than 84 bits supplied
1084 if (hi2>0xFFFFF) {
1085 DbpString("Tags can only have 84 bits.");
1086 return;
1087 }
1088 // Build the 6 data blocks for supplied 84bit ID
1089 last_block = 6;
1090 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1091 for (int i=0;i<4;i++) {
1092 if (hi2 & (1<<(19-i)))
1093 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1094 else
1095 data1 |= (1<<((3-i)*2)); // 0 -> 01
1096 }
1097
1098 data2 = 0;
1099 for (int i=0;i<16;i++) {
1100 if (hi2 & (1<<(15-i)))
1101 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1102 else
1103 data2 |= (1<<((15-i)*2)); // 0 -> 01
1104 }
1105
1106 data3 = 0;
1107 for (int i=0;i<16;i++) {
1108 if (hi & (1<<(31-i)))
1109 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1110 else
1111 data3 |= (1<<((15-i)*2)); // 0 -> 01
1112 }
1113
1114 data4 = 0;
1115 for (int i=0;i<16;i++) {
1116 if (hi & (1<<(15-i)))
1117 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1118 else
1119 data4 |= (1<<((15-i)*2)); // 0 -> 01
1120 }
1121
1122 data5 = 0;
1123 for (int i=0;i<16;i++) {
1124 if (lo & (1<<(31-i)))
1125 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1126 else
1127 data5 |= (1<<((15-i)*2)); // 0 -> 01
1128 }
1129
1130 data6 = 0;
1131 for (int i=0;i<16;i++) {
1132 if (lo & (1<<(15-i)))
1133 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1134 else
1135 data6 |= (1<<((15-i)*2)); // 0 -> 01
1136 }
1137 }
1138 else {
1139 // Ensure no more than 44 bits supplied
1140 if (hi>0xFFF) {
1141 DbpString("Tags can only have 44 bits.");
1142 return;
1143 }
1144
1145 // Build the 3 data blocks for supplied 44bit ID
1146 last_block = 3;
1147
1148 data1 = 0x1D000000; // load preamble
1149
1150 for (int i=0;i<12;i++) {
1151 if (hi & (1<<(11-i)))
1152 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1153 else
1154 data1 |= (1<<((11-i)*2)); // 0 -> 01
1155 }
1156
1157 data2 = 0;
1158 for (int i=0;i<16;i++) {
1159 if (lo & (1<<(31-i)))
1160 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1161 else
1162 data2 |= (1<<((15-i)*2)); // 0 -> 01
1163 }
1164
1165 data3 = 0;
1166 for (int i=0;i<16;i++) {
1167 if (lo & (1<<(15-i)))
1168 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1169 else
1170 data3 |= (1<<((15-i)*2)); // 0 -> 01
1171 }
1172 }
1173
1174 LED_D_ON();
1175 // Program the data blocks for supplied ID
1176 // and the block 0 for HID format
1177 T55xxWriteBlock(data1,1,0,0);
1178 T55xxWriteBlock(data2,2,0,0);
1179 T55xxWriteBlock(data3,3,0,0);
1180
1181 if (longFMT) { // if long format there are 6 blocks
1182 T55xxWriteBlock(data4,4,0,0);
1183 T55xxWriteBlock(data5,5,0,0);
1184 T55xxWriteBlock(data6,6,0,0);
1185 }
1186
1187 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1188 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1189 T55x7_MODULATION_FSK2a |
1190 last_block << T55x7_MAXBLOCK_SHIFT,
1191 0,0,0);
1192
1193 LED_D_OFF();
1194
1195 DbpString("DONE!");
1196 }
1197
1198 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1199 {
1200 int data1=0, data2=0; //up to six blocks for long format
1201
1202 data1 = hi; // load preamble
1203 data2 = lo;
1204
1205 LED_D_ON();
1206 // Program the data blocks for supplied ID
1207 // and the block 0 for HID format
1208 T55xxWriteBlock(data1,1,0,0);
1209 T55xxWriteBlock(data2,2,0,0);
1210
1211 //Config Block
1212 T55xxWriteBlock(0x00147040,0,0,0);
1213 LED_D_OFF();
1214
1215 DbpString("DONE!");
1216 }
1217
1218 // Define 9bit header for EM410x tags
1219 #define EM410X_HEADER 0x1FF
1220 #define EM410X_ID_LENGTH 40
1221
1222 void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1223 {
1224 int i, id_bit;
1225 uint64_t id = EM410X_HEADER;
1226 uint64_t rev_id = 0; // reversed ID
1227 int c_parity[4]; // column parity
1228 int r_parity = 0; // row parity
1229 uint32_t clock = 0;
1230
1231 // Reverse ID bits given as parameter (for simpler operations)
1232 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1233 if (i < 32) {
1234 rev_id = (rev_id << 1) | (id_lo & 1);
1235 id_lo >>= 1;
1236 } else {
1237 rev_id = (rev_id << 1) | (id_hi & 1);
1238 id_hi >>= 1;
1239 }
1240 }
1241
1242 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1243 id_bit = rev_id & 1;
1244
1245 if (i % 4 == 0) {
1246 // Don't write row parity bit at start of parsing
1247 if (i)
1248 id = (id << 1) | r_parity;
1249 // Start counting parity for new row
1250 r_parity = id_bit;
1251 } else {
1252 // Count row parity
1253 r_parity ^= id_bit;
1254 }
1255
1256 // First elements in column?
1257 if (i < 4)
1258 // Fill out first elements
1259 c_parity[i] = id_bit;
1260 else
1261 // Count column parity
1262 c_parity[i % 4] ^= id_bit;
1263
1264 // Insert ID bit
1265 id = (id << 1) | id_bit;
1266 rev_id >>= 1;
1267 }
1268
1269 // Insert parity bit of last row
1270 id = (id << 1) | r_parity;
1271
1272 // Fill out column parity at the end of tag
1273 for (i = 0; i < 4; ++i)
1274 id = (id << 1) | c_parity[i];
1275
1276 // Add stop bit
1277 id <<= 1;
1278
1279 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1280 LED_D_ON();
1281
1282 // Write EM410x ID
1283 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1284 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1285
1286 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1287 if (card) {
1288 // Clock rate is stored in bits 8-15 of the card value
1289 clock = (card & 0xFF00) >> 8;
1290 Dbprintf("Clock rate: %d", clock);
1291 switch (clock)
1292 {
1293 case 32:
1294 clock = T55x7_BITRATE_RF_32;
1295 break;
1296 case 16:
1297 clock = T55x7_BITRATE_RF_16;
1298 break;
1299 case 0:
1300 // A value of 0 is assumed to be 64 for backwards-compatibility
1301 // Fall through...
1302 case 64:
1303 clock = T55x7_BITRATE_RF_64;
1304 break;
1305 default:
1306 Dbprintf("Invalid clock rate: %d", clock);
1307 return;
1308 }
1309
1310 // Writing configuration for T55x7 tag
1311 T55xxWriteBlock(clock |
1312 T55x7_MODULATION_MANCHESTER |
1313 2 << T55x7_MAXBLOCK_SHIFT,
1314 0, 0, 0);
1315 }
1316 else
1317 // Writing configuration for T5555(Q5) tag
1318 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1319 T5555_MODULATION_MANCHESTER |
1320 2 << T5555_MAXBLOCK_SHIFT,
1321 0, 0, 0);
1322
1323 LED_D_OFF();
1324 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1325 (uint32_t)(id >> 32), (uint32_t)id);
1326 }
1327
1328 // Clone Indala 64-bit tag by UID to T55x7
1329 void CopyIndala64toT55x7(int hi, int lo)
1330 {
1331
1332 //Program the 2 data blocks for supplied 64bit UID
1333 // and the block 0 for Indala64 format
1334 T55xxWriteBlock(hi,1,0,0);
1335 T55xxWriteBlock(lo,2,0,0);
1336 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1337 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1338 T55x7_MODULATION_PSK1 |
1339 2 << T55x7_MAXBLOCK_SHIFT,
1340 0, 0, 0);
1341 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1342 // T5567WriteBlock(0x603E1042,0);
1343
1344 DbpString("DONE!");
1345
1346 }
1347
1348 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1349 {
1350
1351 //Program the 7 data blocks for supplied 224bit UID
1352 // and the block 0 for Indala224 format
1353 T55xxWriteBlock(uid1,1,0,0);
1354 T55xxWriteBlock(uid2,2,0,0);
1355 T55xxWriteBlock(uid3,3,0,0);
1356 T55xxWriteBlock(uid4,4,0,0);
1357 T55xxWriteBlock(uid5,5,0,0);
1358 T55xxWriteBlock(uid6,6,0,0);
1359 T55xxWriteBlock(uid7,7,0,0);
1360 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1361 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1362 T55x7_MODULATION_PSK1 |
1363 7 << T55x7_MAXBLOCK_SHIFT,
1364 0,0,0);
1365 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1366 // T5567WriteBlock(0x603E10E2,0);
1367
1368 DbpString("DONE!");
1369
1370 }
1371
1372
1373 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1374 #define max(x,y) ( x<y ? y:x)
1375
1376 int DemodPCF7931(uint8_t **outBlocks) {
1377 uint8_t BitStream[256];
1378 uint8_t Blocks[8][16];
1379 uint8_t *GraphBuffer = BigBuf_get_addr();
1380 int GraphTraceLen = BigBuf_max_traceLen();
1381 int i, j, lastval, bitidx, half_switch;
1382 int clock = 64;
1383 int tolerance = clock / 8;
1384 int pmc, block_done;
1385 int lc, warnings = 0;
1386 int num_blocks = 0;
1387 int lmin=128, lmax=128;
1388 uint8_t dir;
1389
1390 AcquireRawAdcSamples125k(0);
1391
1392 lmin = 64;
1393 lmax = 192;
1394
1395 i = 2;
1396
1397 /* Find first local max/min */
1398 if(GraphBuffer[1] > GraphBuffer[0]) {
1399 while(i < GraphTraceLen) {
1400 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1401 break;
1402 i++;
1403 }
1404 dir = 0;
1405 }
1406 else {
1407 while(i < GraphTraceLen) {
1408 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1409 break;
1410 i++;
1411 }
1412 dir = 1;
1413 }
1414
1415 lastval = i++;
1416 half_switch = 0;
1417 pmc = 0;
1418 block_done = 0;
1419
1420 for (bitidx = 0; i < GraphTraceLen; i++)
1421 {
1422 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1423 {
1424 lc = i - lastval;
1425 lastval = i;
1426
1427 // Switch depending on lc length:
1428 // Tolerance is 1/8 of clock rate (arbitrary)
1429 if (abs(lc-clock/4) < tolerance) {
1430 // 16T0
1431 if((i - pmc) == lc) { /* 16T0 was previous one */
1432 /* It's a PMC ! */
1433 i += (128+127+16+32+33+16)-1;
1434 lastval = i;
1435 pmc = 0;
1436 block_done = 1;
1437 }
1438 else {
1439 pmc = i;
1440 }
1441 } else if (abs(lc-clock/2) < tolerance) {
1442 // 32TO
1443 if((i - pmc) == lc) { /* 16T0 was previous one */
1444 /* It's a PMC ! */
1445 i += (128+127+16+32+33)-1;
1446 lastval = i;
1447 pmc = 0;
1448 block_done = 1;
1449 }
1450 else if(half_switch == 1) {
1451 BitStream[bitidx++] = 0;
1452 half_switch = 0;
1453 }
1454 else
1455 half_switch++;
1456 } else if (abs(lc-clock) < tolerance) {
1457 // 64TO
1458 BitStream[bitidx++] = 1;
1459 } else {
1460 // Error
1461 warnings++;
1462 if (warnings > 10)
1463 {
1464 Dbprintf("Error: too many detection errors, aborting.");
1465 return 0;
1466 }
1467 }
1468
1469 if(block_done == 1) {
1470 if(bitidx == 128) {
1471 for(j=0; j<16; j++) {
1472 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1473 64*BitStream[j*8+6]+
1474 32*BitStream[j*8+5]+
1475 16*BitStream[j*8+4]+
1476 8*BitStream[j*8+3]+
1477 4*BitStream[j*8+2]+
1478 2*BitStream[j*8+1]+
1479 BitStream[j*8];
1480 }
1481 num_blocks++;
1482 }
1483 bitidx = 0;
1484 block_done = 0;
1485 half_switch = 0;
1486 }
1487 if(i < GraphTraceLen)
1488 {
1489 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1490 else dir = 1;
1491 }
1492 }
1493 if(bitidx==255)
1494 bitidx=0;
1495 warnings = 0;
1496 if(num_blocks == 4) break;
1497 }
1498 memcpy(outBlocks, Blocks, 16*num_blocks);
1499 return num_blocks;
1500 }
1501
1502 int IsBlock0PCF7931(uint8_t *Block) {
1503 // Assume RFU means 0 :)
1504 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1505 return 1;
1506 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1507 return 1;
1508 return 0;
1509 }
1510
1511 int IsBlock1PCF7931(uint8_t *Block) {
1512 // Assume RFU means 0 :)
1513 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1514 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1515 return 1;
1516
1517 return 0;
1518 }
1519
1520 #define ALLOC 16
1521
1522 void ReadPCF7931() {
1523 uint8_t Blocks[8][17];
1524 uint8_t tmpBlocks[4][16];
1525 int i, j, ind, ind2, n;
1526 int num_blocks = 0;
1527 int max_blocks = 8;
1528 int ident = 0;
1529 int error = 0;
1530 int tries = 0;
1531
1532 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1533
1534 do {
1535 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1536 n = DemodPCF7931((uint8_t**)tmpBlocks);
1537 if(!n)
1538 error++;
1539 if(error==10 && num_blocks == 0) {
1540 Dbprintf("Error, no tag or bad tag");
1541 return;
1542 }
1543 else if (tries==20 || error==10) {
1544 Dbprintf("Error reading the tag");
1545 Dbprintf("Here is the partial content");
1546 goto end;
1547 }
1548
1549 for(i=0; i<n; i++)
1550 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1551 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1552 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1553 if(!ident) {
1554 for(i=0; i<n; i++) {
1555 if(IsBlock0PCF7931(tmpBlocks[i])) {
1556 // Found block 0 ?
1557 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1558 // Found block 1!
1559 // \o/
1560 ident = 1;
1561 memcpy(Blocks[0], tmpBlocks[i], 16);
1562 Blocks[0][ALLOC] = 1;
1563 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1564 Blocks[1][ALLOC] = 1;
1565 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1566 // Debug print
1567 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1568 num_blocks = 2;
1569 // Handle following blocks
1570 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1571 if(j==n) j=0;
1572 if(j==i) break;
1573 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1574 Blocks[ind2][ALLOC] = 1;
1575 }
1576 break;
1577 }
1578 }
1579 }
1580 }
1581 else {
1582 for(i=0; i<n; i++) { // Look for identical block in known blocks
1583 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1584 for(j=0; j<max_blocks; j++) {
1585 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1586 // Found an identical block
1587 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1588 if(ind2 < 0)
1589 ind2 = max_blocks;
1590 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1591 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1592 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1593 Blocks[ind2][ALLOC] = 1;
1594 num_blocks++;
1595 if(num_blocks == max_blocks) goto end;
1596 }
1597 }
1598 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1599 if(ind2 > max_blocks)
1600 ind2 = 0;
1601 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1602 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1603 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1604 Blocks[ind2][ALLOC] = 1;
1605 num_blocks++;
1606 if(num_blocks == max_blocks) goto end;
1607 }
1608 }
1609 }
1610 }
1611 }
1612 }
1613 }
1614 tries++;
1615 if (BUTTON_PRESS()) return;
1616 } while (num_blocks != max_blocks);
1617 end:
1618 Dbprintf("-----------------------------------------");
1619 Dbprintf("Memory content:");
1620 Dbprintf("-----------------------------------------");
1621 for(i=0; i<max_blocks; i++) {
1622 if(Blocks[i][ALLOC]==1)
1623 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1624 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1625 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1626 else
1627 Dbprintf("<missing block %d>", i);
1628 }
1629 Dbprintf("-----------------------------------------");
1630
1631 return ;
1632 }
1633
1634
1635 //-----------------------------------
1636 // EM4469 / EM4305 routines
1637 //-----------------------------------
1638 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1639 #define FWD_CMD_WRITE 0xA
1640 #define FWD_CMD_READ 0x9
1641 #define FWD_CMD_DISABLE 0x5
1642
1643
1644 uint8_t forwardLink_data[64]; //array of forwarded bits
1645 uint8_t * forward_ptr; //ptr for forward message preparation
1646 uint8_t fwd_bit_sz; //forwardlink bit counter
1647 uint8_t * fwd_write_ptr; //forwardlink bit pointer
1648
1649 //====================================================================
1650 // prepares command bits
1651 // see EM4469 spec
1652 //====================================================================
1653 //--------------------------------------------------------------------
1654 uint8_t Prepare_Cmd( uint8_t cmd ) {
1655 //--------------------------------------------------------------------
1656
1657 *forward_ptr++ = 0; //start bit
1658 *forward_ptr++ = 0; //second pause for 4050 code
1659
1660 *forward_ptr++ = cmd;
1661 cmd >>= 1;
1662 *forward_ptr++ = cmd;
1663 cmd >>= 1;
1664 *forward_ptr++ = cmd;
1665 cmd >>= 1;
1666 *forward_ptr++ = cmd;
1667
1668 return 6; //return number of emited bits
1669 }
1670
1671 //====================================================================
1672 // prepares address bits
1673 // see EM4469 spec
1674 //====================================================================
1675
1676 //--------------------------------------------------------------------
1677 uint8_t Prepare_Addr( uint8_t addr ) {
1678 //--------------------------------------------------------------------
1679
1680 register uint8_t line_parity;
1681
1682 uint8_t i;
1683 line_parity = 0;
1684 for(i=0;i<6;i++) {
1685 *forward_ptr++ = addr;
1686 line_parity ^= addr;
1687 addr >>= 1;
1688 }
1689
1690 *forward_ptr++ = (line_parity & 1);
1691
1692 return 7; //return number of emited bits
1693 }
1694
1695 //====================================================================
1696 // prepares data bits intreleaved with parity bits
1697 // see EM4469 spec
1698 //====================================================================
1699
1700 //--------------------------------------------------------------------
1701 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1702 //--------------------------------------------------------------------
1703
1704 register uint8_t line_parity;
1705 register uint8_t column_parity;
1706 register uint8_t i, j;
1707 register uint16_t data;
1708
1709 data = data_low;
1710 column_parity = 0;
1711
1712 for(i=0; i<4; i++) {
1713 line_parity = 0;
1714 for(j=0; j<8; j++) {
1715 line_parity ^= data;
1716 column_parity ^= (data & 1) << j;
1717 *forward_ptr++ = data;
1718 data >>= 1;
1719 }
1720 *forward_ptr++ = line_parity;
1721 if(i == 1)
1722 data = data_hi;
1723 }
1724
1725 for(j=0; j<8; j++) {
1726 *forward_ptr++ = column_parity;
1727 column_parity >>= 1;
1728 }
1729 *forward_ptr = 0;
1730
1731 return 45; //return number of emited bits
1732 }
1733
1734 //====================================================================
1735 // Forward Link send function
1736 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1737 // fwd_bit_count set with number of bits to be sent
1738 //====================================================================
1739 void SendForward(uint8_t fwd_bit_count) {
1740
1741 fwd_write_ptr = forwardLink_data;
1742 fwd_bit_sz = fwd_bit_count;
1743
1744 LED_D_ON();
1745
1746 //Field on
1747 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1748 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1749 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1750
1751 // Give it a bit of time for the resonant antenna to settle.
1752 // And for the tag to fully power up
1753 SpinDelay(150);
1754
1755 // force 1st mod pulse (start gap must be longer for 4305)
1756 fwd_bit_sz--; //prepare next bit modulation
1757 fwd_write_ptr++;
1758 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1759 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1760 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1761 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1762 SpinDelayUs(16*8); //16 cycles on (8us each)
1763
1764 // now start writting
1765 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1766 if(((*fwd_write_ptr++) & 1) == 1)
1767 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1768 else {
1769 //These timings work for 4469/4269/4305 (with the 55*8 above)
1770 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1771 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1772 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
1773 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1774 SpinDelayUs(9*8); //16 cycles on (8us each)
1775 }
1776 }
1777 }
1778
1779 void EM4xLogin(uint32_t Password) {
1780
1781 uint8_t fwd_bit_count;
1782
1783 forward_ptr = forwardLink_data;
1784 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1785 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1786
1787 SendForward(fwd_bit_count);
1788
1789 //Wait for command to complete
1790 SpinDelay(20);
1791
1792 }
1793
1794 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1795
1796 uint8_t fwd_bit_count;
1797 uint8_t *dest = BigBuf_get_addr();
1798 int m=0, i=0;
1799
1800 //If password mode do login
1801 if (PwdMode == 1) EM4xLogin(Pwd);
1802
1803 forward_ptr = forwardLink_data;
1804 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1805 fwd_bit_count += Prepare_Addr( Address );
1806
1807 m = BigBuf_max_traceLen();
1808 // Clear destination buffer before sending the command
1809 memset(dest, 128, m);
1810 // Connect the A/D to the peak-detected low-frequency path.
1811 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1812 // Now set up the SSC to get the ADC samples that are now streaming at us.
1813 FpgaSetupSsc();
1814
1815 SendForward(fwd_bit_count);
1816
1817 // Now do the acquisition
1818 i = 0;
1819 for(;;) {
1820 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1821 AT91C_BASE_SSC->SSC_THR = 0x43;
1822 }
1823 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1824 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1825 i++;
1826 if (i >= m) break;
1827 }
1828 }
1829 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1830 LED_D_OFF();
1831 }
1832
1833 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1834
1835 uint8_t fwd_bit_count;
1836
1837 //If password mode do login
1838 if (PwdMode == 1) EM4xLogin(Pwd);
1839
1840 forward_ptr = forwardLink_data;
1841 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1842 fwd_bit_count += Prepare_Addr( Address );
1843 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1844
1845 SendForward(fwd_bit_count);
1846
1847 //Wait for write to complete
1848 SpinDelay(20);
1849 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1850 LED_D_OFF();
1851 }
Impressum, Datenschutz