]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
3aeb4c8af2de37b0fd76f55d6c47f6b63c9368f8
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include <stdarg.h>
14
15 #include "usb_cdc.h"
16 #include "cmd.h"
17 #include "proxmark3.h"
18 #include "apps.h"
19 #include "util.h"
20 #include "printf.h"
21 #include "string.h"
22 #include "legicrf.h"
23 #include "hitag2.h"
24 #include "hitagS.h"
25 #include "lfsampling.h"
26 #include "BigBuf.h"
27 #include "mifareutil.h"
28 #include "pcf7931.h"
29 #ifdef WITH_LCD
30 #include "LCD.h"
31 #endif
32
33 // Craig Young - 14a stand-alone code
34 #ifdef WITH_ISO14443a_StandAlone
35 #include "iso14443a.h"
36 #endif
37
38 //=============================================================================
39 // A buffer where we can queue things up to be sent through the FPGA, for
40 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
41 // is the order in which they go out on the wire.
42 //=============================================================================
43
44 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
45 uint8_t ToSend[TOSEND_BUFFER_SIZE];
46 int ToSendMax;
47 static int ToSendBit;
48 struct common_area common_area __attribute__((section(".commonarea")));
49
50 void ToSendReset(void)
51 {
52 ToSendMax = -1;
53 ToSendBit = 8;
54 }
55
56 void ToSendStuffBit(int b)
57 {
58 if(ToSendBit >= 8) {
59 ToSendMax++;
60 ToSend[ToSendMax] = 0;
61 ToSendBit = 0;
62 }
63
64 if(b) {
65 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
66 }
67
68 ToSendBit++;
69
70 if(ToSendMax >= sizeof(ToSend)) {
71 ToSendBit = 0;
72 DbpString("ToSendStuffBit overflowed!");
73 }
74 }
75
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
79
80 void DbpString(char *str)
81 {
82 byte_t len = strlen(str);
83 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
84 }
85
86 #if 0
87 void DbpIntegers(int x1, int x2, int x3)
88 {
89 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
90 }
91 #endif
92
93 void Dbprintf(const char *fmt, ...) {
94 // should probably limit size here; oh well, let's just use a big buffer
95 char output_string[128];
96 va_list ap;
97
98 va_start(ap, fmt);
99 kvsprintf(fmt, output_string, 10, ap);
100 va_end(ap);
101
102 DbpString(output_string);
103 }
104
105 // prints HEX & ASCII
106 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
107 int l=0,i;
108 char ascii[9];
109
110 while (len>0) {
111 if (len>8) l=8;
112 else l=len;
113
114 memcpy(ascii,d,l);
115 ascii[l]=0;
116
117 // filter safe ascii
118 for (i=0;i<l;i++)
119 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
120
121 if (bAsci) {
122 Dbprintf("%-8s %*D",ascii,l,d," ");
123 } else {
124 Dbprintf("%*D",l,d," ");
125 }
126
127 len-=8;
128 d+=8;
129 }
130 }
131
132 //-----------------------------------------------------------------------------
133 // Read an ADC channel and block till it completes, then return the result
134 // in ADC units (0 to 1023). Also a routine to average 32 samples and
135 // return that.
136 //-----------------------------------------------------------------------------
137 static int ReadAdc(int ch)
138 {
139 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
140 // AMPL_HI is are high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
141 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
142 //
143 // The maths are:
144 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
145 //
146 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
147
148 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
149 AT91C_BASE_ADC->ADC_MR =
150 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
151 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
152 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
153
154 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
155 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
156
157 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {};
158
159 return AT91C_BASE_ADC->ADC_CDR[ch];
160 }
161
162 int AvgAdc(int ch) // was static - merlok
163 {
164 int i;
165 int a = 0;
166
167 for(i = 0; i < 32; i++) {
168 a += ReadAdc(ch);
169 }
170
171 return (a + 15) >> 5;
172 }
173
174 void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[])
175 {
176 int i, adcval = 0, peak = 0;
177
178 /*
179 * Sweeps the useful LF range of the proxmark from
180 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
181 * read the voltage in the antenna, the result left
182 * in the buffer is a graph which should clearly show
183 * the resonating frequency of your LF antenna
184 * ( hopefully around 95 if it is tuned to 125kHz!)
185 */
186
187 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
188 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
189 SpinDelay(50);
190
191 for (i=255; i>=19; i--) {
192 WDT_HIT();
193 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
194 SpinDelay(20);
195 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
196 if (i==95) *vLf125 = adcval; // voltage at 125Khz
197 if (i==89) *vLf134 = adcval; // voltage at 134Khz
198
199 LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
200 if(LF_Results[i] > peak) {
201 *peakv = adcval;
202 peak = LF_Results[i];
203 *peakf = i;
204 //ptr = i;
205 }
206 }
207
208 for (i=0; i <= 18; i++) LF_Results[i] = 0;
209
210 return;
211 }
212
213 void MeasureAntennaTuningHfOnly(int *vHf)
214 {
215 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
216 LED_A_ON();
217 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
219 SpinDelay(20);
220 *vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
221 LED_A_OFF();
222
223 return;
224 }
225
226 void MeasureAntennaTuning(int mode)
227 {
228 uint8_t LF_Results[256] = {0};
229 int peakv = 0, peakf = 0;
230 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
231
232 LED_B_ON();
233
234 if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) {
235 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
236 MeasureAntennaTuningHfOnly(&vHf);
237 MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
238 } else {
239 if (mode & FLAG_TUNE_LF) {
240 MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
241 }
242 if (mode & FLAG_TUNE_HF) {
243 MeasureAntennaTuningHfOnly(&vHf);
244 }
245 }
246
247 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125>>1 | (vLf134>>1<<16), vHf, peakf | (peakv>>1<<16), LF_Results, 256);
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
249 LED_B_OFF();
250 return;
251 }
252
253 void MeasureAntennaTuningHf(void)
254 {
255 int vHf = 0; // in mV
256
257 DbpString("Measuring HF antenna, press button to exit");
258
259 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
260 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
261 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
262
263 for (;;) {
264 SpinDelay(20);
265 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
266
267 Dbprintf("%d mV",vHf);
268 if (BUTTON_PRESS()) break;
269 }
270 DbpString("cancelled");
271
272 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
273
274 }
275
276
277 void ReadMem(int addr)
278 {
279 const uint8_t *data = ((uint8_t *)addr);
280
281 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
282 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
283 }
284
285 /* osimage version information is linked in */
286 extern struct version_information version_information;
287 /* bootrom version information is pointed to from _bootphase1_version_pointer */
288 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
289 void SendVersion(void)
290 {
291 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
292 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
293
294 /* Try to find the bootrom version information. Expect to find a pointer at
295 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
296 * pointer, then use it.
297 */
298 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
299 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
300 strcat(VersionString, "bootrom version information appears invalid\n");
301 } else {
302 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
303 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
304 }
305
306 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
307 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
308
309 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
310 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
311 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
312 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
313
314 // Send Chip ID and used flash memory
315 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
316 uint32_t compressed_data_section_size = common_area.arg1;
317 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
318 }
319
320 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
321 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
322 void printUSBSpeed(void)
323 {
324 Dbprintf("USB Speed:");
325 Dbprintf(" Sending USB packets to client...");
326
327 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
328 uint8_t *test_data = BigBuf_get_addr();
329 uint32_t end_time;
330
331 uint32_t start_time = end_time = GetTickCount();
332 uint32_t bytes_transferred = 0;
333
334 LED_B_ON();
335 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
336 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
337 end_time = GetTickCount();
338 bytes_transferred += USB_CMD_DATA_SIZE;
339 }
340 LED_B_OFF();
341
342 Dbprintf(" Time elapsed: %dms", end_time - start_time);
343 Dbprintf(" Bytes transferred: %d", bytes_transferred);
344 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
345 1000 * bytes_transferred / (end_time - start_time));
346
347 }
348
349 /**
350 * Prints runtime information about the PM3.
351 **/
352 void SendStatus(void)
353 {
354 BigBuf_print_status();
355 Fpga_print_status();
356 printConfig(); //LF Sampling config
357 printUSBSpeed();
358 Dbprintf("Various");
359 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL);
360 Dbprintf(" ToSendMax........%d",ToSendMax);
361 Dbprintf(" ToSendBit........%d",ToSendBit);
362
363 cmd_send(CMD_ACK,1,0,0,0,0);
364 }
365
366 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
367
368 #define OPTS 2
369
370 void StandAloneMode()
371 {
372 DbpString("Stand-alone mode! No PC necessary.");
373 // Oooh pretty -- notify user we're in elite samy mode now
374 LED(LED_RED, 200);
375 LED(LED_ORANGE, 200);
376 LED(LED_GREEN, 200);
377 LED(LED_ORANGE, 200);
378 LED(LED_RED, 200);
379 LED(LED_ORANGE, 200);
380 LED(LED_GREEN, 200);
381 LED(LED_ORANGE, 200);
382 LED(LED_RED, 200);
383
384 }
385
386 #endif
387
388
389
390 #ifdef WITH_ISO14443a_StandAlone
391 void StandAloneMode14a()
392 {
393 StandAloneMode();
394 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
395
396 int selected = 0;
397 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
398 int cardRead[OPTS] = {0};
399 uint8_t readUID[10] = {0};
400 uint32_t uid_1st[OPTS]={0};
401 uint32_t uid_2nd[OPTS]={0};
402 uint32_t uid_tmp1 = 0;
403 uint32_t uid_tmp2 = 0;
404 iso14a_card_select_t hi14a_card[OPTS];
405
406 LED(selected + 1, 0);
407
408 for (;;)
409 {
410 usb_poll();
411 WDT_HIT();
412 SpinDelay(300);
413
414 if (iGotoRecord == 1 || cardRead[selected] == 0)
415 {
416 iGotoRecord = 0;
417 LEDsoff();
418 LED(selected + 1, 0);
419 LED(LED_RED2, 0);
420
421 // record
422 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
423 /* need this delay to prevent catching some weird data */
424 SpinDelay(500);
425 /* Code for reading from 14a tag */
426 uint8_t uid[10] ={0};
427 uint32_t cuid;
428 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
429
430 for ( ; ; )
431 {
432 WDT_HIT();
433 if (BUTTON_PRESS()) {
434 if (cardRead[selected]) {
435 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
436 break;
437 }
438 else if (cardRead[(selected+1)%OPTS]) {
439 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
440 selected = (selected+1)%OPTS;
441 break; // playing = 1;
442 }
443 else {
444 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
445 SpinDelay(300);
446 }
447 }
448 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true))
449 continue;
450 else
451 {
452 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
453 memcpy(readUID,uid,10*sizeof(uint8_t));
454 uint8_t *dst = (uint8_t *)&uid_tmp1;
455 // Set UID byte order
456 for (int i=0; i<4; i++)
457 dst[i] = uid[3-i];
458 dst = (uint8_t *)&uid_tmp2;
459 for (int i=0; i<4; i++)
460 dst[i] = uid[7-i];
461 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
462 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
463 }
464 else {
465 if (uid_tmp2) {
466 Dbprintf("Bank[%d] received a 7-byte UID",selected);
467 uid_1st[selected] = (uid_tmp1)>>8;
468 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
469 }
470 else {
471 Dbprintf("Bank[%d] received a 4-byte UID",selected);
472 uid_1st[selected] = uid_tmp1;
473 uid_2nd[selected] = uid_tmp2;
474 }
475 break;
476 }
477 }
478 }
479 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
480 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
481 LEDsoff();
482 LED(LED_GREEN, 200);
483 LED(LED_ORANGE, 200);
484 LED(LED_GREEN, 200);
485 LED(LED_ORANGE, 200);
486
487 LEDsoff();
488 LED(selected + 1, 0);
489
490 // Next state is replay:
491 playing = 1;
492
493 cardRead[selected] = 1;
494 }
495 /* MF Classic UID clone */
496 else if (iGotoClone==1)
497 {
498 iGotoClone=0;
499 LEDsoff();
500 LED(selected + 1, 0);
501 LED(LED_ORANGE, 250);
502
503
504 // record
505 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
506
507 // wait for button to be released
508 while(BUTTON_PRESS())
509 {
510 // Delay cloning until card is in place
511 WDT_HIT();
512 }
513 Dbprintf("Starting clone. [Bank: %u]", selected);
514 // need this delay to prevent catching some weird data
515 SpinDelay(500);
516 // Begin clone function here:
517 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
518 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
519 memcpy(c.d.asBytes, data, 16);
520 SendCommand(&c);
521
522 Block read is similar:
523 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
524 We need to imitate that call with blockNo 0 to set a uid.
525
526 The get and set commands are handled in this file:
527 // Work with "magic Chinese" card
528 case CMD_MIFARE_CSETBLOCK:
529 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
530 break;
531 case CMD_MIFARE_CGETBLOCK:
532 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
533 break;
534
535 mfCSetUID provides example logic for UID set workflow:
536 -Read block0 from card in field with MifareCGetBlock()
537 -Configure new values without replacing reserved bytes
538 memcpy(block0, uid, 4); // Copy UID bytes from byte array
539 // Mifare UID BCC
540 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
541 Bytes 5-7 are reserved SAK and ATQA for mifare classic
542 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
543 */
544 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
545 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
546 MifareCGetBlock(0x3F, 1, 0, oldBlock0);
547 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
548 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
549 playing = 1;
550 }
551 else {
552 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
553 memcpy(newBlock0,oldBlock0,16);
554 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
555
556 newBlock0[0] = uid_1st[selected]>>24;
557 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
558 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
559 newBlock0[3] = 0xFF & (uid_1st[selected]);
560 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
561 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
562 MifareCSetBlock(0, 0xFF,0, newBlock0);
563 MifareCGetBlock(0x3F, 1, 0, testBlock0);
564 if (memcmp(testBlock0,newBlock0,16)==0)
565 {
566 DbpString("Cloned successfull!");
567 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
568 playing = 0;
569 iGotoRecord = 1;
570 selected = (selected+1) % OPTS;
571 }
572 else {
573 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
574 playing = 1;
575 }
576 }
577 LEDsoff();
578 LED(selected + 1, 0);
579
580 }
581 // Change where to record (or begin playing)
582 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
583 {
584 LEDsoff();
585 LED(selected + 1, 0);
586
587 // Begin transmitting
588 if (playing)
589 {
590 LED(LED_GREEN, 0);
591 DbpString("Playing");
592 for ( ; ; ) {
593 WDT_HIT();
594 int button_action = BUTTON_HELD(1000);
595 if (button_action == 0) { // No button action, proceed with sim
596 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
597 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
598 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
599 DbpString("Mifare Classic");
600 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
601 }
602 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
603 DbpString("Mifare Ultralight");
604 SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
605 }
606 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
607 DbpString("Mifare DESFire");
608 SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
609 }
610 else {
611 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
612 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
613 }
614 }
615 else if (button_action == BUTTON_SINGLE_CLICK) {
616 selected = (selected + 1) % OPTS;
617 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
618 iGotoRecord = 1;
619 break;
620 }
621 else if (button_action == BUTTON_HOLD) {
622 Dbprintf("Playtime over. Begin cloning...");
623 iGotoClone = 1;
624 break;
625 }
626 WDT_HIT();
627 }
628
629 /* We pressed a button so ignore it here with a delay */
630 SpinDelay(300);
631 LEDsoff();
632 LED(selected + 1, 0);
633 }
634 else
635 while(BUTTON_PRESS())
636 WDT_HIT();
637 }
638 }
639 }
640 #elif WITH_LF
641 // samy's sniff and repeat routine
642 void SamyRun()
643 {
644 StandAloneMode();
645 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
646
647 int high[OPTS], low[OPTS];
648 int selected = 0;
649 int playing = 0;
650 int cardRead = 0;
651
652 // Turn on selected LED
653 LED(selected + 1, 0);
654
655 for (;;)
656 {
657 usb_poll();
658 WDT_HIT();
659
660 // Was our button held down or pressed?
661 int button_pressed = BUTTON_HELD(1000);
662 SpinDelay(300);
663
664 // Button was held for a second, begin recording
665 if (button_pressed > 0 && cardRead == 0)
666 {
667 LEDsoff();
668 LED(selected + 1, 0);
669 LED(LED_RED2, 0);
670
671 // record
672 DbpString("Starting recording");
673
674 // wait for button to be released
675 while(BUTTON_PRESS())
676 WDT_HIT();
677
678 /* need this delay to prevent catching some weird data */
679 SpinDelay(500);
680
681 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
682 Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]);
683
684 LEDsoff();
685 LED(selected + 1, 0);
686 // Finished recording
687
688 // If we were previously playing, set playing off
689 // so next button push begins playing what we recorded
690 playing = 0;
691
692 cardRead = 1;
693
694 }
695
696 else if (button_pressed > 0 && cardRead == 1)
697 {
698 LEDsoff();
699 LED(selected + 1, 0);
700 LED(LED_ORANGE, 0);
701
702 // record
703 Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
704
705 // wait for button to be released
706 while(BUTTON_PRESS())
707 WDT_HIT();
708
709 /* need this delay to prevent catching some weird data */
710 SpinDelay(500);
711
712 CopyHIDtoT55x7(0, high[selected], low[selected], 0);
713 Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
714
715 LEDsoff();
716 LED(selected + 1, 0);
717 // Finished recording
718
719 // If we were previously playing, set playing off
720 // so next button push begins playing what we recorded
721 playing = 0;
722
723 cardRead = 0;
724
725 }
726
727 // Change where to record (or begin playing)
728 else if (button_pressed)
729 {
730 // Next option if we were previously playing
731 if (playing)
732 selected = (selected + 1) % OPTS;
733 playing = !playing;
734
735 LEDsoff();
736 LED(selected + 1, 0);
737
738 // Begin transmitting
739 if (playing)
740 {
741 LED(LED_GREEN, 0);
742 DbpString("Playing");
743 // wait for button to be released
744 while(BUTTON_PRESS())
745 WDT_HIT();
746 Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
747 CmdHIDsimTAG(high[selected], low[selected], 0);
748 DbpString("Done playing");
749 if (BUTTON_HELD(1000) > 0)
750 {
751 DbpString("Exiting");
752 LEDsoff();
753 return;
754 }
755
756 /* We pressed a button so ignore it here with a delay */
757 SpinDelay(300);
758
759 // when done, we're done playing, move to next option
760 selected = (selected + 1) % OPTS;
761 playing = !playing;
762 LEDsoff();
763 LED(selected + 1, 0);
764 }
765 else
766 while(BUTTON_PRESS())
767 WDT_HIT();
768 }
769 }
770 }
771
772 #endif
773 /*
774 OBJECTIVE
775 Listen and detect an external reader. Determine the best location
776 for the antenna.
777
778 INSTRUCTIONS:
779 Inside the ListenReaderField() function, there is two mode.
780 By default, when you call the function, you will enter mode 1.
781 If you press the PM3 button one time, you will enter mode 2.
782 If you press the PM3 button a second time, you will exit the function.
783
784 DESCRIPTION OF MODE 1:
785 This mode just listens for an external reader field and lights up green
786 for HF and/or red for LF. This is the original mode of the detectreader
787 function.
788
789 DESCRIPTION OF MODE 2:
790 This mode will visually represent, using the LEDs, the actual strength of the
791 current compared to the maximum current detected. Basically, once you know
792 what kind of external reader is present, it will help you spot the best location to place
793 your antenna. You will probably not get some good results if there is a LF and a HF reader
794 at the same place! :-)
795
796 LIGHT SCHEME USED:
797 */
798 static const char LIGHT_SCHEME[] = {
799 0x0, /* ---- | No field detected */
800 0x1, /* X--- | 14% of maximum current detected */
801 0x2, /* -X-- | 29% of maximum current detected */
802 0x4, /* --X- | 43% of maximum current detected */
803 0x8, /* ---X | 57% of maximum current detected */
804 0xC, /* --XX | 71% of maximum current detected */
805 0xE, /* -XXX | 86% of maximum current detected */
806 0xF, /* XXXX | 100% of maximum current detected */
807 };
808 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
809
810 void ListenReaderField(int limit)
811 {
812 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
813 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
814 int mode=1, display_val, display_max, i;
815
816 #define LF_ONLY 1
817 #define HF_ONLY 2
818 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
819
820
821 // switch off FPGA - we don't want to measure our own signal
822 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
823 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
824
825 LEDsoff();
826
827 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
828
829 if(limit != HF_ONLY) {
830 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
831 lf_baseline = lf_av;
832 }
833
834 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
835
836 if (limit != LF_ONLY) {
837 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
838 hf_baseline = hf_av;
839 }
840
841 for(;;) {
842 if (BUTTON_PRESS()) {
843 SpinDelay(500);
844 switch (mode) {
845 case 1:
846 mode=2;
847 DbpString("Signal Strength Mode");
848 break;
849 case 2:
850 default:
851 DbpString("Stopped");
852 LEDsoff();
853 return;
854 break;
855 }
856 }
857 WDT_HIT();
858
859 if (limit != HF_ONLY) {
860 if(mode == 1) {
861 if (ABS(lf_av - lf_baseline) > REPORT_CHANGE)
862 LED_D_ON();
863 else
864 LED_D_OFF();
865 }
866
867 lf_av_new = AvgAdc(ADC_CHAN_LF);
868 // see if there's a significant change
869 if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
870 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
871 lf_av = lf_av_new;
872 if (lf_av > lf_max)
873 lf_max = lf_av;
874 }
875 }
876
877 if (limit != LF_ONLY) {
878 if (mode == 1){
879 if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)
880 LED_B_ON();
881 else
882 LED_B_OFF();
883 }
884
885 hf_av_new = AvgAdc(ADC_CHAN_HF);
886 // see if there's a significant change
887 if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
888 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
889 hf_av = hf_av_new;
890 if (hf_av > hf_max)
891 hf_max = hf_av;
892 }
893 }
894
895 if(mode == 2) {
896 if (limit == LF_ONLY) {
897 display_val = lf_av;
898 display_max = lf_max;
899 } else if (limit == HF_ONLY) {
900 display_val = hf_av;
901 display_max = hf_max;
902 } else { /* Pick one at random */
903 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
904 display_val = hf_av;
905 display_max = hf_max;
906 } else {
907 display_val = lf_av;
908 display_max = lf_max;
909 }
910 }
911 for (i=0; i<LIGHT_LEN; i++) {
912 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
913 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
914 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
915 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
916 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
917 break;
918 }
919 }
920 }
921 }
922 }
923
924 void UsbPacketReceived(uint8_t *packet, int len)
925 {
926 UsbCommand *c = (UsbCommand *)packet;
927
928 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
929
930 switch(c->cmd) {
931 #ifdef WITH_LF
932 case CMD_SET_LF_SAMPLING_CONFIG:
933 setSamplingConfig((sample_config *) c->d.asBytes);
934 break;
935 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
936 cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0);
937 break;
938 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
939 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
940 break;
941 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
942 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
943 break;
944 case CMD_HID_DEMOD_FSK:
945 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
946 break;
947 case CMD_HID_SIM_TAG:
948 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
949 break;
950 case CMD_FSK_SIM_TAG:
951 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
952 break;
953 case CMD_ASK_SIM_TAG:
954 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
955 break;
956 case CMD_PSK_SIM_TAG:
957 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
958 break;
959 case CMD_HID_CLONE_TAG:
960 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
961 break;
962 case CMD_IO_DEMOD_FSK:
963 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
964 break;
965 case CMD_IO_CLONE_TAG:
966 CopyIOtoT55x7(c->arg[0], c->arg[1]);
967 break;
968 case CMD_EM410X_DEMOD:
969 CmdEM410xdemod(c->arg[0], 0, 0, 1);
970 break;
971 case CMD_EM410X_WRITE_TAG:
972 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
973 break;
974 case CMD_READ_TI_TYPE:
975 ReadTItag();
976 break;
977 case CMD_WRITE_TI_TYPE:
978 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
979 break;
980 case CMD_SIMULATE_TAG_125K:
981 LED_A_ON();
982 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
983 LED_A_OFF();
984 break;
985 case CMD_LF_SIMULATE_BIDIR:
986 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
987 break;
988 case CMD_INDALA_CLONE_TAG:
989 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
990 break;
991 case CMD_INDALA_CLONE_TAG_L:
992 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
993 break;
994 case CMD_T55XX_READ_BLOCK:
995 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
996 break;
997 case CMD_T55XX_WRITE_BLOCK:
998 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
999 break;
1000 case CMD_T55XX_WAKEUP:
1001 T55xxWakeUp(c->arg[0]);
1002 break;
1003 case CMD_T55XX_RESET_READ:
1004 T55xxResetRead();
1005 break;
1006 case CMD_PCF7931_READ:
1007 ReadPCF7931();
1008 break;
1009 case CMD_PCF7931_WRITE:
1010 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
1011 break;
1012 case CMD_EM4X_READ_WORD:
1013 EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]);
1014 break;
1015 case CMD_EM4X_WRITE_WORD:
1016 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
1017 break;
1018 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1019 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
1020 break;
1021 case CMD_VIKING_CLONE_TAG:
1022 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
1023 break;
1024 case CMD_COTAG:
1025 Cotag(c->arg[0]);
1026 break;
1027 #endif
1028
1029 #ifdef WITH_HITAG
1030 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1031 SnoopHitag(c->arg[0]);
1032 break;
1033 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1034 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1035 break;
1036 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1037 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1038 break;
1039 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1040 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1041 break;
1042 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
1043 check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes);
1044 break;
1045 case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge
1046 ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1047 break;
1048 case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge
1049 if ((hitag_function)c->arg[0] < 10) {
1050 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1051 }
1052 else if ((hitag_function)c->arg[0] >= 10) {
1053 WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]);
1054 }
1055 break;
1056 #endif
1057
1058 #ifdef WITH_ISO15693
1059 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1060 AcquireRawAdcSamplesIso15693();
1061 break;
1062 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1063 RecordRawAdcSamplesIso15693();
1064 break;
1065
1066 case CMD_ISO_15693_COMMAND:
1067 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1068 break;
1069
1070 case CMD_ISO_15693_FIND_AFI:
1071 BruteforceIso15693Afi(c->arg[0]);
1072 break;
1073
1074 case CMD_ISO_15693_DEBUG:
1075 SetDebugIso15693(c->arg[0]);
1076 break;
1077
1078 case CMD_READER_ISO_15693:
1079 ReaderIso15693(c->arg[0]);
1080 break;
1081 case CMD_SIMTAG_ISO_15693:
1082 SimTagIso15693(c->arg[0], c->d.asBytes);
1083 break;
1084 #endif
1085
1086 #ifdef WITH_LEGICRF
1087 case CMD_SIMULATE_TAG_LEGIC_RF:
1088 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1089 break;
1090
1091 case CMD_WRITER_LEGIC_RF:
1092 LegicRfWriter(c->arg[1], c->arg[0]);
1093 break;
1094
1095 case CMD_READER_LEGIC_RF:
1096 LegicRfReader(c->arg[0], c->arg[1]);
1097 break;
1098 #endif
1099
1100 #ifdef WITH_ISO14443b
1101 case CMD_READ_SRI512_TAG:
1102 ReadSTMemoryIso14443b(0x0F);
1103 break;
1104 case CMD_READ_SRIX4K_TAG:
1105 ReadSTMemoryIso14443b(0x7F);
1106 break;
1107 case CMD_SNOOP_ISO_14443B:
1108 SnoopIso14443b();
1109 break;
1110 case CMD_SIMULATE_TAG_ISO_14443B:
1111 SimulateIso14443bTag();
1112 break;
1113 case CMD_ISO_14443B_COMMAND:
1114 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1115 break;
1116 #endif
1117
1118 #ifdef WITH_ISO14443a
1119 case CMD_SNOOP_ISO_14443a:
1120 SnoopIso14443a(c->arg[0]);
1121 break;
1122 case CMD_READER_ISO_14443a:
1123 ReaderIso14443a(c);
1124 break;
1125 case CMD_SIMULATE_TAG_ISO_14443a:
1126 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1127 break;
1128
1129 case CMD_EPA_PACE_COLLECT_NONCE:
1130 EPA_PACE_Collect_Nonce(c);
1131 break;
1132 case CMD_EPA_PACE_REPLAY:
1133 EPA_PACE_Replay(c);
1134 break;
1135
1136 case CMD_READER_MIFARE:
1137 ReaderMifare(c->arg[0]);
1138 break;
1139 case CMD_MIFARE_READBL:
1140 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1141 break;
1142 case CMD_MIFAREU_READBL:
1143 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1144 break;
1145 case CMD_MIFAREUC_AUTH:
1146 MifareUC_Auth(c->arg[0],c->d.asBytes);
1147 break;
1148 case CMD_MIFAREU_READCARD:
1149 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1150 break;
1151 case CMD_MIFAREUC_SETPWD:
1152 MifareUSetPwd(c->arg[0], c->d.asBytes);
1153 break;
1154 case CMD_MIFARE_READSC:
1155 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1156 break;
1157 case CMD_MIFARE_WRITEBL:
1158 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1159 break;
1160 //case CMD_MIFAREU_WRITEBL_COMPAT:
1161 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1162 //break;
1163 case CMD_MIFAREU_WRITEBL:
1164 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1165 break;
1166 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1167 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1168 break;
1169 case CMD_MIFARE_NESTED:
1170 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1171 break;
1172 case CMD_MIFARE_CHKKEYS:
1173 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1174 break;
1175 case CMD_SIMULATE_MIFARE_CARD:
1176 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1177 break;
1178
1179 // emulator
1180 case CMD_MIFARE_SET_DBGMODE:
1181 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1182 break;
1183 case CMD_MIFARE_EML_MEMCLR:
1184 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1185 break;
1186 case CMD_MIFARE_EML_MEMSET:
1187 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1188 break;
1189 case CMD_MIFARE_EML_MEMGET:
1190 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1191 break;
1192 case CMD_MIFARE_EML_CARDLOAD:
1193 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1194 break;
1195
1196 // Work with "magic Chinese" card
1197 case CMD_MIFARE_CWIPE:
1198 MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1199 break;
1200 case CMD_MIFARE_CSETBLOCK:
1201 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1202 break;
1203 case CMD_MIFARE_CGETBLOCK:
1204 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1205 break;
1206 case CMD_MIFARE_CIDENT:
1207 MifareCIdent();
1208 break;
1209
1210 // mifare sniffer
1211 case CMD_MIFARE_SNIFFER:
1212 SniffMifare(c->arg[0]);
1213 break;
1214
1215 #endif
1216
1217 #ifdef WITH_ICLASS
1218 // Makes use of ISO14443a FPGA Firmware
1219 case CMD_SNOOP_ICLASS:
1220 SnoopIClass();
1221 break;
1222 case CMD_SIMULATE_TAG_ICLASS:
1223 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1224 break;
1225 case CMD_READER_ICLASS:
1226 ReaderIClass(c->arg[0]);
1227 break;
1228 case CMD_READER_ICLASS_REPLAY:
1229 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1230 break;
1231 case CMD_ICLASS_EML_MEMSET:
1232 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1233 break;
1234 case CMD_ICLASS_WRITEBLOCK:
1235 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1236 break;
1237 case CMD_ICLASS_READCHECK: // auth step 1
1238 iClass_ReadCheck(c->arg[0], c->arg[1]);
1239 break;
1240 case CMD_ICLASS_READBLOCK:
1241 iClass_ReadBlk(c->arg[0]);
1242 break;
1243 case CMD_ICLASS_AUTHENTICATION: //check
1244 iClass_Authentication(c->d.asBytes);
1245 break;
1246 case CMD_ICLASS_DUMP:
1247 iClass_Dump(c->arg[0], c->arg[1]);
1248 break;
1249 case CMD_ICLASS_CLONE:
1250 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1251 break;
1252 #endif
1253 #ifdef WITH_HFSNOOP
1254 case CMD_HF_SNIFFER:
1255 HfSnoop(c->arg[0], c->arg[1]);
1256 break;
1257 #endif
1258
1259 case CMD_BUFF_CLEAR:
1260 BigBuf_Clear();
1261 break;
1262
1263 case CMD_MEASURE_ANTENNA_TUNING:
1264 MeasureAntennaTuning(c->arg[0]);
1265 break;
1266
1267 case CMD_MEASURE_ANTENNA_TUNING_HF:
1268 MeasureAntennaTuningHf();
1269 break;
1270
1271 case CMD_LISTEN_READER_FIELD:
1272 ListenReaderField(c->arg[0]);
1273 break;
1274
1275 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1276 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1277 SpinDelay(200);
1278 LED_D_OFF(); // LED D indicates field ON or OFF
1279 break;
1280
1281 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
1282
1283 LED_B_ON();
1284 uint8_t *BigBuf = BigBuf_get_addr();
1285 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1286 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
1287 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1288 }
1289 // Trigger a finish downloading signal with an ACK frame
1290 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
1291 LED_B_OFF();
1292 break;
1293
1294 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1295 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1296 // to be able to use this one for uploading data to device
1297 // arg1 = 0 upload for LF usage
1298 // 1 upload for HF usage
1299 if (c->arg[1] == 0)
1300 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1301 else
1302 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1303
1304 uint8_t *b = BigBuf_get_addr();
1305 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1306 cmd_send(CMD_ACK,0,0,0,0,0);
1307 break;
1308 }
1309 case CMD_READ_MEM:
1310 ReadMem(c->arg[0]);
1311 break;
1312
1313 case CMD_SET_LF_DIVISOR:
1314 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1315 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1316 break;
1317
1318 case CMD_SET_ADC_MUX:
1319 switch(c->arg[0]) {
1320 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1321 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1322 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1323 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1324 }
1325 break;
1326
1327 case CMD_VERSION:
1328 SendVersion();
1329 break;
1330 case CMD_STATUS:
1331 SendStatus();
1332 break;
1333 case CMD_PING:
1334 cmd_send(CMD_ACK,0,0,0,0,0);
1335 break;
1336 #ifdef WITH_LCD
1337 case CMD_LCD_RESET:
1338 LCDReset();
1339 break;
1340 case CMD_LCD:
1341 LCDSend(c->arg[0]);
1342 break;
1343 #endif
1344 case CMD_SETUP_WRITE:
1345 case CMD_FINISH_WRITE:
1346 case CMD_HARDWARE_RESET:
1347 usb_disable();
1348 SpinDelay(1000);
1349 SpinDelay(1000);
1350 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1351 for(;;) {
1352 // We're going to reset, and the bootrom will take control.
1353 }
1354 break;
1355
1356 case CMD_START_FLASH:
1357 if(common_area.flags.bootrom_present) {
1358 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1359 }
1360 usb_disable();
1361 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1362 for(;;);
1363 break;
1364
1365 case CMD_DEVICE_INFO: {
1366 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1367 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1368 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1369 break;
1370 }
1371 default:
1372 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1373 break;
1374 }
1375 }
1376
1377 void __attribute__((noreturn)) AppMain(void)
1378 {
1379 SpinDelay(100);
1380 clear_trace();
1381 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1382 /* Initialize common area */
1383 memset(&common_area, 0, sizeof(common_area));
1384 common_area.magic = COMMON_AREA_MAGIC;
1385 common_area.version = 1;
1386 }
1387 common_area.flags.osimage_present = 1;
1388
1389 LED_D_OFF();
1390 LED_C_OFF();
1391 LED_B_OFF();
1392 LED_A_OFF();
1393
1394 // Init USB device
1395 usb_enable();
1396
1397 // The FPGA gets its clock from us from PCK0 output, so set that up.
1398 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1399 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1400 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1401 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1402 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1403 AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1404 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1405
1406 // Reset SPI
1407 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1408 // Reset SSC
1409 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1410
1411 // Load the FPGA image, which we have stored in our flash.
1412 // (the HF version by default)
1413 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1414
1415 StartTickCount();
1416
1417 #ifdef WITH_LCD
1418 LCDInit();
1419 #endif
1420
1421 byte_t rx[sizeof(UsbCommand)];
1422 size_t rx_len;
1423
1424 for(;;) {
1425 if (usb_poll()) {
1426 rx_len = usb_read(rx,sizeof(UsbCommand));
1427 if (rx_len) {
1428 UsbPacketReceived(rx,rx_len);
1429 }
1430 }
1431 WDT_HIT();
1432
1433 #ifdef WITH_LF
1434 #ifndef WITH_ISO14443a_StandAlone
1435 if (BUTTON_HELD(1000) > 0)
1436 SamyRun();
1437 #endif
1438 #endif
1439 #ifdef WITH_ISO14443a
1440 #ifdef WITH_ISO14443a_StandAlone
1441 if (BUTTON_HELD(1000) > 0)
1442 StandAloneMode14a();
1443 #endif
1444 #endif
1445 }
1446 }
Impressum, Datenschutz