1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "lfsampling.h"
21 #include "mifareutil.h"
27 // Craig Young - 14a stand-alone code
28 #ifdef WITH_ISO14443a_StandAlone
29 #include "iso14443a.h"
30 #include "protocols.h"
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
39 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
43 struct common_area common_area
__attribute__((section(".commonarea")));
45 void ToSendReset(void)
51 void ToSendStuffBit(int b
) {
54 ToSend
[ToSendMax
] = 0;
59 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
63 if(ToSendMax
>= sizeof(ToSend
)) {
65 DbpString("ToSendStuffBit overflowed!");
69 void PrintToSendBuffer(void){
70 DbpString("Printing ToSendBuffer:");
71 Dbhexdump(ToSendMax
, ToSend
, 0);
74 void print_result(char *name
, uint8_t *buf
, size_t len
) {
77 if ( len
% 16 == 0 ) {
78 for(; p
-buf
< len
; p
+= 16)
79 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
83 p
[0], p
[1], p
[2], p
[3], p
[4], p
[5], p
[6], p
[7],p
[8], p
[9], p
[10], p
[11], p
[12], p
[13], p
[14], p
[15]
87 for(; p
-buf
< len
; p
+= 8)
88 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x",
92 p
[0], p
[1], p
[2], p
[3], p
[4], p
[5], p
[6], p
[7]);
96 //=============================================================================
97 // Debug print functions, to go out over USB, to the usual PC-side client.
98 //=============================================================================
100 void DbpStringEx(char *str
, uint32_t cmd
){
101 byte_t len
= strlen(str
);
102 cmd_send(CMD_DEBUG_PRINT_STRING
,len
, cmd
,0,(byte_t
*)str
,len
);
105 void DbpString(char *str
) {
110 void DbpIntegers(int x1
, int x2
, int x3
) {
111 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
114 void DbprintfEx(uint32_t cmd
, const char *fmt
, ...) {
115 // should probably limit size here; oh well, let's just use a big buffer
116 char output_string
[128] = {0x00};
120 kvsprintf(fmt
, output_string
, 10, ap
);
123 DbpStringEx(output_string
, cmd
);
126 void Dbprintf(const char *fmt
, ...) {
127 // should probably limit size here; oh well, let's just use a big buffer
128 char output_string
[128] = {0x00};
132 kvsprintf(fmt
, output_string
, 10, ap
);
135 DbpString(output_string
);
138 // prints HEX & ASCII
139 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
145 l
= (len
>8) ? 8 : len
;
152 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
155 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
157 Dbprintf("%*D",l
,d
," ");
164 //-----------------------------------------------------------------------------
165 // Read an ADC channel and block till it completes, then return the result
166 // in ADC units (0 to 1023). Also a routine to average 32 samples and
168 //-----------------------------------------------------------------------------
169 static int ReadAdc(int ch
)
173 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
174 AT91C_BASE_ADC
->ADC_MR
=
175 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
176 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
177 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
179 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
180 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
181 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
184 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
186 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
188 // Note: with the "historic" values in the comments above, the error was 34% !!!
190 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
192 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
194 while (!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) ;
196 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
200 int AvgAdc(int ch
) // was static - merlok
203 for(i
= 0; i
< 32; ++i
)
206 return (a
+ 15) >> 5;
210 void MeasureAntennaTuning(void) {
212 uint8_t LF_Results
[256];
213 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0;
214 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
216 memset(LF_Results
, 0, sizeof(LF_Results
));
220 * Sweeps the useful LF range of the proxmark from
221 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
222 * read the voltage in the antenna, the result left
223 * in the buffer is a graph which should clearly show
224 * the resonating frequency of your LF antenna
225 * ( hopefully around 95 if it is tuned to 125kHz!)
228 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
231 for (i
= 255; i
>= 19; i
--) {
233 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
235 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
236 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
237 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
239 LF_Results
[i
] = adcval
>> 8; // scale int to fit in byte for graphing purposes
240 if(LF_Results
[i
] > peak
) {
242 peak
= LF_Results
[i
];
248 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
249 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
250 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
252 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
254 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
| (vLf134
<< 16), vHf
, peakf
| (peakv
<< 16), LF_Results
, 256);
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void MeasureAntennaTuningHf(void) {
260 int vHf
= 0; // in mV
261 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
262 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
263 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
265 while ( !BUTTON_PRESS() ){
267 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
268 //Dbprintf("%d mV",vHf);
269 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF
, "%d mV",vHf
);
271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
272 DbpString("cancelled");
276 void ReadMem(int addr
) {
277 const uint8_t *data
= ((uint8_t *)addr
);
279 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
280 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
283 /* osimage version information is linked in */
284 extern struct version_information version_information
;
285 /* bootrom version information is pointed to from _bootphase1_version_pointer */
286 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
287 void SendVersion(void)
289 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
290 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
292 /* Try to find the bootrom version information. Expect to find a pointer at
293 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
294 * pointer, then use it.
296 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
298 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
299 strcat(VersionString
, "bootrom version information appears invalid\n");
301 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
302 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
305 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
306 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
308 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
309 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
311 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
312 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
314 // Send Chip ID and used flash memory
315 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
316 uint32_t compressed_data_section_size
= common_area
.arg1
;
317 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
320 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
321 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
322 void printUSBSpeed(void)
324 Dbprintf("USB Speed:");
325 Dbprintf(" Sending USB packets to client...");
327 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
328 uint8_t *test_data
= BigBuf_get_addr();
331 uint32_t start_time
= end_time
= GetTickCount();
332 uint32_t bytes_transferred
= 0;
335 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
336 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
337 end_time
= GetTickCount();
338 bytes_transferred
+= USB_CMD_DATA_SIZE
;
342 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
343 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
344 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
345 1000 * bytes_transferred
/ (end_time
- start_time
));
350 * Prints runtime information about the PM3.
352 void SendStatus(void) {
353 BigBuf_print_status();
355 printConfig(); //LF Sampling config
358 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
359 Dbprintf(" ToSendMax..........%d", ToSendMax
);
360 Dbprintf(" ToSendBit..........%d", ToSendBit
);
361 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE
);
363 cmd_send(CMD_ACK
,1,0,0,0,0);
366 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
369 void StandAloneMode()
371 DbpString("Stand-alone mode! No PC necessary.");
372 // Oooh pretty -- notify user we're in elite samy mode now
374 LED(LED_ORANGE
, 200);
376 LED(LED_ORANGE
, 200);
378 LED(LED_ORANGE
, 200);
380 LED(LED_ORANGE
, 200);
385 #ifdef WITH_ISO14443a_StandAlone
392 } __attribute__((__packed__
)) card_clone_t
;
394 void StandAloneMode14a()
397 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
399 int selected
= 0, playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
400 int cardRead
[OPTS
] = {0};
402 card_clone_t uids
[OPTS
];
403 iso14a_card_select_t card_info
[OPTS
];
404 uint8_t params
= (MAGIC_SINGLE
| MAGIC_DATAIN
);
406 LED(selected
+ 1, 0);
414 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
418 LED(selected
+ 1, 0);
422 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
423 /* need this delay to prevent catching some weird data */
425 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
430 if (BUTTON_PRESS()) {
431 if (cardRead
[selected
]) {
432 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
435 else if (cardRead
[(selected
+1) % OPTS
]) {
436 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
437 selected
= (selected
+1) % OPTS
;
438 break; // playing = 1;
441 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
445 if (!iso14443a_select_card(NULL
, &card_info
[selected
], NULL
, true, 0))
449 Dbprintf("Read UID:");
450 Dbhexdump(card_info
[selected
].uidlen
, card_info
[selected
].uid
, 0);
452 if (memcmp(uids
[(selected
+1)%OPTS
].uid
, card_info
[selected
].uid
, card_info
[selected
].uidlen
) == 0 ) {
453 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
457 uids
[selected
].sak
= card_info
[selected
].sak
;
458 uids
[selected
].uidlen
= card_info
[selected
].uidlen
;
459 memcpy(uids
[selected
].uid
, card_info
[selected
].uid
, uids
[selected
].uidlen
);
460 memcpy(uids
[selected
].atqa
, card_info
[selected
].atqa
, 2);
462 if (uids
[selected
].uidlen
> 4)
463 Dbprintf("Bank[%d] received a 7-byte UID", selected
);
465 Dbprintf("Bank[%d] received a 4-byte UID", selected
);
470 Dbprintf("ATQA = %02X%02X", uids
[selected
].atqa
[0], uids
[selected
].atqa
[1]);
471 Dbprintf("SAK = %02X", uids
[selected
].sak
);
474 LED(LED_ORANGE
, 200);
476 LED(LED_ORANGE
, 200);
479 LED(selected
+ 1, 0);
481 // Next state is replay:
484 cardRead
[selected
] = 1;
486 /* MF Classic UID clone */
487 else if (iGotoClone
==1)
491 LED(selected
+ 1, 0);
492 LED(LED_ORANGE
, 250);
494 // magiccards holds 4bytes uid.
495 uint64_t tmpuid
= bytes_to_num(uids
[selected
].uid
, 4);
498 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, tmpuid
& 0xFFFFFFFF);
500 // wait for button to be released
501 // Delay cloning until card is in place
502 while(BUTTON_PRESS())
505 Dbprintf("Starting clone. [Bank: %u]", selected
);
506 // need this delay to prevent catching some weird data
508 // Begin clone function here:
509 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
510 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
511 memcpy(c.d.asBytes, data, 16);
514 Block read is similar:
515 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
516 We need to imitate that call with blockNo 0 to set a uid.
518 The get and set commands are handled in this file:
519 // Work with "magic Chinese" card
520 case CMD_MIFARE_CSETBLOCK:
521 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
523 case CMD_MIFARE_CGETBLOCK:
524 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
527 mfCSetUID provides example logic for UID set workflow:
528 -Read block0 from card in field with MifareCGetBlock()
529 -Configure new values without replacing reserved bytes
530 memcpy(block0, uid, 4); // Copy UID bytes from byte array
532 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
533 Bytes 5-7 are reserved SAK and ATQA for mifare classic
534 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
536 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
537 // arg0 = Flags, arg1=blockNo
538 MifareCGetBlock(params
, 0, oldBlock0
);
539 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
540 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
544 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0], oldBlock0
[1], oldBlock0
[2], oldBlock0
[3]);
545 memcpy(newBlock0
, oldBlock0
, 16);
547 // Copy uid for bank (2nd is for longer UIDs not supported if classic)
548 memcpy(newBlock0
, uids
[selected
].uid
, 4);
549 newBlock0
[4] = newBlock0
[0] ^ newBlock0
[1] ^ newBlock0
[2] ^ newBlock0
[3];
551 // arg0 = workFlags, arg1 = blockNo, datain
552 MifareCSetBlock(params
, 0, newBlock0
);
553 MifareCGetBlock(params
, 0, testBlock0
);
555 if (memcmp(testBlock0
, newBlock0
, 16)==0) {
556 DbpString("Cloned successfull!");
557 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
560 selected
= (selected
+ 1) % OPTS
;
562 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
567 LED(selected
+ 1, 0);
569 // Change where to record (or begin playing)
570 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
573 LED(selected
+ 1, 0);
575 // Begin transmitting
579 DbpString("Playing");
582 int button_action
= BUTTON_HELD(1000);
583 if (button_action
== 0) { // No button action, proceed with sim
585 uint8_t flags
= FLAG_4B_UID_IN_DATA
;
586 uint8_t data
[USB_CMD_DATA_SIZE
] = {0}; // in case there is a read command received we shouldn't break
588 memcpy(data
, uids
[selected
].uid
, uids
[selected
].uidlen
);
590 uint64_t tmpuid
= bytes_to_num(uids
[selected
].uid
, uids
[selected
].uidlen
);
592 if ( uids
[selected
].uidlen
== 7 ) {
593 flags
= FLAG_7B_UID_IN_DATA
;
594 Dbprintf("Simulating ISO14443a tag with uid: %02x%08x [Bank: %u]", tmpuid
>> 32, tmpuid
& 0xFFFFFFFF , selected
);
596 Dbprintf("Simulating ISO14443a tag with uid: %08x [Bank: %u]", tmpuid
& 0xFFFFFFFF , selected
);
599 if (uids
[selected
].sak
== 8 && uids
[selected
].atqa
[0] == 4 && uids
[selected
].atqa
[1] == 0) {
600 DbpString("Mifare Classic");
601 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
603 else if (uids
[selected
].sak
== 0 && uids
[selected
].atqa
[0] == 0x44 && uids
[selected
].atqa
[1] == 0) {
604 DbpString("Mifare Ultralight");
605 SimulateIso14443aTag(2, flags
, data
); // Mifare Ultralight
607 else if (uids
[selected
].sak
== 20 && uids
[selected
].atqa
[0] == 0x44 && uids
[selected
].atqa
[1] == 3) {
608 DbpString("Mifare DESFire");
609 SimulateIso14443aTag(3, flags
, data
); // Mifare DESFire
612 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
613 SimulateIso14443aTag(1, flags
, data
); // Mifare Classic
616 else if (button_action
== BUTTON_SINGLE_CLICK
) {
617 selected
= (selected
+ 1) % OPTS
;
618 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
622 else if (button_action
== BUTTON_HOLD
) {
623 Dbprintf("Playtime over. Begin cloning...");
630 /* We pressed a button so ignore it here with a delay */
633 LED(selected
+ 1, 0);
636 while(BUTTON_PRESS())
642 // samy's sniff and repeat routine
646 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
648 int high
[OPTS
], low
[OPTS
];
653 // Turn on selected LED
654 LED(selected
+ 1, 0);
660 // Was our button held down or pressed?
661 int button_pressed
= BUTTON_HELD(1000);
664 // Button was held for a second, begin recording
665 if (button_pressed
> 0 && cardRead
== 0)
668 LED(selected
+ 1, 0);
672 DbpString("Starting recording");
674 // wait for button to be released
675 while(BUTTON_PRESS())
678 /* need this delay to prevent catching some weird data */
681 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
682 Dbprintf("Recorded %x %x %08x", selected
, high
[selected
], low
[selected
]);
685 LED(selected
+ 1, 0);
686 // Finished recording
687 // If we were previously playing, set playing off
688 // so next button push begins playing what we recorded
692 else if (button_pressed
> 0 && cardRead
== 1) {
694 LED(selected
+ 1, 0);
698 Dbprintf("Cloning %x %x %08x", selected
, high
[selected
], low
[selected
]);
700 // wait for button to be released
701 while(BUTTON_PRESS())
704 /* need this delay to prevent catching some weird data */
707 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
708 Dbprintf("Cloned %x %x %08x", selected
, high
[selected
], low
[selected
]);
711 LED(selected
+ 1, 0);
712 // Finished recording
714 // If we were previously playing, set playing off
715 // so next button push begins playing what we recorded
720 // Change where to record (or begin playing)
721 else if (button_pressed
) {
722 // Next option if we were previously playing
724 selected
= (selected
+ 1) % OPTS
;
728 LED(selected
+ 1, 0);
730 // Begin transmitting
734 DbpString("Playing");
735 // wait for button to be released
736 while(BUTTON_PRESS())
739 Dbprintf("%x %x %08x", selected
, high
[selected
], low
[selected
]);
740 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
741 DbpString("Done playing");
743 if (BUTTON_HELD(1000) > 0) {
744 DbpString("Exiting");
749 /* We pressed a button so ignore it here with a delay */
752 // when done, we're done playing, move to next option
753 selected
= (selected
+ 1) % OPTS
;
756 LED(selected
+ 1, 0);
759 while(BUTTON_PRESS())
768 Listen and detect an external reader. Determine the best location
772 Inside the ListenReaderField() function, there is two mode.
773 By default, when you call the function, you will enter mode 1.
774 If you press the PM3 button one time, you will enter mode 2.
775 If you press the PM3 button a second time, you will exit the function.
777 DESCRIPTION OF MODE 1:
778 This mode just listens for an external reader field and lights up green
779 for HF and/or red for LF. This is the original mode of the detectreader
782 DESCRIPTION OF MODE 2:
783 This mode will visually represent, using the LEDs, the actual strength of the
784 current compared to the maximum current detected. Basically, once you know
785 what kind of external reader is present, it will help you spot the best location to place
786 your antenna. You will probably not get some good results if there is a LF and a HF reader
787 at the same place! :-)
791 static const char LIGHT_SCHEME
[] = {
792 0x0, /* ---- | No field detected */
793 0x1, /* X--- | 14% of maximum current detected */
794 0x2, /* -X-- | 29% of maximum current detected */
795 0x4, /* --X- | 43% of maximum current detected */
796 0x8, /* ---X | 57% of maximum current detected */
797 0xC, /* --XX | 71% of maximum current detected */
798 0xE, /* -XXX | 86% of maximum current detected */
799 0xF, /* XXXX | 100% of maximum current detected */
801 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
803 void ListenReaderField(int limit
) {
806 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
808 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
809 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
810 int mode
=1, display_val
, display_max
, i
;
812 // switch off FPGA - we don't want to measure our own signal
813 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
814 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
818 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
820 if(limit
!= HF_ONLY
) {
821 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
825 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
827 if (limit
!= LF_ONLY
) {
828 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
833 if (BUTTON_PRESS()) {
838 DbpString("Signal Strength Mode");
842 DbpString("Stopped");
850 if (limit
!= HF_ONLY
) {
852 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
858 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
859 // see if there's a significant change
860 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
861 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
868 if (limit
!= LF_ONLY
) {
870 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
876 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
877 // see if there's a significant change
878 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
879 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
887 if (limit
== LF_ONLY
) {
889 display_max
= lf_max
;
890 } else if (limit
== HF_ONLY
) {
892 display_max
= hf_max
;
893 } else { /* Pick one at random */
894 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
896 display_max
= hf_max
;
899 display_max
= lf_max
;
902 for (i
=0; i
<LIGHT_LEN
; i
++) {
903 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
904 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
905 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
906 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
907 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
915 void UsbPacketReceived(uint8_t *packet
, int len
)
917 UsbCommand
*c
= (UsbCommand
*)packet
;
919 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
923 case CMD_SET_LF_SAMPLING_CONFIG
:
924 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
926 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
927 cmd_send(CMD_ACK
, SampleLF(c
->arg
[0]),0,0,0,0);
929 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
930 ModThenAcquireRawAdcSamples125k(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
932 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
933 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
935 case CMD_HID_DEMOD_FSK
:
936 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
938 case CMD_HID_SIM_TAG
:
939 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
941 case CMD_FSK_SIM_TAG
:
942 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
944 case CMD_ASK_SIM_TAG
:
945 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
947 case CMD_PSK_SIM_TAG
:
948 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
950 case CMD_HID_CLONE_TAG
:
951 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
953 case CMD_IO_DEMOD_FSK
:
954 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
956 case CMD_IO_CLONE_TAG
:
957 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
959 case CMD_EM410X_DEMOD
:
960 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
962 case CMD_EM410X_WRITE_TAG
:
963 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
965 case CMD_READ_TI_TYPE
:
968 case CMD_WRITE_TI_TYPE
:
969 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
971 case CMD_SIMULATE_TAG_125K
:
973 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
976 case CMD_LF_SIMULATE_BIDIR
:
977 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
979 case CMD_INDALA_CLONE_TAG
:
980 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
982 case CMD_INDALA_CLONE_TAG_L
:
983 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
985 case CMD_T55XX_READ_BLOCK
:
986 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
988 case CMD_T55XX_WRITE_BLOCK
:
989 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
991 case CMD_T55XX_WAKEUP
:
992 T55xxWakeUp(c
->arg
[0]);
994 case CMD_T55XX_RESET_READ
:
997 case CMD_PCF7931_READ
:
1000 case CMD_PCF7931_WRITE
:
1001 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1003 case CMD_EM4X_READ_WORD
:
1004 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
1006 case CMD_EM4X_WRITE_WORD
:
1007 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1009 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1010 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1012 case CMD_VIKING_CLONE_TAG
:
1013 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1021 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1022 SnoopHitag(c
->arg
[0]);
1024 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1025 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1027 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1028 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1030 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1031 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1033 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1034 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1036 case CMD_READ_HITAG_S
: //Reader for only Hitag S tags, args = key or challenge
1037 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1039 case CMD_WR_HITAG_S
: //writer for Hitag tags args=data to write,page and key or challenge
1040 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1044 #ifdef WITH_ISO15693
1045 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1046 AcquireRawAdcSamplesIso15693();
1048 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1049 RecordRawAdcSamplesIso15693();
1051 case CMD_ISO_15693_COMMAND
:
1052 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1054 case CMD_ISO_15693_FIND_AFI
:
1055 BruteforceIso15693Afi(c
->arg
[0]);
1057 case CMD_ISO_15693_DEBUG
:
1058 SetDebugIso15693(c
->arg
[0]);
1060 case CMD_READER_ISO_15693
:
1061 ReaderIso15693(c
->arg
[0]);
1063 case CMD_SIMTAG_ISO_15693
:
1064 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1069 case CMD_SIMULATE_TAG_LEGIC_RF
:
1070 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1072 case CMD_WRITER_LEGIC_RF
:
1073 LegicRfWriter( c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1075 case CMD_READER_LEGIC_RF
:
1076 LegicRfReader(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1078 case CMD_LEGIC_INFO
:
1081 case CMD_LEGIC_ESET
:
1082 LegicEMemSet(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1086 #ifdef WITH_ISO14443b
1087 case CMD_READ_SRI_TAG
:
1088 ReadSTMemoryIso14443b(c
->arg
[0]);
1090 case CMD_SNOOP_ISO_14443B
:
1093 case CMD_SIMULATE_TAG_ISO_14443B
:
1094 SimulateIso14443bTag(c
->arg
[0]);
1096 case CMD_ISO_14443B_COMMAND
:
1097 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1098 SendRawCommand14443B_Ex(c
);
1102 #ifdef WITH_ISO14443a
1103 case CMD_SNOOP_ISO_14443a
:
1104 SniffIso14443a(c
->arg
[0]);
1106 case CMD_READER_ISO_14443a
:
1109 case CMD_SIMULATE_TAG_ISO_14443a
:
1110 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1112 case CMD_EPA_PACE_COLLECT_NONCE
:
1113 EPA_PACE_Collect_Nonce(c
);
1115 case CMD_EPA_PACE_REPLAY
:
1118 case CMD_READER_MIFARE
:
1119 ReaderMifare(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1121 case CMD_MIFARE_READBL
:
1122 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1124 case CMD_MIFAREU_READBL
:
1125 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1127 case CMD_MIFAREUC_AUTH
:
1128 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1130 case CMD_MIFAREU_READCARD
:
1131 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1133 case CMD_MIFAREUC_SETPWD
:
1134 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1136 case CMD_MIFARE_READSC
:
1137 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1139 case CMD_MIFARE_WRITEBL
:
1140 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1142 //case CMD_MIFAREU_WRITEBL_COMPAT:
1143 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1145 case CMD_MIFAREU_WRITEBL
:
1146 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1148 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1149 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1151 case CMD_MIFARE_NESTED
:
1152 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1154 case CMD_MIFARE_CHKKEYS
:
1155 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1157 case CMD_SIMULATE_MIFARE_CARD
:
1158 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1162 case CMD_MIFARE_SET_DBGMODE
:
1163 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1165 case CMD_MIFARE_EML_MEMCLR
:
1166 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1168 case CMD_MIFARE_EML_MEMSET
:
1169 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1171 case CMD_MIFARE_EML_MEMGET
:
1172 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1174 case CMD_MIFARE_EML_CARDLOAD
:
1175 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1178 // Work with "magic Chinese" card
1179 case CMD_MIFARE_CSETBLOCK
:
1180 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1182 case CMD_MIFARE_CGETBLOCK
:
1183 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1185 case CMD_MIFARE_CIDENT
:
1190 case CMD_MIFARE_SNIFFER
:
1191 SniffMifare(c
->arg
[0]);
1195 case CMD_MIFARE_DESFIRE_READBL
: break;
1196 case CMD_MIFARE_DESFIRE_WRITEBL
: break;
1197 case CMD_MIFARE_DESFIRE_AUTH1
:
1198 MifareDES_Auth1(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1200 case CMD_MIFARE_DESFIRE_AUTH2
:
1201 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1203 case CMD_MIFARE_DES_READER
:
1204 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1206 case CMD_MIFARE_DESFIRE_INFO
:
1207 MifareDesfireGetInformation();
1209 case CMD_MIFARE_DESFIRE
:
1210 MifareSendCommand(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1212 case CMD_MIFARE_COLLECT_NONCES
:
1216 case CMD_EMV_TRANSACTION
:
1219 case CMD_EMV_GET_RANDOM_NUM
:
1222 case CMD_EMV_LOAD_VALUE
:
1223 EMVloadvalue(c
->arg
[0], c
->d
.asBytes
);
1225 case CMD_EMV_DUMP_CARD
:
1229 // Makes use of ISO14443a FPGA Firmware
1230 case CMD_SNOOP_ICLASS
:
1233 case CMD_SIMULATE_TAG_ICLASS
:
1234 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1236 case CMD_READER_ICLASS
:
1237 ReaderIClass(c
->arg
[0]);
1239 case CMD_READER_ICLASS_REPLAY
:
1240 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1242 case CMD_ICLASS_EML_MEMSET
:
1243 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1245 case CMD_ICLASS_WRITEBLOCK
:
1246 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1248 case CMD_ICLASS_READCHECK
: // auth step 1
1249 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1251 case CMD_ICLASS_READBLOCK
:
1252 iClass_ReadBlk(c
->arg
[0]);
1254 case CMD_ICLASS_AUTHENTICATION
: //check
1255 iClass_Authentication(c
->d
.asBytes
);
1257 case CMD_ICLASS_DUMP
:
1258 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1260 case CMD_ICLASS_CLONE
:
1261 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1265 case CMD_HF_SNIFFER
:
1266 HfSnoop(c
->arg
[0], c
->arg
[1]);
1270 case CMD_BUFF_CLEAR
:
1274 case CMD_MEASURE_ANTENNA_TUNING
:
1275 MeasureAntennaTuning();
1278 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1279 MeasureAntennaTuningHf();
1282 case CMD_LISTEN_READER_FIELD
:
1283 ListenReaderField(c
->arg
[0]);
1286 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1287 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1289 LED_D_OFF(); // LED D indicates field ON or OFF
1292 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
1294 uint8_t *BigBuf
= BigBuf_get_addr();
1296 size_t startidx
= c
->arg
[0];
1297 uint8_t isok
= FALSE
;
1298 // arg0 = startindex
1299 // arg1 = length bytes to transfer
1301 //Dbprintf("transfer to client parameters: %llu | %llu | %llu", c->arg[0], c->arg[1], c->arg[2]);
1303 for(size_t i
= 0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1304 len
= MIN( (c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1305 isok
= cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, i
, len
, BigBuf_get_traceLen(), BigBuf
+ startidx
+ i
, len
);
1307 Dbprintf("transfer to client failed :: | bytes %d", len
);
1309 // Trigger a finish downloading signal with an ACK frame
1310 cmd_send(CMD_ACK
, 1, 0, BigBuf_get_traceLen(), getSamplingConfig(), sizeof(sample_config
));
1314 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1315 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1316 // to be able to use this one for uploading data to device
1317 // arg1 = 0 upload for LF usage
1318 // 1 upload for HF usage
1319 if ( c
->arg
[1] == 0 )
1320 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1322 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1323 uint8_t *b
= BigBuf_get_addr();
1324 memcpy( b
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1325 cmd_send(CMD_ACK
,1,0,0,0,0);
1328 case CMD_DOWNLOAD_EML_BIGBUF
: {
1330 uint8_t *cardmem
= BigBuf_get_EM_addr();
1332 for(size_t i
=0; i
< c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1333 len
= MIN((c
->arg
[1] - i
), USB_CMD_DATA_SIZE
);
1334 cmd_send(CMD_DOWNLOADED_EML_BIGBUF
, i
, len
, CARD_MEMORY_SIZE
, cardmem
+ c
->arg
[0] + i
, len
);
1336 // Trigger a finish downloading signal with an ACK frame
1337 cmd_send(CMD_ACK
, 1, 0, CARD_MEMORY_SIZE
, 0, 0);
1345 case CMD_SET_LF_DIVISOR
:
1346 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1347 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1350 case CMD_SET_ADC_MUX
:
1352 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1353 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1354 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1355 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1366 cmd_send(CMD_ACK
,0,0,0,0,0);
1376 case CMD_SETUP_WRITE
:
1377 case CMD_FINISH_WRITE
:
1378 case CMD_HARDWARE_RESET
:
1381 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1383 // We're going to reset, and the bootrom will take control.
1387 case CMD_START_FLASH
:
1388 if(common_area
.flags
.bootrom_present
) {
1389 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1392 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1396 case CMD_DEVICE_INFO
: {
1397 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1398 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1399 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1403 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1408 void __attribute__((noreturn
)) AppMain(void)
1412 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1413 /* Initialize common area */
1414 memset(&common_area
, 0, sizeof(common_area
));
1415 common_area
.magic
= COMMON_AREA_MAGIC
;
1416 common_area
.version
= 1;
1418 common_area
.flags
.osimage_present
= 1;
1425 // The FPGA gets its clock from us from PCK0 output, so set that up.
1426 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1427 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1428 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1429 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1430 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
| AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1431 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1434 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1436 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1438 // Load the FPGA image, which we have stored in our flash.
1439 // (the HF version by default)
1440 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1448 byte_t rx
[sizeof(UsbCommand
)];
1452 if ( usb_poll_validate_length() ) {
1453 rx_len
= usb_read(rx
, sizeof(UsbCommand
));
1456 UsbPacketReceived(rx
, rx_len
);
1461 #ifndef WITH_ISO14443a_StandAlone
1462 if (BUTTON_HELD(1000) > 0)
1466 #ifdef WITH_ISO14443a
1467 #ifdef WITH_ISO14443a_StandAlone
1468 if (BUTTON_HELD(1000) > 0)
1469 StandAloneMode14a();