1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
25 * @brief Pushes bit onto the stream
29 void pushBit( BitstreamOut
* stream
, bool bit
)
31 int bytepos
= stream
->position
>> 3; // divide by 8
32 int bitpos
= stream
->position
& 7;
33 *(stream
->buffer
+bytepos
) |= (bit
& 1) << (7 - bitpos
);
38 * @brief Does LF sample acquisition, this method implements decimation and quantization in order to
39 * be able to provide longer sample traces.
40 * @param decimation - how much should the signal be decimated. A decimation of 1 means every sample, 2 means
41 * every other sample, etc.
42 * @param bits_per_sample - bits per sample. Max 8, min 1 bit per sample.
43 * @param trigger_threshold - a threshold. The sampling won't commence until this threshold has been reached. Set
44 * to -1 to ignore threshold.
45 * @param averaging If set to true, decimation will use averaging, so that if e.g. decimation is 3, the sample
46 * value that will be used is the average value of the three samples.
47 * @return the number of bits occupied by the samples.
49 uint8_t DoAcquisition(int decimation
, int bits_per_sample
, int trigger_threshold
, bool averaging
)
51 //A decimation of 2 means we keep every 2nd sample
52 //A decimation of 3 means we keep 1 in 3 samples.
53 //A quantization of 1 means one bit is discarded from the sample (division by 2).
54 uint8_t *dest
= (uint8_t *)BigBuf
;
55 int bufsize
= BIGBUF_SIZE
;
56 memset(dest
, 0, bufsize
);
57 if(bits_per_sample
< 1) bits_per_sample
= 1;
58 if(bits_per_sample
> 8) bits_per_sample
= 8;
60 // Use a bit stream to handle the output
61 BitstreamOut data
= { dest
, 0, 0};
62 int sample_counter
= 0;
64 //If we want to do averaging
65 uint32_t sample_sum
=0 ;
66 uint32_t sample_total_numbers
=0 ;
67 uint32_t sample_total_saved
=0 ;
71 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
72 AT91C_BASE_SSC
->SSC_THR
= 0x43;
75 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
76 sample
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
77 if (trigger_threshold
!= -1 && sample
< trigger_threshold
)
79 sample_total_numbers
++;
82 trigger_threshold
= -1;
86 if(sample_counter
< decimation
) continue;
88 if(averaging
) sample
= sample_sum
/ decimation
;
92 sample_total_saved
++;
93 pushBit(&data
, sample
& 0x80);
94 if(bits_per_sample
> 1) pushBit(&data
, sample
& 0x40);
95 if(bits_per_sample
> 2) pushBit(&data
, sample
& 0x20);
96 if(bits_per_sample
> 3) pushBit(&data
, sample
& 0x10);
97 if(bits_per_sample
> 4) pushBit(&data
, sample
& 0x08);
98 if(bits_per_sample
> 5) pushBit(&data
, sample
& 0x04);
99 if(bits_per_sample
> 6) pushBit(&data
, sample
& 0x02);
100 if(bits_per_sample
> 7) pushBit(&data
, sample
& 0x01);
102 if((data
.numbits
>> 3) +1 >= bufsize
) break;
105 Dbprintf("Done, saved %l out of %l seen samples.",sample_total_saved
, sample_total_numbers
);
112 * Does the sample acquisition. If threshold is specified, the actual sampling
113 * is not commenced until the threshold has been reached.
114 * @param trigger_threshold - the threshold
115 * @param silent - is true, now outputs are made. If false, dbprints the status
117 void DoAcquisition125k_internal(int trigger_threshold
,bool silent
)
119 uint8_t *dest
= (uint8_t *)BigBuf
;
120 int n
= sizeof(BigBuf
);
126 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
127 AT91C_BASE_SSC
->SSC_THR
= 0x43;
130 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
131 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
133 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
136 trigger_threshold
= -1;
142 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
143 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
148 * Perform sample aquisition.
150 void DoAcquisition125k(int trigger_threshold
)
152 DoAcquisition125k_internal(trigger_threshold
, false);
156 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
157 * if not already loaded, sets divisor and starts up the antenna.
158 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
159 * 0 or 95 ==> 125 KHz
162 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
164 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
165 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
166 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
167 else if (divisor
== 0)
168 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
170 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
172 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
174 // Connect the A/D to the peak-detected low-frequency path.
175 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
176 // Give it a bit of time for the resonant antenna to settle.
178 // Now set up the SSC to get the ADC samples that are now streaming at us.
182 * Initializes the FPGA, and acquires the samples.
184 void AcquireRawAdcSamples125k(int divisor
)
186 LFSetupFPGAForADC(divisor
, true);
187 // Now call the acquisition routine
188 DoAcquisition125k_internal(-1,false);
191 * Initializes the FPGA for snoop-mode, and acquires the samples.
194 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
196 LFSetupFPGAForADC(divisor
, false);
197 DoAcquisition125k(trigger_threshold
);
200 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
203 /* Make sure the tag is reset */
204 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
205 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
209 int divisor_used
= 95; // 125 KHz
210 // see if 'h' was specified
212 if (command
[strlen((char *) command
) - 1] == 'h')
213 divisor_used
= 88; // 134.8 KHz
216 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
217 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
218 // Give it a bit of time for the resonant antenna to settle.
221 // And a little more time for the tag to fully power up
224 // Now set up the SSC to get the ADC samples that are now streaming at us.
227 // now modulate the reader field
228 while(*command
!= '\0' && *command
!= ' ') {
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
231 SpinDelayUs(delay_off
);
232 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
234 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
236 if(*(command
++) == '0')
237 SpinDelayUs(period_0
);
239 SpinDelayUs(period_1
);
241 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
243 SpinDelayUs(delay_off
);
244 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
246 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
249 DoAcquisition125k(-1);
252 /* blank r/w tag data stream
253 ...0000000000000000 01111111
254 1010101010101010101010101010101010101010101010101010101010101010
257 101010101010101[0]000...
259 [5555fe852c5555555555555555fe0000]
263 // some hardcoded initial params
264 // when we read a TI tag we sample the zerocross line at 2Mhz
265 // TI tags modulate a 1 as 16 cycles of 123.2Khz
266 // TI tags modulate a 0 as 16 cycles of 134.2Khz
267 #define FSAMPLE 2000000
268 #define FREQLO 123200
269 #define FREQHI 134200
271 signed char *dest
= (signed char *)BigBuf
;
272 int n
= sizeof(BigBuf
);
273 // 128 bit shift register [shift3:shift2:shift1:shift0]
274 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
276 int i
, cycles
=0, samples
=0;
277 // how many sample points fit in 16 cycles of each frequency
278 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
279 // when to tell if we're close enough to one freq or another
280 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
282 // TI tags charge at 134.2Khz
283 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
284 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
286 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
287 // connects to SSP_DIN and the SSP_DOUT logic level controls
288 // whether we're modulating the antenna (high)
289 // or listening to the antenna (low)
290 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
292 // get TI tag data into the buffer
295 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
297 for (i
=0; i
<n
-1; i
++) {
298 // count cycles by looking for lo to hi zero crossings
299 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
301 // after 16 cycles, measure the frequency
304 samples
=i
-samples
; // number of samples in these 16 cycles
306 // TI bits are coming to us lsb first so shift them
307 // right through our 128 bit right shift register
308 shift0
= (shift0
>>1) | (shift1
<< 31);
309 shift1
= (shift1
>>1) | (shift2
<< 31);
310 shift2
= (shift2
>>1) | (shift3
<< 31);
313 // check if the cycles fall close to the number
314 // expected for either the low or high frequency
315 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
316 // low frequency represents a 1
318 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
319 // high frequency represents a 0
321 // probably detected a gay waveform or noise
322 // use this as gaydar or discard shift register and start again
323 shift3
= shift2
= shift1
= shift0
= 0;
327 // for each bit we receive, test if we've detected a valid tag
329 // if we see 17 zeroes followed by 6 ones, we might have a tag
330 // remember the bits are backwards
331 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
332 // if start and end bytes match, we have a tag so break out of the loop
333 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
334 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
342 // if flag is set we have a tag
344 DbpString("Info: No valid tag detected.");
346 // put 64 bit data into shift1 and shift0
347 shift0
= (shift0
>>24) | (shift1
<< 8);
348 shift1
= (shift1
>>24) | (shift2
<< 8);
350 // align 16 bit crc into lower half of shift2
351 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
353 // if r/w tag, check ident match
354 if (shift3
& (1<<15) ) {
355 DbpString("Info: TI tag is rewriteable");
356 // only 15 bits compare, last bit of ident is not valid
357 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
358 DbpString("Error: Ident mismatch!");
360 DbpString("Info: TI tag ident is valid");
363 DbpString("Info: TI tag is readonly");
366 // WARNING the order of the bytes in which we calc crc below needs checking
367 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
368 // bytes in reverse or something
372 crc
= update_crc16(crc
, (shift0
)&0xff);
373 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
374 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
375 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
376 crc
= update_crc16(crc
, (shift1
)&0xff);
377 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
378 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
379 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
381 Dbprintf("Info: Tag data: %x%08x, crc=%x",
382 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
383 if (crc
!= (shift2
&0xffff)) {
384 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
386 DbpString("Info: CRC is good");
391 void WriteTIbyte(uint8_t b
)
395 // modulate 8 bits out to the antenna
399 // stop modulating antenna
406 // stop modulating antenna
416 void AcquireTiType(void)
419 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
420 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
421 #define TIBUFLEN 1250
424 memset(BigBuf
,0,sizeof(BigBuf
));
426 // Set up the synchronous serial port
427 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
428 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
430 // steal this pin from the SSP and use it to control the modulation
431 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
432 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
434 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
435 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
437 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
438 // 48/2 = 24 MHz clock must be divided by 12
439 AT91C_BASE_SSC
->SSC_CMR
= 12;
441 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
442 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
443 AT91C_BASE_SSC
->SSC_TCMR
= 0;
444 AT91C_BASE_SSC
->SSC_TFMR
= 0;
451 // Charge TI tag for 50ms.
454 // stop modulating antenna and listen
461 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
462 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
463 i
++; if(i
>= TIBUFLEN
) break;
468 // return stolen pin to SSP
469 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
470 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
472 char *dest
= (char *)BigBuf
;
475 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
476 for (j
=0; j
<32; j
++) {
477 if(BigBuf
[i
] & (1 << j
)) {
486 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
487 // if crc provided, it will be written with the data verbatim (even if bogus)
488 // if not provided a valid crc will be computed from the data and written.
489 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
491 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
493 crc
= update_crc16(crc
, (idlo
)&0xff);
494 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
495 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
496 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
497 crc
= update_crc16(crc
, (idhi
)&0xff);
498 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
499 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
500 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
502 Dbprintf("Writing to tag: %x%08x, crc=%x",
503 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
505 // TI tags charge at 134.2Khz
506 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
507 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
508 // connects to SSP_DIN and the SSP_DOUT logic level controls
509 // whether we're modulating the antenna (high)
510 // or listening to the antenna (low)
511 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
514 // steal this pin from the SSP and use it to control the modulation
515 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
516 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
518 // writing algorithm:
519 // a high bit consists of a field off for 1ms and field on for 1ms
520 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
521 // initiate a charge time of 50ms (field on) then immediately start writing bits
522 // start by writing 0xBB (keyword) and 0xEB (password)
523 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
524 // finally end with 0x0300 (write frame)
525 // all data is sent lsb firts
526 // finish with 15ms programming time
530 SpinDelay(50); // charge time
532 WriteTIbyte(0xbb); // keyword
533 WriteTIbyte(0xeb); // password
534 WriteTIbyte( (idlo
)&0xff );
535 WriteTIbyte( (idlo
>>8 )&0xff );
536 WriteTIbyte( (idlo
>>16)&0xff );
537 WriteTIbyte( (idlo
>>24)&0xff );
538 WriteTIbyte( (idhi
)&0xff );
539 WriteTIbyte( (idhi
>>8 )&0xff );
540 WriteTIbyte( (idhi
>>16)&0xff );
541 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
542 WriteTIbyte( (crc
)&0xff ); // crc lo
543 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
544 WriteTIbyte(0x00); // write frame lo
545 WriteTIbyte(0x03); // write frame hi
547 SpinDelay(50); // programming time
551 // get TI tag data into the buffer
554 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
555 DbpString("Now use tiread to check");
558 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
561 uint8_t *tab
= (uint8_t *)BigBuf
;
563 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
564 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
566 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
568 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
569 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
571 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
572 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
576 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
578 DbpString("Stopped");
595 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
597 DbpString("Stopped");
614 #define DEBUG_FRAME_CONTENTS 1
615 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
619 // compose fc/8 fc/10 waveform
620 static void fc(int c
, int *n
) {
621 uint8_t *dest
= (uint8_t *)BigBuf
;
624 // for when we want an fc8 pattern every 4 logical bits
635 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
637 for (idx
=0; idx
<6; idx
++) {
649 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
651 for (idx
=0; idx
<5; idx
++) {
666 // prepare a waveform pattern in the buffer based on the ID given then
667 // simulate a HID tag until the button is pressed
668 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
672 HID tag bitstream format
673 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
674 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
675 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
676 A fc8 is inserted before every 4 bits
677 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
678 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
682 DbpString("Tags can only have 44 bits.");
686 // special start of frame marker containing invalid bit sequences
687 fc(8, &n
); fc(8, &n
); // invalid
688 fc(8, &n
); fc(10, &n
); // logical 0
689 fc(10, &n
); fc(10, &n
); // invalid
690 fc(8, &n
); fc(10, &n
); // logical 0
693 // manchester encode bits 43 to 32
694 for (i
=11; i
>=0; i
--) {
695 if ((i
%4)==3) fc(0,&n
);
697 fc(10, &n
); fc(8, &n
); // low-high transition
699 fc(8, &n
); fc(10, &n
); // high-low transition
704 // manchester encode bits 31 to 0
705 for (i
=31; i
>=0; i
--) {
706 if ((i
%4)==3) fc(0,&n
);
708 fc(10, &n
); fc(8, &n
); // low-high transition
710 fc(8, &n
); fc(10, &n
); // high-low transition
716 SimulateTagLowFrequency(n
, 0, ledcontrol
);
722 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
723 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
725 uint8_t *dest
= (uint8_t *)BigBuf
;
727 size_t size
=0; //, found=0;
728 uint32_t hi2
=0, hi
=0, lo
=0;
730 // Configure to go in 125Khz listen mode
731 LFSetupFPGAForADC(95, true);
733 while(!BUTTON_PRESS()) {
736 if (ledcontrol
) LED_A_ON();
738 DoAcquisition125k_internal(-1,true);
740 size
= HIDdemodFSK(dest
, sizeof(BigBuf
), &hi2
, &hi
, &lo
);
745 // final loop, go over previously decoded manchester data and decode into usable tag ID
746 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
747 if (hi2
!= 0){ //extra large HID tags
748 Dbprintf("TAG ID: %x%08x%08x (%d)",
749 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
750 }else { //standard HID tags <38 bits
751 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
754 uint32_t cardnum
= 0;
755 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
757 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
759 while(lo2
> 1){ //find last bit set to 1 (format len bit)
767 cardnum
= (lo
>>1)&0xFFFF;
771 cardnum
= (lo
>>1)&0x7FFFF;
772 fc
= ((hi
&0xF)<<12)|(lo
>>20);
775 cardnum
= (lo
>>1)&0xFFFF;
776 fc
= ((hi
&1)<<15)|(lo
>>17);
779 cardnum
= (lo
>>1)&0xFFFFF;
780 fc
= ((hi
&1)<<11)|(lo
>>21);
783 else { //if bit 38 is not set then 37 bit format is used
788 cardnum
= (lo
>>1)&0x7FFFF;
789 fc
= ((hi
&0xF)<<12)|(lo
>>20);
792 //Dbprintf("TAG ID: %x%08x (%d)",
793 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
794 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
795 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
796 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
799 if (ledcontrol
) LED_A_OFF();
807 DbpString("Stopped");
808 if (ledcontrol
) LED_A_OFF();
811 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
813 uint8_t *dest
= (uint8_t *)BigBuf
;
816 int clk
=0, invert
=0, errCnt
=0;
818 // Configure to go in 125Khz listen mode
819 LFSetupFPGAForADC(95, true);
821 while(!BUTTON_PRESS()) {
824 if (ledcontrol
) LED_A_ON();
826 DoAcquisition125k_internal(-1,true);
827 size
= sizeof(BigBuf
);
828 //Dbprintf("DEBUG: Buffer got");
829 //askdemod and manchester decode
830 errCnt
= askmandemod(dest
, &size
, &clk
, &invert
);
831 //Dbprintf("DEBUG: ASK Got");
835 lo
= Em410xDecode(dest
,size
);
836 //Dbprintf("DEBUG: EM GOT");
838 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
841 (uint32_t)(lo
&0xFFFF),
842 (uint32_t)((lo
>>16LL) & 0xFF),
843 (uint32_t)(lo
& 0xFFFFFF));
846 if (ledcontrol
) LED_A_OFF();
850 //Dbprintf("DEBUG: No Tag");
859 DbpString("Stopped");
860 if (ledcontrol
) LED_A_OFF();
863 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
865 uint8_t *dest
= (uint8_t *)BigBuf
;
867 uint32_t code
=0, code2
=0;
869 uint8_t facilitycode
=0;
871 // Configure to go in 125Khz listen mode
872 LFSetupFPGAForADC(95, true);
874 while(!BUTTON_PRESS()) {
876 if (ledcontrol
) LED_A_ON();
877 DoAcquisition125k_internal(-1,true);
878 //fskdemod and get start index
880 idx
= IOdemodFSK(dest
,sizeof(BigBuf
));
885 //0 10 20 30 40 50 60
887 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
888 //-----------------------------------------------------------------------------
889 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
891 //XSF(version)facility:codeone+codetwo
893 if(findone
){ //only print binary if we are doing one
894 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
895 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
896 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
897 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
898 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
899 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
900 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
902 code
= bytebits_to_byte(dest
+idx
,32);
903 code2
= bytebits_to_byte(dest
+idx
+32,32);
904 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
905 facilitycode
= bytebits_to_byte(dest
+idx
+18,8) ;
906 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
908 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
909 // if we're only looking for one tag
911 if (ledcontrol
) LED_A_OFF();
916 version
=facilitycode
=0;
922 DbpString("Stopped");
923 if (ledcontrol
) LED_A_OFF();
926 /*------------------------------
927 * T5555/T5557/T5567 routines
928 *------------------------------
931 /* T55x7 configuration register definitions */
932 #define T55x7_POR_DELAY 0x00000001
933 #define T55x7_ST_TERMINATOR 0x00000008
934 #define T55x7_PWD 0x00000010
935 #define T55x7_MAXBLOCK_SHIFT 5
936 #define T55x7_AOR 0x00000200
937 #define T55x7_PSKCF_RF_2 0
938 #define T55x7_PSKCF_RF_4 0x00000400
939 #define T55x7_PSKCF_RF_8 0x00000800
940 #define T55x7_MODULATION_DIRECT 0
941 #define T55x7_MODULATION_PSK1 0x00001000
942 #define T55x7_MODULATION_PSK2 0x00002000
943 #define T55x7_MODULATION_PSK3 0x00003000
944 #define T55x7_MODULATION_FSK1 0x00004000
945 #define T55x7_MODULATION_FSK2 0x00005000
946 #define T55x7_MODULATION_FSK1a 0x00006000
947 #define T55x7_MODULATION_FSK2a 0x00007000
948 #define T55x7_MODULATION_MANCHESTER 0x00008000
949 #define T55x7_MODULATION_BIPHASE 0x00010000
950 #define T55x7_BITRATE_RF_8 0
951 #define T55x7_BITRATE_RF_16 0x00040000
952 #define T55x7_BITRATE_RF_32 0x00080000
953 #define T55x7_BITRATE_RF_40 0x000C0000
954 #define T55x7_BITRATE_RF_50 0x00100000
955 #define T55x7_BITRATE_RF_64 0x00140000
956 #define T55x7_BITRATE_RF_100 0x00180000
957 #define T55x7_BITRATE_RF_128 0x001C0000
959 /* T5555 (Q5) configuration register definitions */
960 #define T5555_ST_TERMINATOR 0x00000001
961 #define T5555_MAXBLOCK_SHIFT 0x00000001
962 #define T5555_MODULATION_MANCHESTER 0
963 #define T5555_MODULATION_PSK1 0x00000010
964 #define T5555_MODULATION_PSK2 0x00000020
965 #define T5555_MODULATION_PSK3 0x00000030
966 #define T5555_MODULATION_FSK1 0x00000040
967 #define T5555_MODULATION_FSK2 0x00000050
968 #define T5555_MODULATION_BIPHASE 0x00000060
969 #define T5555_MODULATION_DIRECT 0x00000070
970 #define T5555_INVERT_OUTPUT 0x00000080
971 #define T5555_PSK_RF_2 0
972 #define T5555_PSK_RF_4 0x00000100
973 #define T5555_PSK_RF_8 0x00000200
974 #define T5555_USE_PWD 0x00000400
975 #define T5555_USE_AOR 0x00000800
976 #define T5555_BITRATE_SHIFT 12
977 #define T5555_FAST_WRITE 0x00004000
978 #define T5555_PAGE_SELECT 0x00008000
981 * Relevant times in microsecond
982 * To compensate antenna falling times shorten the write times
983 * and enlarge the gap ones.
985 #define START_GAP 250
986 #define WRITE_GAP 160
987 #define WRITE_0 144 // 192
988 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
990 // Write one bit to card
991 void T55xxWriteBit(int bit
)
993 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
994 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
995 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
997 SpinDelayUs(WRITE_0
);
999 SpinDelayUs(WRITE_1
);
1000 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1001 SpinDelayUs(WRITE_GAP
);
1004 // Write one card block in page 0, no lock
1005 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1007 //unsigned int i; //enio adjustment 12/10/14
1010 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1011 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1012 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1014 // Give it a bit of time for the resonant antenna to settle.
1015 // And for the tag to fully power up
1018 // Now start writting
1019 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1020 SpinDelayUs(START_GAP
);
1024 T55xxWriteBit(0); //Page 0
1027 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1028 T55xxWriteBit(Pwd
& i
);
1034 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1035 T55xxWriteBit(Data
& i
);
1038 for (i
= 0x04; i
!= 0; i
>>= 1)
1039 T55xxWriteBit(Block
& i
);
1041 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1042 // so wait a little more)
1043 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1044 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1046 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1049 // Read one card block in page 0
1050 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1052 uint8_t *dest
= (uint8_t *)BigBuf
;
1053 //int m=0, i=0; //enio adjustment 12/10/14
1055 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1057 // Clear destination buffer before sending the command
1058 memset(dest
, 128, m
);
1059 // Connect the A/D to the peak-detected low-frequency path.
1060 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1061 // Now set up the SSC to get the ADC samples that are now streaming at us.
1065 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1066 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1068 // Give it a bit of time for the resonant antenna to settle.
1069 // And for the tag to fully power up
1072 // Now start writting
1073 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1074 SpinDelayUs(START_GAP
);
1078 T55xxWriteBit(0); //Page 0
1081 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1082 T55xxWriteBit(Pwd
& i
);
1087 for (i
= 0x04; i
!= 0; i
>>= 1)
1088 T55xxWriteBit(Block
& i
);
1090 // Turn field on to read the response
1091 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1092 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1094 // Now do the acquisition
1097 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1098 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1100 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1101 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1102 // we don't care about actual value, only if it's more or less than a
1103 // threshold essentially we capture zero crossings for later analysis
1104 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1110 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1115 // Read card traceability data (page 1)
1116 void T55xxReadTrace(void){
1117 uint8_t *dest
= (uint8_t *)BigBuf
;
1120 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1122 // Clear destination buffer before sending the command
1123 memset(dest
, 128, m
);
1124 // Connect the A/D to the peak-detected low-frequency path.
1125 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1126 // Now set up the SSC to get the ADC samples that are now streaming at us.
1130 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1131 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1133 // Give it a bit of time for the resonant antenna to settle.
1134 // And for the tag to fully power up
1137 // Now start writting
1138 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1139 SpinDelayUs(START_GAP
);
1143 T55xxWriteBit(1); //Page 1
1145 // Turn field on to read the response
1146 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1147 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1149 // Now do the acquisition
1152 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1153 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1155 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1156 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1162 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1167 /*-------------- Cloning routines -----------*/
1168 // Copy HID id to card and setup block 0 config
1169 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1171 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1175 // Ensure no more than 84 bits supplied
1177 DbpString("Tags can only have 84 bits.");
1180 // Build the 6 data blocks for supplied 84bit ID
1182 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1183 for (int i
=0;i
<4;i
++) {
1184 if (hi2
& (1<<(19-i
)))
1185 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1187 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1191 for (int i
=0;i
<16;i
++) {
1192 if (hi2
& (1<<(15-i
)))
1193 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1195 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1199 for (int i
=0;i
<16;i
++) {
1200 if (hi
& (1<<(31-i
)))
1201 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1203 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1207 for (int i
=0;i
<16;i
++) {
1208 if (hi
& (1<<(15-i
)))
1209 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1211 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1215 for (int i
=0;i
<16;i
++) {
1216 if (lo
& (1<<(31-i
)))
1217 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1219 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1223 for (int i
=0;i
<16;i
++) {
1224 if (lo
& (1<<(15-i
)))
1225 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1227 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1231 // Ensure no more than 44 bits supplied
1233 DbpString("Tags can only have 44 bits.");
1237 // Build the 3 data blocks for supplied 44bit ID
1240 data1
= 0x1D000000; // load preamble
1242 for (int i
=0;i
<12;i
++) {
1243 if (hi
& (1<<(11-i
)))
1244 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1246 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1250 for (int i
=0;i
<16;i
++) {
1251 if (lo
& (1<<(31-i
)))
1252 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1254 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1258 for (int i
=0;i
<16;i
++) {
1259 if (lo
& (1<<(15-i
)))
1260 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1262 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1267 // Program the data blocks for supplied ID
1268 // and the block 0 for HID format
1269 T55xxWriteBlock(data1
,1,0,0);
1270 T55xxWriteBlock(data2
,2,0,0);
1271 T55xxWriteBlock(data3
,3,0,0);
1273 if (longFMT
) { // if long format there are 6 blocks
1274 T55xxWriteBlock(data4
,4,0,0);
1275 T55xxWriteBlock(data5
,5,0,0);
1276 T55xxWriteBlock(data6
,6,0,0);
1279 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1280 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1281 T55x7_MODULATION_FSK2a
|
1282 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1290 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1292 int data1
=0, data2
=0; //up to six blocks for long format
1294 data1
= hi
; // load preamble
1298 // Program the data blocks for supplied ID
1299 // and the block 0 for HID format
1300 T55xxWriteBlock(data1
,1,0,0);
1301 T55xxWriteBlock(data2
,2,0,0);
1304 T55xxWriteBlock(0x00147040,0,0,0);
1310 // Define 9bit header for EM410x tags
1311 #define EM410X_HEADER 0x1FF
1312 #define EM410X_ID_LENGTH 40
1314 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1317 uint64_t id
= EM410X_HEADER
;
1318 uint64_t rev_id
= 0; // reversed ID
1319 int c_parity
[4]; // column parity
1320 int r_parity
= 0; // row parity
1323 // Reverse ID bits given as parameter (for simpler operations)
1324 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1326 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1329 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1334 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1335 id_bit
= rev_id
& 1;
1338 // Don't write row parity bit at start of parsing
1340 id
= (id
<< 1) | r_parity
;
1341 // Start counting parity for new row
1348 // First elements in column?
1350 // Fill out first elements
1351 c_parity
[i
] = id_bit
;
1353 // Count column parity
1354 c_parity
[i
% 4] ^= id_bit
;
1357 id
= (id
<< 1) | id_bit
;
1361 // Insert parity bit of last row
1362 id
= (id
<< 1) | r_parity
;
1364 // Fill out column parity at the end of tag
1365 for (i
= 0; i
< 4; ++i
)
1366 id
= (id
<< 1) | c_parity
[i
];
1371 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1375 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1376 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1378 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1380 // Clock rate is stored in bits 8-15 of the card value
1381 clock
= (card
& 0xFF00) >> 8;
1382 Dbprintf("Clock rate: %d", clock
);
1386 clock
= T55x7_BITRATE_RF_32
;
1389 clock
= T55x7_BITRATE_RF_16
;
1392 // A value of 0 is assumed to be 64 for backwards-compatibility
1395 clock
= T55x7_BITRATE_RF_64
;
1398 Dbprintf("Invalid clock rate: %d", clock
);
1402 // Writing configuration for T55x7 tag
1403 T55xxWriteBlock(clock
|
1404 T55x7_MODULATION_MANCHESTER
|
1405 2 << T55x7_MAXBLOCK_SHIFT
,
1409 // Writing configuration for T5555(Q5) tag
1410 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1411 T5555_MODULATION_MANCHESTER
|
1412 2 << T5555_MAXBLOCK_SHIFT
,
1416 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1417 (uint32_t)(id
>> 32), (uint32_t)id
);
1420 // Clone Indala 64-bit tag by UID to T55x7
1421 void CopyIndala64toT55x7(int hi
, int lo
)
1424 //Program the 2 data blocks for supplied 64bit UID
1425 // and the block 0 for Indala64 format
1426 T55xxWriteBlock(hi
,1,0,0);
1427 T55xxWriteBlock(lo
,2,0,0);
1428 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1429 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1430 T55x7_MODULATION_PSK1
|
1431 2 << T55x7_MAXBLOCK_SHIFT
,
1433 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1434 // T5567WriteBlock(0x603E1042,0);
1440 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1443 //Program the 7 data blocks for supplied 224bit UID
1444 // and the block 0 for Indala224 format
1445 T55xxWriteBlock(uid1
,1,0,0);
1446 T55xxWriteBlock(uid2
,2,0,0);
1447 T55xxWriteBlock(uid3
,3,0,0);
1448 T55xxWriteBlock(uid4
,4,0,0);
1449 T55xxWriteBlock(uid5
,5,0,0);
1450 T55xxWriteBlock(uid6
,6,0,0);
1451 T55xxWriteBlock(uid7
,7,0,0);
1452 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1453 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1454 T55x7_MODULATION_PSK1
|
1455 7 << T55x7_MAXBLOCK_SHIFT
,
1457 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1458 // T5567WriteBlock(0x603E10E2,0);
1465 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1466 #define max(x,y) ( x<y ? y:x)
1468 int DemodPCF7931(uint8_t **outBlocks
) {
1469 uint8_t BitStream
[256];
1470 uint8_t Blocks
[8][16];
1471 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1472 int GraphTraceLen
= sizeof(BigBuf
);
1473 int i
, j
, lastval
, bitidx
, half_switch
;
1475 int tolerance
= clock
/ 8;
1476 int pmc
, block_done
;
1477 int lc
, warnings
= 0;
1479 int lmin
=128, lmax
=128;
1482 AcquireRawAdcSamples125k(0);
1489 /* Find first local max/min */
1490 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1491 while(i
< GraphTraceLen
) {
1492 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1499 while(i
< GraphTraceLen
) {
1500 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1512 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1514 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1519 // Switch depending on lc length:
1520 // Tolerance is 1/8 of clock rate (arbitrary)
1521 if (abs(lc
-clock
/4) < tolerance
) {
1523 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1525 i
+= (128+127+16+32+33+16)-1;
1533 } else if (abs(lc
-clock
/2) < tolerance
) {
1535 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1537 i
+= (128+127+16+32+33)-1;
1542 else if(half_switch
== 1) {
1543 BitStream
[bitidx
++] = 0;
1548 } else if (abs(lc
-clock
) < tolerance
) {
1550 BitStream
[bitidx
++] = 1;
1556 Dbprintf("Error: too many detection errors, aborting.");
1561 if(block_done
== 1) {
1563 for(j
=0; j
<16; j
++) {
1564 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1565 64*BitStream
[j
*8+6]+
1566 32*BitStream
[j
*8+5]+
1567 16*BitStream
[j
*8+4]+
1579 if(i
< GraphTraceLen
)
1581 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1588 if(num_blocks
== 4) break;
1590 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1594 int IsBlock0PCF7931(uint8_t *Block
) {
1595 // Assume RFU means 0 :)
1596 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1598 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1603 int IsBlock1PCF7931(uint8_t *Block
) {
1604 // Assume RFU means 0 :)
1605 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1606 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1614 void ReadPCF7931() {
1615 uint8_t Blocks
[8][17];
1616 uint8_t tmpBlocks
[4][16];
1617 int i
, j
, ind
, ind2
, n
;
1624 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1627 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1628 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1631 if(error
==10 && num_blocks
== 0) {
1632 Dbprintf("Error, no tag or bad tag");
1635 else if (tries
==20 || error
==10) {
1636 Dbprintf("Error reading the tag");
1637 Dbprintf("Here is the partial content");
1642 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1643 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1644 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1646 for(i
=0; i
<n
; i
++) {
1647 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1649 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1653 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1654 Blocks
[0][ALLOC
] = 1;
1655 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1656 Blocks
[1][ALLOC
] = 1;
1657 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1659 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1661 // Handle following blocks
1662 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1665 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1666 Blocks
[ind2
][ALLOC
] = 1;
1674 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1675 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1676 for(j
=0; j
<max_blocks
; j
++) {
1677 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1678 // Found an identical block
1679 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1682 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1683 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1684 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1685 Blocks
[ind2
][ALLOC
] = 1;
1687 if(num_blocks
== max_blocks
) goto end
;
1690 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1691 if(ind2
> max_blocks
)
1693 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1694 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1695 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1696 Blocks
[ind2
][ALLOC
] = 1;
1698 if(num_blocks
== max_blocks
) goto end
;
1707 if (BUTTON_PRESS()) return;
1708 } while (num_blocks
!= max_blocks
);
1710 Dbprintf("-----------------------------------------");
1711 Dbprintf("Memory content:");
1712 Dbprintf("-----------------------------------------");
1713 for(i
=0; i
<max_blocks
; i
++) {
1714 if(Blocks
[i
][ALLOC
]==1)
1715 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1716 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1717 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1719 Dbprintf("<missing block %d>", i
);
1721 Dbprintf("-----------------------------------------");
1727 //-----------------------------------
1728 // EM4469 / EM4305 routines
1729 //-----------------------------------
1730 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1731 #define FWD_CMD_WRITE 0xA
1732 #define FWD_CMD_READ 0x9
1733 #define FWD_CMD_DISABLE 0x5
1736 uint8_t forwardLink_data
[64]; //array of forwarded bits
1737 uint8_t * forward_ptr
; //ptr for forward message preparation
1738 uint8_t fwd_bit_sz
; //forwardlink bit counter
1739 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1741 //====================================================================
1742 // prepares command bits
1744 //====================================================================
1745 //--------------------------------------------------------------------
1746 uint8_t Prepare_Cmd( uint8_t cmd
) {
1747 //--------------------------------------------------------------------
1749 *forward_ptr
++ = 0; //start bit
1750 *forward_ptr
++ = 0; //second pause for 4050 code
1752 *forward_ptr
++ = cmd
;
1754 *forward_ptr
++ = cmd
;
1756 *forward_ptr
++ = cmd
;
1758 *forward_ptr
++ = cmd
;
1760 return 6; //return number of emited bits
1763 //====================================================================
1764 // prepares address bits
1766 //====================================================================
1768 //--------------------------------------------------------------------
1769 uint8_t Prepare_Addr( uint8_t addr
) {
1770 //--------------------------------------------------------------------
1772 register uint8_t line_parity
;
1777 *forward_ptr
++ = addr
;
1778 line_parity
^= addr
;
1782 *forward_ptr
++ = (line_parity
& 1);
1784 return 7; //return number of emited bits
1787 //====================================================================
1788 // prepares data bits intreleaved with parity bits
1790 //====================================================================
1792 //--------------------------------------------------------------------
1793 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1794 //--------------------------------------------------------------------
1796 register uint8_t line_parity
;
1797 register uint8_t column_parity
;
1798 register uint8_t i
, j
;
1799 register uint16_t data
;
1804 for(i
=0; i
<4; i
++) {
1806 for(j
=0; j
<8; j
++) {
1807 line_parity
^= data
;
1808 column_parity
^= (data
& 1) << j
;
1809 *forward_ptr
++ = data
;
1812 *forward_ptr
++ = line_parity
;
1817 for(j
=0; j
<8; j
++) {
1818 *forward_ptr
++ = column_parity
;
1819 column_parity
>>= 1;
1823 return 45; //return number of emited bits
1826 //====================================================================
1827 // Forward Link send function
1828 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1829 // fwd_bit_count set with number of bits to be sent
1830 //====================================================================
1831 void SendForward(uint8_t fwd_bit_count
) {
1833 fwd_write_ptr
= forwardLink_data
;
1834 fwd_bit_sz
= fwd_bit_count
;
1839 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1840 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1841 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1843 // Give it a bit of time for the resonant antenna to settle.
1844 // And for the tag to fully power up
1847 // force 1st mod pulse (start gap must be longer for 4305)
1848 fwd_bit_sz
--; //prepare next bit modulation
1850 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1851 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1852 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1853 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1854 SpinDelayUs(16*8); //16 cycles on (8us each)
1856 // now start writting
1857 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1858 if(((*fwd_write_ptr
++) & 1) == 1)
1859 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1861 //These timings work for 4469/4269/4305 (with the 55*8 above)
1862 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1863 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1864 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1865 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1866 SpinDelayUs(9*8); //16 cycles on (8us each)
1871 void EM4xLogin(uint32_t Password
) {
1873 uint8_t fwd_bit_count
;
1875 forward_ptr
= forwardLink_data
;
1876 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1877 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1879 SendForward(fwd_bit_count
);
1881 //Wait for command to complete
1886 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1888 uint8_t fwd_bit_count
;
1889 uint8_t *dest
= (uint8_t *)BigBuf
;
1892 //If password mode do login
1893 if (PwdMode
== 1) EM4xLogin(Pwd
);
1895 forward_ptr
= forwardLink_data
;
1896 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1897 fwd_bit_count
+= Prepare_Addr( Address
);
1900 // Clear destination buffer before sending the command
1901 memset(dest
, 128, m
);
1902 // Connect the A/D to the peak-detected low-frequency path.
1903 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1904 // Now set up the SSC to get the ADC samples that are now streaming at us.
1907 SendForward(fwd_bit_count
);
1909 // Now do the acquisition
1912 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1913 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1915 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1916 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1921 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1925 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1927 uint8_t fwd_bit_count
;
1929 //If password mode do login
1930 if (PwdMode
== 1) EM4xLogin(Pwd
);
1932 forward_ptr
= forwardLink_data
;
1933 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1934 fwd_bit_count
+= Prepare_Addr( Address
);
1935 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1937 SendForward(fwd_bit_count
);
1939 //Wait for write to complete
1941 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off