1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 // split into two routines so we can avoid timing issues after sending commands //
19 void DoAcquisition125k_internal(int trigger_threshold
,bool silent
)
21 uint8_t *dest
= (uint8_t *)BigBuf
;
22 int n
= sizeof(BigBuf
);
28 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
29 AT91C_BASE_SSC
->SSC_THR
= 0x43;
32 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
33 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
35 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
38 trigger_threshold
= -1;
44 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
45 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
49 void DoAcquisition125k(int trigger_threshold
)
51 DoAcquisition125k_internal(trigger_threshold
, false);
54 //void SetupToAcquireRawAdcSamples(int divisor)
55 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
57 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
58 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
59 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
60 else if (divisor
== 0)
61 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
63 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
65 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
67 // Connect the A/D to the peak-detected low-frequency path.
68 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
69 // Give it a bit of time for the resonant antenna to settle.
71 // Now set up the SSC to get the ADC samples that are now streaming at us.
75 void AcquireRawAdcSamples125k(int divisor
)
77 LFSetupFPGAForADC(divisor
, true);
78 // Now call the acquisition routine
79 DoAcquisition125k_internal(-1,false);
81 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
83 LFSetupFPGAForADC(divisor
, false);
84 DoAcquisition125k(trigger_threshold
);
87 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
91 /* Make sure the tag is reset */
92 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
93 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
96 // see if 'h' was specified
97 if (command
[strlen((char *) command
) - 1] == 'h')
103 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
105 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
107 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
109 // Give it a bit of time for the resonant antenna to settle.
111 // And a little more time for the tag to fully power up
114 // Now set up the SSC to get the ADC samples that are now streaming at us.
117 // now modulate the reader field
118 while(*command
!= '\0' && *command
!= ' ') {
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
121 SpinDelayUs(delay_off
);
123 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
125 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
127 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
129 if(*(command
++) == '0')
130 SpinDelayUs(period_0
);
132 SpinDelayUs(period_1
);
134 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
136 SpinDelayUs(delay_off
);
138 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
140 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
142 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
145 DoAcquisition125k(-1);
148 /* blank r/w tag data stream
149 ...0000000000000000 01111111
150 1010101010101010101010101010101010101010101010101010101010101010
153 101010101010101[0]000...
155 [5555fe852c5555555555555555fe0000]
159 // some hardcoded initial params
160 // when we read a TI tag we sample the zerocross line at 2Mhz
161 // TI tags modulate a 1 as 16 cycles of 123.2Khz
162 // TI tags modulate a 0 as 16 cycles of 134.2Khz
163 #define FSAMPLE 2000000
164 #define FREQLO 123200
165 #define FREQHI 134200
167 signed char *dest
= (signed char *)BigBuf
;
168 int n
= sizeof(BigBuf
);
169 // int *dest = GraphBuffer;
170 // int n = GraphTraceLen;
172 // 128 bit shift register [shift3:shift2:shift1:shift0]
173 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
175 int i
, cycles
=0, samples
=0;
176 // how many sample points fit in 16 cycles of each frequency
177 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
178 // when to tell if we're close enough to one freq or another
179 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
181 // TI tags charge at 134.2Khz
182 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
183 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
185 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
186 // connects to SSP_DIN and the SSP_DOUT logic level controls
187 // whether we're modulating the antenna (high)
188 // or listening to the antenna (low)
189 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
191 // get TI tag data into the buffer
194 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
196 for (i
=0; i
<n
-1; i
++) {
197 // count cycles by looking for lo to hi zero crossings
198 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
200 // after 16 cycles, measure the frequency
203 samples
=i
-samples
; // number of samples in these 16 cycles
205 // TI bits are coming to us lsb first so shift them
206 // right through our 128 bit right shift register
207 shift0
= (shift0
>>1) | (shift1
<< 31);
208 shift1
= (shift1
>>1) | (shift2
<< 31);
209 shift2
= (shift2
>>1) | (shift3
<< 31);
212 // check if the cycles fall close to the number
213 // expected for either the low or high frequency
214 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
215 // low frequency represents a 1
217 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
218 // high frequency represents a 0
220 // probably detected a gay waveform or noise
221 // use this as gaydar or discard shift register and start again
222 shift3
= shift2
= shift1
= shift0
= 0;
226 // for each bit we receive, test if we've detected a valid tag
228 // if we see 17 zeroes followed by 6 ones, we might have a tag
229 // remember the bits are backwards
230 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
231 // if start and end bytes match, we have a tag so break out of the loop
232 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
233 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
241 // if flag is set we have a tag
243 DbpString("Info: No valid tag detected.");
245 // put 64 bit data into shift1 and shift0
246 shift0
= (shift0
>>24) | (shift1
<< 8);
247 shift1
= (shift1
>>24) | (shift2
<< 8);
249 // align 16 bit crc into lower half of shift2
250 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
252 // if r/w tag, check ident match
253 if ( shift3
&(1<<15) ) {
254 DbpString("Info: TI tag is rewriteable");
255 // only 15 bits compare, last bit of ident is not valid
256 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
257 DbpString("Error: Ident mismatch!");
259 DbpString("Info: TI tag ident is valid");
262 DbpString("Info: TI tag is readonly");
265 // WARNING the order of the bytes in which we calc crc below needs checking
266 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
267 // bytes in reverse or something
271 crc
= update_crc16(crc
, (shift0
)&0xff);
272 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
273 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
274 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
275 crc
= update_crc16(crc
, (shift1
)&0xff);
276 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
277 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
278 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
280 Dbprintf("Info: Tag data: %x%08x, crc=%x",
281 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
282 if (crc
!= (shift2
&0xffff)) {
283 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
285 DbpString("Info: CRC is good");
290 void WriteTIbyte(uint8_t b
)
294 // modulate 8 bits out to the antenna
298 // stop modulating antenna
305 // stop modulating antenna
315 void AcquireTiType(void)
318 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
319 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
320 #define TIBUFLEN 1250
323 memset(BigBuf
,0,sizeof(BigBuf
));
325 // Set up the synchronous serial port
326 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
327 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
329 // steal this pin from the SSP and use it to control the modulation
330 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
331 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
333 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
334 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
336 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
337 // 48/2 = 24 MHz clock must be divided by 12
338 AT91C_BASE_SSC
->SSC_CMR
= 12;
340 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
341 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
342 AT91C_BASE_SSC
->SSC_TCMR
= 0;
343 AT91C_BASE_SSC
->SSC_TFMR
= 0;
350 // Charge TI tag for 50ms.
353 // stop modulating antenna and listen
360 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
361 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
362 i
++; if(i
>= TIBUFLEN
) break;
367 // return stolen pin to SSP
368 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
369 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
371 char *dest
= (char *)BigBuf
;
374 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
375 for (j
=0; j
<32; j
++) {
376 if(BigBuf
[i
] & (1 << j
)) {
385 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
386 // if crc provided, it will be written with the data verbatim (even if bogus)
387 // if not provided a valid crc will be computed from the data and written.
388 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
390 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
392 crc
= update_crc16(crc
, (idlo
)&0xff);
393 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
394 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
395 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
396 crc
= update_crc16(crc
, (idhi
)&0xff);
397 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
398 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
399 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
401 Dbprintf("Writing to tag: %x%08x, crc=%x",
402 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
404 // TI tags charge at 134.2Khz
405 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
406 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
407 // connects to SSP_DIN and the SSP_DOUT logic level controls
408 // whether we're modulating the antenna (high)
409 // or listening to the antenna (low)
410 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
413 // steal this pin from the SSP and use it to control the modulation
414 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
415 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
417 // writing algorithm:
418 // a high bit consists of a field off for 1ms and field on for 1ms
419 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
420 // initiate a charge time of 50ms (field on) then immediately start writing bits
421 // start by writing 0xBB (keyword) and 0xEB (password)
422 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
423 // finally end with 0x0300 (write frame)
424 // all data is sent lsb firts
425 // finish with 15ms programming time
429 SpinDelay(50); // charge time
431 WriteTIbyte(0xbb); // keyword
432 WriteTIbyte(0xeb); // password
433 WriteTIbyte( (idlo
)&0xff );
434 WriteTIbyte( (idlo
>>8 )&0xff );
435 WriteTIbyte( (idlo
>>16)&0xff );
436 WriteTIbyte( (idlo
>>24)&0xff );
437 WriteTIbyte( (idhi
)&0xff );
438 WriteTIbyte( (idhi
>>8 )&0xff );
439 WriteTIbyte( (idhi
>>16)&0xff );
440 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
441 WriteTIbyte( (crc
)&0xff ); // crc lo
442 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
443 WriteTIbyte(0x00); // write frame lo
444 WriteTIbyte(0x03); // write frame hi
446 SpinDelay(50); // programming time
450 // get TI tag data into the buffer
453 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
454 DbpString("Now use tiread to check");
457 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
460 uint8_t *tab
= (uint8_t *)BigBuf
;
462 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
463 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
465 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
467 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
468 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
470 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
471 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
475 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
477 DbpString("Stopped");
494 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
496 DbpString("Stopped");
513 #define DEBUG_FRAME_CONTENTS 1
514 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
518 // compose fc/8 fc/10 waveform
519 static void fc(int c
, int *n
) {
520 uint8_t *dest
= (uint8_t *)BigBuf
;
523 // for when we want an fc8 pattern every 4 logical bits
534 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
536 for (idx
=0; idx
<6; idx
++) {
548 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
550 for (idx
=0; idx
<5; idx
++) {
565 // prepare a waveform pattern in the buffer based on the ID given then
566 // simulate a HID tag until the button is pressed
567 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
571 HID tag bitstream format
572 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
573 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
574 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
575 A fc8 is inserted before every 4 bits
576 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
577 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
581 DbpString("Tags can only have 44 bits.");
585 // special start of frame marker containing invalid bit sequences
586 fc(8, &n
); fc(8, &n
); // invalid
587 fc(8, &n
); fc(10, &n
); // logical 0
588 fc(10, &n
); fc(10, &n
); // invalid
589 fc(8, &n
); fc(10, &n
); // logical 0
592 // manchester encode bits 43 to 32
593 for (i
=11; i
>=0; i
--) {
594 if ((i
%4)==3) fc(0,&n
);
596 fc(10, &n
); fc(8, &n
); // low-high transition
598 fc(8, &n
); fc(10, &n
); // high-low transition
603 // manchester encode bits 31 to 0
604 for (i
=31; i
>=0; i
--) {
605 if ((i
%4)==3) fc(0,&n
);
607 fc(10, &n
); fc(8, &n
); // low-high transition
609 fc(8, &n
); fc(10, &n
); // high-low transition
615 SimulateTagLowFrequency(n
, 0, ledcontrol
);
621 size_t fsk_demod(uint8_t * dest
, size_t size
)
623 uint32_t last_transition
= 0;
626 // we don't care about actual value, only if it's more or less than a
627 // threshold essentially we capture zero crossings for later analysis
628 uint8_t threshold_value
= 127;
630 // sync to first lo-hi transition, and threshold
632 //Need to threshold first sample
633 if(dest
[0] < threshold_value
) dest
[0] = 0;
637 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
638 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
639 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
640 for(idx
= 1; idx
< size
; idx
++) {
641 // threshold current value
642 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
645 // Check for 0->1 transition
646 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
648 if (idx
-last_transition
< 9) {
653 last_transition
= idx
;
657 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
661 size_t aggregate_bits(uint8_t *dest
,size_t size
, uint8_t h2l_crossing_value
,uint8_t l2h_crossing_value
, uint8_t maxConsequtiveBits
)
663 uint8_t lastval
=dest
[0];
668 for( idx
=1; idx
< size
; idx
++) {
670 if (dest
[idx
]==lastval
) {
674 //if lastval was 1, we have a 1->0 crossing
676 n
=(n
+1) / h2l_crossing_value
;
677 } else {// 0->1 crossing
678 n
=(n
+1) / l2h_crossing_value
;
682 if(n
< maxConsequtiveBits
)
684 memset(dest
+numBits
, dest
[idx
-1] , n
);
694 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
695 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
697 uint8_t *dest
= (uint8_t *)BigBuf
;
699 size_t size
=0,idx
=0; //, found=0;
700 uint32_t hi2
=0, hi
=0, lo
=0;
703 while(!BUTTON_PRESS()) {
705 // Configure to go in 125Khz listen mode
706 LFSetupFPGAForADC(0, true);
709 if (ledcontrol
) LED_A_ON();
711 DoAcquisition125k_internal(-1,true);
712 size
= sizeof(BigBuf
);
715 size
= fsk_demod(dest
, size
);
718 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
719 // 1->0 : fc/8 in sets of 6
720 // 0->1 : fc/10 in sets of 5
721 size
= aggregate_bits(dest
,size
, 6,5,5);
725 // final loop, go over previously decoded manchester data and decode into usable tag ID
726 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
727 uint8_t frame_marker_mask
[] = {1,1,1,0,0,0};
730 while( idx
+ sizeof(frame_marker_mask
) < size
) {
731 // search for a start of frame marker
732 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
733 { // frame marker found
734 idx
+=sizeof(frame_marker_mask
);
736 while(dest
[idx
] != dest
[idx
+1] && idx
< size
-2)
737 { // Keep going until next frame marker (or error)
738 // Shift in a bit. Start by shifting high registers
739 hi2
= (hi2
<<1)|(hi
>>31);
740 hi
= (hi
<<1)|(lo
>>31);
741 //Then, shift in a 0 or one into low
742 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
750 //Dbprintf("Num shifts: %d ", numshifts);
751 // Hopefully, we read a tag and hit upon the next frame marker
752 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
755 Dbprintf("TAG ID: %x%08x%08x (%d)",
756 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
759 Dbprintf("TAG ID: %x%08x (%d)",
760 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
775 DbpString("Stopped");
776 if (ledcontrol
) LED_A_OFF();
779 uint32_t bytebits_to_byte(uint8_t* src
, int numbits
)
782 for(int i
= 0 ; i
< numbits
; i
++)
784 num
= (num
<< 1) | (*src
);
791 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
793 uint8_t *dest
= (uint8_t *)BigBuf
;
795 size_t size
=0, idx
=0;
796 uint32_t code
=0, code2
=0;
799 while(!BUTTON_PRESS()) {
801 // Configure to go in 125Khz listen mode
802 LFSetupFPGAForADC(0, true);
805 if (ledcontrol
) LED_A_ON();
807 DoAcquisition125k_internal(-1,true);
808 size
= sizeof(BigBuf
);
811 size
= fsk_demod(dest
, size
);
814 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
815 // 1->0 : fc/8 in sets of 7
816 // 0->1 : fc/10 in sets of 6
817 size
= aggregate_bits(dest
, size
, 7,6,13);
822 uint8_t mask
[] = {0,0,0,0,0,0,0,0,0,1};
823 for( idx
=0; idx
< size
- 64; idx
++) {
825 if ( memcmp(dest
+ idx
, mask
, sizeof(mask
)) ) continue;
827 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7]);
828 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+8], dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15]);
829 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+16],dest
[idx
+17],dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23]);
830 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+24],dest
[idx
+25],dest
[idx
+26],dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31]);
831 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35],dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39]);
832 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44],dest
[idx
+45],dest
[idx
+46],dest
[idx
+47]);
833 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53],dest
[idx
+54],dest
[idx
+55]);
834 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
836 code
= bytebits_to_byte(dest
+idx
,32);
837 code2
= bytebits_to_byte(dest
+idx
+32,32);
839 short version
= bytebits_to_byte(dest
+idx
+14,4);
840 char unknown
= bytebits_to_byte(dest
+idx
+19,8) ;
841 uint16_t number
= bytebits_to_byte(dest
+idx
+36,9);
843 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version
,unknown
,number
,code
,code2
);
844 if (ledcontrol
) LED_D_OFF();
846 // if we're only looking for one tag
854 DbpString("Stopped");
855 if (ledcontrol
) LED_A_OFF();
858 /*------------------------------
859 * T5555/T5557/T5567 routines
860 *------------------------------
863 /* T55x7 configuration register definitions */
864 #define T55x7_POR_DELAY 0x00000001
865 #define T55x7_ST_TERMINATOR 0x00000008
866 #define T55x7_PWD 0x00000010
867 #define T55x7_MAXBLOCK_SHIFT 5
868 #define T55x7_AOR 0x00000200
869 #define T55x7_PSKCF_RF_2 0
870 #define T55x7_PSKCF_RF_4 0x00000400
871 #define T55x7_PSKCF_RF_8 0x00000800
872 #define T55x7_MODULATION_DIRECT 0
873 #define T55x7_MODULATION_PSK1 0x00001000
874 #define T55x7_MODULATION_PSK2 0x00002000
875 #define T55x7_MODULATION_PSK3 0x00003000
876 #define T55x7_MODULATION_FSK1 0x00004000
877 #define T55x7_MODULATION_FSK2 0x00005000
878 #define T55x7_MODULATION_FSK1a 0x00006000
879 #define T55x7_MODULATION_FSK2a 0x00007000
880 #define T55x7_MODULATION_MANCHESTER 0x00008000
881 #define T55x7_MODULATION_BIPHASE 0x00010000
882 #define T55x7_BITRATE_RF_8 0
883 #define T55x7_BITRATE_RF_16 0x00040000
884 #define T55x7_BITRATE_RF_32 0x00080000
885 #define T55x7_BITRATE_RF_40 0x000C0000
886 #define T55x7_BITRATE_RF_50 0x00100000
887 #define T55x7_BITRATE_RF_64 0x00140000
888 #define T55x7_BITRATE_RF_100 0x00180000
889 #define T55x7_BITRATE_RF_128 0x001C0000
891 /* T5555 (Q5) configuration register definitions */
892 #define T5555_ST_TERMINATOR 0x00000001
893 #define T5555_MAXBLOCK_SHIFT 0x00000001
894 #define T5555_MODULATION_MANCHESTER 0
895 #define T5555_MODULATION_PSK1 0x00000010
896 #define T5555_MODULATION_PSK2 0x00000020
897 #define T5555_MODULATION_PSK3 0x00000030
898 #define T5555_MODULATION_FSK1 0x00000040
899 #define T5555_MODULATION_FSK2 0x00000050
900 #define T5555_MODULATION_BIPHASE 0x00000060
901 #define T5555_MODULATION_DIRECT 0x00000070
902 #define T5555_INVERT_OUTPUT 0x00000080
903 #define T5555_PSK_RF_2 0
904 #define T5555_PSK_RF_4 0x00000100
905 #define T5555_PSK_RF_8 0x00000200
906 #define T5555_USE_PWD 0x00000400
907 #define T5555_USE_AOR 0x00000800
908 #define T5555_BITRATE_SHIFT 12
909 #define T5555_FAST_WRITE 0x00004000
910 #define T5555_PAGE_SELECT 0x00008000
913 * Relevant times in microsecond
914 * To compensate antenna falling times shorten the write times
915 * and enlarge the gap ones.
917 #define START_GAP 250
918 #define WRITE_GAP 160
919 #define WRITE_0 144 // 192
920 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
922 // Write one bit to card
923 void T55xxWriteBit(int bit
)
925 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
926 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
927 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
929 SpinDelayUs(WRITE_0
);
931 SpinDelayUs(WRITE_1
);
932 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
933 SpinDelayUs(WRITE_GAP
);
936 // Write one card block in page 0, no lock
937 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
941 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
942 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
943 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
945 // Give it a bit of time for the resonant antenna to settle.
946 // And for the tag to fully power up
949 // Now start writting
950 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
951 SpinDelayUs(START_GAP
);
955 T55xxWriteBit(0); //Page 0
958 for (i
= 0x80000000; i
!= 0; i
>>= 1)
959 T55xxWriteBit(Pwd
& i
);
965 for (i
= 0x80000000; i
!= 0; i
>>= 1)
966 T55xxWriteBit(Data
& i
);
969 for (i
= 0x04; i
!= 0; i
>>= 1)
970 T55xxWriteBit(Block
& i
);
972 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
973 // so wait a little more)
974 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
975 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
977 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
980 // Read one card block in page 0
981 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
983 uint8_t *dest
= (uint8_t *)BigBuf
;
986 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
988 // Clear destination buffer before sending the command
989 memset(dest
, 128, m
);
990 // Connect the A/D to the peak-detected low-frequency path.
991 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
992 // Now set up the SSC to get the ADC samples that are now streaming at us.
996 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
997 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
999 // Give it a bit of time for the resonant antenna to settle.
1000 // And for the tag to fully power up
1003 // Now start writting
1004 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1005 SpinDelayUs(START_GAP
);
1009 T55xxWriteBit(0); //Page 0
1012 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1013 T55xxWriteBit(Pwd
& i
);
1018 for (i
= 0x04; i
!= 0; i
>>= 1)
1019 T55xxWriteBit(Block
& i
);
1021 // Turn field on to read the response
1022 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1023 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1025 // Now do the acquisition
1028 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1029 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1031 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1032 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1033 // we don't care about actual value, only if it's more or less than a
1034 // threshold essentially we capture zero crossings for later analysis
1035 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1041 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1046 // Read card traceability data (page 1)
1047 void T55xxReadTrace(void){
1048 uint8_t *dest
= (uint8_t *)BigBuf
;
1051 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1053 // Clear destination buffer before sending the command
1054 memset(dest
, 128, m
);
1055 // Connect the A/D to the peak-detected low-frequency path.
1056 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1057 // Now set up the SSC to get the ADC samples that are now streaming at us.
1061 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1062 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1064 // Give it a bit of time for the resonant antenna to settle.
1065 // And for the tag to fully power up
1068 // Now start writting
1069 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1070 SpinDelayUs(START_GAP
);
1074 T55xxWriteBit(1); //Page 1
1076 // Turn field on to read the response
1077 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1078 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1080 // Now do the acquisition
1083 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1084 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1086 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1087 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1093 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1098 /*-------------- Cloning routines -----------*/
1099 // Copy HID id to card and setup block 0 config
1100 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1102 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1106 // Ensure no more than 84 bits supplied
1108 DbpString("Tags can only have 84 bits.");
1111 // Build the 6 data blocks for supplied 84bit ID
1113 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1114 for (int i
=0;i
<4;i
++) {
1115 if (hi2
& (1<<(19-i
)))
1116 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1118 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1122 for (int i
=0;i
<16;i
++) {
1123 if (hi2
& (1<<(15-i
)))
1124 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1126 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1130 for (int i
=0;i
<16;i
++) {
1131 if (hi
& (1<<(31-i
)))
1132 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1134 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1138 for (int i
=0;i
<16;i
++) {
1139 if (hi
& (1<<(15-i
)))
1140 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1142 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1146 for (int i
=0;i
<16;i
++) {
1147 if (lo
& (1<<(31-i
)))
1148 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1150 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1154 for (int i
=0;i
<16;i
++) {
1155 if (lo
& (1<<(15-i
)))
1156 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1158 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1162 // Ensure no more than 44 bits supplied
1164 DbpString("Tags can only have 44 bits.");
1168 // Build the 3 data blocks for supplied 44bit ID
1171 data1
= 0x1D000000; // load preamble
1173 for (int i
=0;i
<12;i
++) {
1174 if (hi
& (1<<(11-i
)))
1175 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1177 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1181 for (int i
=0;i
<16;i
++) {
1182 if (lo
& (1<<(31-i
)))
1183 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1185 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1189 for (int i
=0;i
<16;i
++) {
1190 if (lo
& (1<<(15-i
)))
1191 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1193 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1198 // Program the data blocks for supplied ID
1199 // and the block 0 for HID format
1200 T55xxWriteBlock(data1
,1,0,0);
1201 T55xxWriteBlock(data2
,2,0,0);
1202 T55xxWriteBlock(data3
,3,0,0);
1204 if (longFMT
) { // if long format there are 6 blocks
1205 T55xxWriteBlock(data4
,4,0,0);
1206 T55xxWriteBlock(data5
,5,0,0);
1207 T55xxWriteBlock(data6
,6,0,0);
1210 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1211 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1212 T55x7_MODULATION_FSK2a
|
1213 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1221 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1223 int data1
=0, data2
=0; //up to six blocks for long format
1225 data1
= hi
; // load preamble
1229 // Program the data blocks for supplied ID
1230 // and the block 0 for HID format
1231 T55xxWriteBlock(data1
,1,0,0);
1232 T55xxWriteBlock(data2
,2,0,0);
1235 T55xxWriteBlock(0x00147040,0,0,0);
1241 // Define 9bit header for EM410x tags
1242 #define EM410X_HEADER 0x1FF
1243 #define EM410X_ID_LENGTH 40
1245 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1248 uint64_t id
= EM410X_HEADER
;
1249 uint64_t rev_id
= 0; // reversed ID
1250 int c_parity
[4]; // column parity
1251 int r_parity
= 0; // row parity
1254 // Reverse ID bits given as parameter (for simpler operations)
1255 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1257 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1260 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1265 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1266 id_bit
= rev_id
& 1;
1269 // Don't write row parity bit at start of parsing
1271 id
= (id
<< 1) | r_parity
;
1272 // Start counting parity for new row
1279 // First elements in column?
1281 // Fill out first elements
1282 c_parity
[i
] = id_bit
;
1284 // Count column parity
1285 c_parity
[i
% 4] ^= id_bit
;
1288 id
= (id
<< 1) | id_bit
;
1292 // Insert parity bit of last row
1293 id
= (id
<< 1) | r_parity
;
1295 // Fill out column parity at the end of tag
1296 for (i
= 0; i
< 4; ++i
)
1297 id
= (id
<< 1) | c_parity
[i
];
1302 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1306 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1307 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1309 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1311 // Clock rate is stored in bits 8-15 of the card value
1312 clock
= (card
& 0xFF00) >> 8;
1313 Dbprintf("Clock rate: %d", clock
);
1317 clock
= T55x7_BITRATE_RF_32
;
1320 clock
= T55x7_BITRATE_RF_16
;
1323 // A value of 0 is assumed to be 64 for backwards-compatibility
1326 clock
= T55x7_BITRATE_RF_64
;
1329 Dbprintf("Invalid clock rate: %d", clock
);
1333 // Writing configuration for T55x7 tag
1334 T55xxWriteBlock(clock
|
1335 T55x7_MODULATION_MANCHESTER
|
1336 2 << T55x7_MAXBLOCK_SHIFT
,
1340 // Writing configuration for T5555(Q5) tag
1341 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1342 T5555_MODULATION_MANCHESTER
|
1343 2 << T5555_MAXBLOCK_SHIFT
,
1347 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1348 (uint32_t)(id
>> 32), (uint32_t)id
);
1351 // Clone Indala 64-bit tag by UID to T55x7
1352 void CopyIndala64toT55x7(int hi
, int lo
)
1355 //Program the 2 data blocks for supplied 64bit UID
1356 // and the block 0 for Indala64 format
1357 T55xxWriteBlock(hi
,1,0,0);
1358 T55xxWriteBlock(lo
,2,0,0);
1359 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1360 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1361 T55x7_MODULATION_PSK1
|
1362 2 << T55x7_MAXBLOCK_SHIFT
,
1364 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1365 // T5567WriteBlock(0x603E1042,0);
1371 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1374 //Program the 7 data blocks for supplied 224bit UID
1375 // and the block 0 for Indala224 format
1376 T55xxWriteBlock(uid1
,1,0,0);
1377 T55xxWriteBlock(uid2
,2,0,0);
1378 T55xxWriteBlock(uid3
,3,0,0);
1379 T55xxWriteBlock(uid4
,4,0,0);
1380 T55xxWriteBlock(uid5
,5,0,0);
1381 T55xxWriteBlock(uid6
,6,0,0);
1382 T55xxWriteBlock(uid7
,7,0,0);
1383 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1384 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1385 T55x7_MODULATION_PSK1
|
1386 7 << T55x7_MAXBLOCK_SHIFT
,
1388 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1389 // T5567WriteBlock(0x603E10E2,0);
1396 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1397 #define max(x,y) ( x<y ? y:x)
1399 int DemodPCF7931(uint8_t **outBlocks
) {
1400 uint8_t BitStream
[256];
1401 uint8_t Blocks
[8][16];
1402 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1403 int GraphTraceLen
= sizeof(BigBuf
);
1404 int i
, j
, lastval
, bitidx
, half_switch
;
1406 int tolerance
= clock
/ 8;
1407 int pmc
, block_done
;
1408 int lc
, warnings
= 0;
1410 int lmin
=128, lmax
=128;
1413 AcquireRawAdcSamples125k(0);
1420 /* Find first local max/min */
1421 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1422 while(i
< GraphTraceLen
) {
1423 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1430 while(i
< GraphTraceLen
) {
1431 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1443 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1445 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1450 // Switch depending on lc length:
1451 // Tolerance is 1/8 of clock rate (arbitrary)
1452 if (abs(lc
-clock
/4) < tolerance
) {
1454 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1456 i
+= (128+127+16+32+33+16)-1;
1464 } else if (abs(lc
-clock
/2) < tolerance
) {
1466 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1468 i
+= (128+127+16+32+33)-1;
1473 else if(half_switch
== 1) {
1474 BitStream
[bitidx
++] = 0;
1479 } else if (abs(lc
-clock
) < tolerance
) {
1481 BitStream
[bitidx
++] = 1;
1487 Dbprintf("Error: too many detection errors, aborting.");
1492 if(block_done
== 1) {
1494 for(j
=0; j
<16; j
++) {
1495 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1496 64*BitStream
[j
*8+6]+
1497 32*BitStream
[j
*8+5]+
1498 16*BitStream
[j
*8+4]+
1510 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1516 if(num_blocks
== 4) break;
1518 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1522 int IsBlock0PCF7931(uint8_t *Block
) {
1523 // Assume RFU means 0 :)
1524 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1526 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1531 int IsBlock1PCF7931(uint8_t *Block
) {
1532 // Assume RFU means 0 :)
1533 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1534 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1542 void ReadPCF7931() {
1543 uint8_t Blocks
[8][17];
1544 uint8_t tmpBlocks
[4][16];
1545 int i
, j
, ind
, ind2
, n
;
1552 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1555 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1556 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1559 if(error
==10 && num_blocks
== 0) {
1560 Dbprintf("Error, no tag or bad tag");
1563 else if (tries
==20 || error
==10) {
1564 Dbprintf("Error reading the tag");
1565 Dbprintf("Here is the partial content");
1570 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1571 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1572 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1574 for(i
=0; i
<n
; i
++) {
1575 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1577 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1581 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1582 Blocks
[0][ALLOC
] = 1;
1583 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1584 Blocks
[1][ALLOC
] = 1;
1585 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1587 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1589 // Handle following blocks
1590 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1593 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1594 Blocks
[ind2
][ALLOC
] = 1;
1602 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1603 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1604 for(j
=0; j
<max_blocks
; j
++) {
1605 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1606 // Found an identical block
1607 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1610 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1611 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1612 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1613 Blocks
[ind2
][ALLOC
] = 1;
1615 if(num_blocks
== max_blocks
) goto end
;
1618 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1619 if(ind2
> max_blocks
)
1621 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1622 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1623 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1624 Blocks
[ind2
][ALLOC
] = 1;
1626 if(num_blocks
== max_blocks
) goto end
;
1635 if (BUTTON_PRESS()) return;
1636 } while (num_blocks
!= max_blocks
);
1638 Dbprintf("-----------------------------------------");
1639 Dbprintf("Memory content:");
1640 Dbprintf("-----------------------------------------");
1641 for(i
=0; i
<max_blocks
; i
++) {
1642 if(Blocks
[i
][ALLOC
]==1)
1643 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1644 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1645 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1647 Dbprintf("<missing block %d>", i
);
1649 Dbprintf("-----------------------------------------");
1655 //-----------------------------------
1656 // EM4469 / EM4305 routines
1657 //-----------------------------------
1658 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1659 #define FWD_CMD_WRITE 0xA
1660 #define FWD_CMD_READ 0x9
1661 #define FWD_CMD_DISABLE 0x5
1664 uint8_t forwardLink_data
[64]; //array of forwarded bits
1665 uint8_t * forward_ptr
; //ptr for forward message preparation
1666 uint8_t fwd_bit_sz
; //forwardlink bit counter
1667 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1669 //====================================================================
1670 // prepares command bits
1672 //====================================================================
1673 //--------------------------------------------------------------------
1674 uint8_t Prepare_Cmd( uint8_t cmd
) {
1675 //--------------------------------------------------------------------
1677 *forward_ptr
++ = 0; //start bit
1678 *forward_ptr
++ = 0; //second pause for 4050 code
1680 *forward_ptr
++ = cmd
;
1682 *forward_ptr
++ = cmd
;
1684 *forward_ptr
++ = cmd
;
1686 *forward_ptr
++ = cmd
;
1688 return 6; //return number of emited bits
1691 //====================================================================
1692 // prepares address bits
1694 //====================================================================
1696 //--------------------------------------------------------------------
1697 uint8_t Prepare_Addr( uint8_t addr
) {
1698 //--------------------------------------------------------------------
1700 register uint8_t line_parity
;
1705 *forward_ptr
++ = addr
;
1706 line_parity
^= addr
;
1710 *forward_ptr
++ = (line_parity
& 1);
1712 return 7; //return number of emited bits
1715 //====================================================================
1716 // prepares data bits intreleaved with parity bits
1718 //====================================================================
1720 //--------------------------------------------------------------------
1721 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1722 //--------------------------------------------------------------------
1724 register uint8_t line_parity
;
1725 register uint8_t column_parity
;
1726 register uint8_t i
, j
;
1727 register uint16_t data
;
1732 for(i
=0; i
<4; i
++) {
1734 for(j
=0; j
<8; j
++) {
1735 line_parity
^= data
;
1736 column_parity
^= (data
& 1) << j
;
1737 *forward_ptr
++ = data
;
1740 *forward_ptr
++ = line_parity
;
1745 for(j
=0; j
<8; j
++) {
1746 *forward_ptr
++ = column_parity
;
1747 column_parity
>>= 1;
1751 return 45; //return number of emited bits
1754 //====================================================================
1755 // Forward Link send function
1756 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1757 // fwd_bit_count set with number of bits to be sent
1758 //====================================================================
1759 void SendForward(uint8_t fwd_bit_count
) {
1761 fwd_write_ptr
= forwardLink_data
;
1762 fwd_bit_sz
= fwd_bit_count
;
1767 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1768 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1769 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1771 // Give it a bit of time for the resonant antenna to settle.
1772 // And for the tag to fully power up
1775 // force 1st mod pulse (start gap must be longer for 4305)
1776 fwd_bit_sz
--; //prepare next bit modulation
1778 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1779 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1780 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1781 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1782 SpinDelayUs(16*8); //16 cycles on (8us each)
1784 // now start writting
1785 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1786 if(((*fwd_write_ptr
++) & 1) == 1)
1787 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1789 //These timings work for 4469/4269/4305 (with the 55*8 above)
1790 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1791 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1792 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1793 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1794 SpinDelayUs(9*8); //16 cycles on (8us each)
1799 void EM4xLogin(uint32_t Password
) {
1801 uint8_t fwd_bit_count
;
1803 forward_ptr
= forwardLink_data
;
1804 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1805 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1807 SendForward(fwd_bit_count
);
1809 //Wait for command to complete
1814 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1816 uint8_t fwd_bit_count
;
1817 uint8_t *dest
= (uint8_t *)BigBuf
;
1820 //If password mode do login
1821 if (PwdMode
== 1) EM4xLogin(Pwd
);
1823 forward_ptr
= forwardLink_data
;
1824 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1825 fwd_bit_count
+= Prepare_Addr( Address
);
1828 // Clear destination buffer before sending the command
1829 memset(dest
, 128, m
);
1830 // Connect the A/D to the peak-detected low-frequency path.
1831 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1832 // Now set up the SSC to get the ADC samples that are now streaming at us.
1835 SendForward(fwd_bit_count
);
1837 // Now do the acquisition
1840 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1841 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1843 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1844 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1849 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1853 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1855 uint8_t fwd_bit_count
;
1857 //If password mode do login
1858 if (PwdMode
== 1) EM4xLogin(Pwd
);
1860 forward_ptr
= forwardLink_data
;
1861 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1862 fwd_bit_count
+= Prepare_Addr( Address
);
1863 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1865 SendForward(fwd_bit_count
);
1867 //Wait for write to complete
1869 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off