]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/util.c
4948fce8f8a19146436d220f8aa5475335736f6c
[proxmark3-svn] / armsrc / util.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Sept 2005
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Utility functions used in many places, not specific to any piece of code.
9 //-----------------------------------------------------------------------------
10
11 #include "proxmark3.h"
12 #include "util.h"
13 #include "string.h"
14 #include "apps.h"
15 #include "BigBuf.h"
16
17 int tracing = TRUE;
18
19
20 void print_result(char *name, uint8_t *buf, size_t len) {
21 uint8_t *p = buf;
22
23 if ( len % 16 == 0 ) {
24 for(; p-buf < len; p += 16)
25 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
26 name,
27 p-buf,
28 len,
29 p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
30 );
31 }
32 else {
33 for(; p-buf < len; p += 8)
34 Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x", name, p-buf, len, p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
35 }
36 }
37
38 size_t nbytes(size_t nbits) {
39 return (nbits/8)+((nbits%8)>0);
40 }
41
42 uint32_t SwapBits(uint32_t value, int nrbits) {
43 int i;
44 uint32_t newvalue = 0;
45 for(i = 0; i < nrbits; i++) {
46 newvalue ^= ((value >> i) & 1) << (nrbits - 1 - i);
47 }
48 return newvalue;
49 }
50
51 void num_to_bytes(uint64_t n, size_t len, uint8_t* dest)
52 {
53 while (len--) {
54 dest[len] = (uint8_t) n;
55 n >>= 8;
56 }
57 }
58
59 uint64_t bytes_to_num(uint8_t* src, size_t len)
60 {
61 uint64_t num = 0;
62 while (len--)
63 {
64 num = (num << 8) | (*src);
65 src++;
66 }
67 return num;
68 }
69
70 // RotateLeft - Ultralight, Desfire
71 void rol(uint8_t *data, const size_t len){
72 uint8_t first = data[0];
73 for (size_t i = 0; i < len-1; i++) {
74 data[i] = data[i+1];
75 }
76 data[len-1] = first;
77 }
78 void lsl (uint8_t *data, size_t len) {
79 for (size_t n = 0; n < len - 1; n++) {
80 data[n] = (data[n] << 1) | (data[n+1] >> 7);
81 }
82 data[len - 1] <<= 1;
83 }
84
85 int32_t le24toh (uint8_t data[3])
86 {
87 return (data[2] << 16) | (data[1] << 8) | data[0];
88 }
89
90 void LEDsoff()
91 {
92 LED_A_OFF();
93 LED_B_OFF();
94 LED_C_OFF();
95 LED_D_OFF();
96 }
97
98 // LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8]
99 void LED(int led, int ms)
100 {
101 if (led & LED_RED)
102 LED_C_ON();
103 if (led & LED_ORANGE)
104 LED_A_ON();
105 if (led & LED_GREEN)
106 LED_B_ON();
107 if (led & LED_RED2)
108 LED_D_ON();
109
110 if (!ms)
111 return;
112
113 SpinDelay(ms);
114
115 if (led & LED_RED)
116 LED_C_OFF();
117 if (led & LED_ORANGE)
118 LED_A_OFF();
119 if (led & LED_GREEN)
120 LED_B_OFF();
121 if (led & LED_RED2)
122 LED_D_OFF();
123 }
124
125
126 // Determine if a button is double clicked, single clicked,
127 // not clicked, or held down (for ms || 1sec)
128 // In general, don't use this function unless you expect a
129 // double click, otherwise it will waste 500ms -- use BUTTON_HELD instead
130 int BUTTON_CLICKED(int ms)
131 {
132 // Up to 500ms in between clicks to mean a double click
133 int ticks = (48000 * (ms ? ms : 1000)) >> 10;
134
135 // If we're not even pressed, forget about it!
136 if (!BUTTON_PRESS())
137 return BUTTON_NO_CLICK;
138
139 // Borrow a PWM unit for my real-time clock
140 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
141 // 48 MHz / 1024 gives 46.875 kHz
142 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
143 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
144 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
145
146 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
147
148 int letoff = 0;
149 for(;;)
150 {
151 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
152
153 // We haven't let off the button yet
154 if (!letoff)
155 {
156 // We just let it off!
157 if (!BUTTON_PRESS())
158 {
159 letoff = 1;
160
161 // reset our timer for 500ms
162 start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
163 ticks = (48000 * (500)) >> 10;
164 }
165
166 // Still haven't let it off
167 else
168 // Have we held down a full second?
169 if (now == (uint16_t)(start + ticks))
170 return BUTTON_HOLD;
171 }
172
173 // We already let off, did we click again?
174 else
175 // Sweet, double click!
176 if (BUTTON_PRESS())
177 return BUTTON_DOUBLE_CLICK;
178
179 // Have we ran out of time to double click?
180 else
181 if (now == (uint16_t)(start + ticks))
182 // At least we did a single click
183 return BUTTON_SINGLE_CLICK;
184
185 WDT_HIT();
186 }
187
188 // We should never get here
189 return BUTTON_ERROR;
190 }
191
192 // Determine if a button is held down
193 int BUTTON_HELD(int ms)
194 {
195 // If button is held for one second
196 int ticks = (48000 * (ms ? ms : 1000)) >> 10;
197
198 // If we're not even pressed, forget about it!
199 if (!BUTTON_PRESS())
200 return BUTTON_NO_CLICK;
201
202 // Borrow a PWM unit for my real-time clock
203 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
204 // 48 MHz / 1024 gives 46.875 kHz
205 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
206 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
207 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
208
209 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
210
211 for(;;)
212 {
213 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
214
215 // As soon as our button let go, we didn't hold long enough
216 if (!BUTTON_PRESS())
217 return BUTTON_SINGLE_CLICK;
218
219 // Have we waited the full second?
220 else
221 if (now == (uint16_t)(start + ticks))
222 return BUTTON_HOLD;
223
224 WDT_HIT();
225 }
226
227 // We should never get here
228 return BUTTON_ERROR;
229 }
230
231 // attempt at high resolution microsecond timer
232 // beware: timer counts in 21.3uS increments (1024/48Mhz)
233 void SpinDelayUs(int us)
234 {
235 int ticks = (48*us) >> 10;
236
237 // Borrow a PWM unit for my real-time clock
238 AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
239 // 48 MHz / 1024 gives 46.875 kHz
240 AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
241 AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
242 AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
243
244 uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
245
246 for(;;) {
247 uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
248 if (now == (uint16_t)(start + ticks))
249 return;
250
251 WDT_HIT();
252 }
253 }
254
255 void SpinDelay(int ms)
256 {
257 // convert to uS and call microsecond delay function
258 SpinDelayUs(ms*1000);
259 }
260
261 /* Similar to FpgaGatherVersion this formats stored version information
262 * into a string representation. It takes a pointer to the struct version_information,
263 * verifies the magic properties, then stores a formatted string, prefixed by
264 * prefix in dst.
265 */
266 void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information)
267 {
268 struct version_information *v = (struct version_information*)version_information;
269 dst[0] = 0;
270 strncat(dst, prefix, len-1);
271 if(v->magic != VERSION_INFORMATION_MAGIC) {
272 strncat(dst, "Missing/Invalid version information", len - strlen(dst) - 1);
273 return;
274 }
275 if(v->versionversion != 1) {
276 strncat(dst, "Version information not understood", len - strlen(dst) - 1);
277 return;
278 }
279 if(!v->present) {
280 strncat(dst, "Version information not available", len - strlen(dst) - 1);
281 return;
282 }
283
284 strncat(dst, v->gitversion, len - strlen(dst) - 1);
285 if(v->clean == 0) {
286 strncat(dst, "-unclean", len - strlen(dst) - 1);
287 } else if(v->clean == 2) {
288 strncat(dst, "-suspect", len - strlen(dst) - 1);
289 }
290
291 strncat(dst, " ", len - strlen(dst) - 1);
292 strncat(dst, v->buildtime, len - strlen(dst) - 1);
293 }
294
295 // -------------------------------------------------------------------------
296 // timer lib
297 // -------------------------------------------------------------------------
298 // test procedure:
299 //
300 // ti = GetTickCount();
301 // SpinDelay(1000);
302 // ti = GetTickCount() - ti;
303 // Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
304
305 void StartTickCount()
306 {
307 // must be 0x40, but on my cpu - included divider is optimal
308 // 0x20 - 1 ms / bit
309 // 0x40 - 2 ms / bit
310
311 AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST + 0x001D; // was 0x003B
312 }
313
314 /*
315 * Get the current count.
316 */
317 uint32_t RAMFUNC GetTickCount(){
318 return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2;
319 }
320
321 // -------------------------------------------------------------------------
322 // microseconds timer
323 // -------------------------------------------------------------------------
324 void StartCountUS()
325 {
326 AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
327 // AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
328 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
329
330 // fast clock
331 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
332 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
333 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
334 AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
335 AT91C_BASE_TC0->TC_RA = 1;
336 AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
337
338 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
339 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
340
341 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN;
342 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN;
343 AT91C_BASE_TCB->TCB_BCR = 1;
344 }
345
346 uint32_t RAMFUNC GetCountUS(){
347 return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10);
348 }
349
350 static uint32_t GlobalUsCounter = 0;
351
352 uint32_t RAMFUNC GetDeltaCountUS(){
353 uint32_t g_cnt = GetCountUS();
354 uint32_t g_res = g_cnt - GlobalUsCounter;
355 GlobalUsCounter = g_cnt;
356 return g_res;
357 }
358
359
360 // -------------------------------------------------------------------------
361 // Timer for iso14443 commands. Uses ssp_clk from FPGA
362 // -------------------------------------------------------------------------
363 void StartCountSspClk()
364 {
365 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
366 AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
367 | AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
368 | AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
369
370 // configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
371 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
372 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
373 | AT91C_TC_CPCSTOP // Stop clock on RC compare
374 | AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
375 | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16)
376 | AT91C_TC_ENETRG // Enable external trigger event
377 | AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
378 | AT91C_TC_WAVE // Waveform Mode
379 | AT91C_TC_AEEVT_SET // Set TIOA1 on external event
380 | AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
381 AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04
382
383 // use TC0 to count TIOA1 pulses
384 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
385 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
386 | AT91C_TC_WAVE // Waveform Mode
387 | AT91C_TC_WAVESEL_UP // just count
388 | AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
389 | AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
390 AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
391 AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
392
393 // use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
394 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
395 AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
396 | AT91C_TC_WAVE // Waveform Mode
397 | AT91C_TC_WAVESEL_UP; // just count
398
399 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0
400 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1
401 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2
402
403 //
404 // synchronize the counter with the ssp_frame signal. Note: FPGA must be in any iso14446 mode, otherwise the frame signal would not be present
405 //
406 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
407 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
408 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high
409 // note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
410 // it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
411 AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
412 // at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
413 // at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
414 // whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
415 // (just started with the transfer of the 4th Bit).
416 // The high word of the counter (TC2) will not reset until the low word (TC0) overflows. Therefore need to wait quite some time before
417 // we can use the counter.
418 while (AT91C_BASE_TC0->TC_CV < 0xFFF0);
419 }
420
421
422 uint32_t RAMFUNC GetCountSspClk(){
423 uint32_t tmp_count;
424 tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV;
425 if ((tmp_count & 0x0000ffff) == 0) { //small chance that we may have missed an increment in TC2
426 return (AT91C_BASE_TC2->TC_CV << 16);
427 }
428 else {
429 return tmp_count;
430 }
431 }
432 void iso14a_clear_trace() {
433 clear_trace();
434 }
435
436 void iso14a_set_tracing(bool enable) {
437 set_tracing(enable);
438 }
439
440 void clear_trace() {
441 uint8_t *trace = BigBuf_get_addr();
442 uint16_t max_traceLen = BigBuf_max_traceLen();
443 memset(trace, 0x44, max_traceLen);
444 traceLen = 0;
445 }
446
447 void set_tracing(bool enable) {
448 tracing = enable;
449 }
450
451 /**
452 This is a function to store traces. All protocols can use this generic tracer-function.
453 The traces produced by calling this function can be fetched on the client-side
454 by 'hf list raw', alternatively 'hf list <proto>' for protocol-specific
455 annotation of commands/responses.
456
457 **/
458 bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
459 {
460 if (!tracing) return FALSE;
461
462 uint8_t *trace = BigBuf_get_addr();
463
464 uint16_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity
465 uint16_t duration = timestamp_end - timestamp_start;
466
467 // Return when trace is full
468 uint16_t max_traceLen = BigBuf_max_traceLen();
469
470 if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= max_traceLen) {
471 tracing = FALSE; // don't trace any more
472 return FALSE;
473 }
474 // Traceformat:
475 // 32 bits timestamp (little endian)
476 // 16 bits duration (little endian)
477 // 16 bits data length (little endian, Highest Bit used as readerToTag flag)
478 // y Bytes data
479 // x Bytes parity (one byte per 8 bytes data)
480
481 // timestamp (start)
482 trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
483 trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
484 trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
485 trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
486
487 // duration
488 trace[traceLen++] = ((duration >> 0) & 0xff);
489 trace[traceLen++] = ((duration >> 8) & 0xff);
490
491 // data length
492 trace[traceLen++] = ((iLen >> 0) & 0xff);
493 trace[traceLen++] = ((iLen >> 8) & 0xff);
494
495 // readerToTag flag
496 if (!readerToTag) {
497 trace[traceLen - 1] |= 0x80;
498 }
499
500 // data bytes
501 if (btBytes != NULL && iLen != 0) {
502 memcpy(trace + traceLen, btBytes, iLen);
503 }
504 traceLen += iLen;
505
506 // parity bytes
507 if (parity != NULL && iLen != 0) {
508 memcpy(trace + traceLen, parity, num_paritybytes);
509 }
510 traceLen += num_paritybytes;
511
512 if(traceLen +4 < max_traceLen)
513 { //If it hadn't been cleared, for whatever reason..
514 memset(trace+traceLen,0x44, 4);
515 }
516
517 return TRUE;
518 }
519
Impressum, Datenschutz