1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 // Modified by Greg Jones, Jan 2009
4 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
5 // Modified by piwi, Oct 2018
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support ISO 15693. This includes both the reader software and
12 // the `fake tag' modes.
13 //-----------------------------------------------------------------------------
15 // The ISO 15693 describes two transmission modes from reader to tag, and four
16 // transmission modes from tag to reader. As of Oct 2018 this code supports
17 // both reader modes and the high speed variant with one subcarrier from card to reader.
18 // As long as the card fully support ISO 15693 this is no problem, since the
19 // reader chooses both data rates, but some non-standard tags do not.
20 // For card simulation, the code supports both high and low speed modes with one subcarrier.
22 // VCD (reader) -> VICC (tag)
24 // data rate: 1,66 kbit/s (fc/8192)
25 // used for long range
27 // data rate: 26,48 kbit/s (fc/512)
28 // used for short range, high speed
30 // VICC (tag) -> VCD (reader)
32 // ASK / one subcarrier (423,75 khz)
33 // FSK / two subcarriers (423,75 khz && 484,28 khz)
34 // Data Rates / Modes:
35 // low ASK: 6,62 kbit/s
36 // low FSK: 6.67 kbit/s
37 // high ASK: 26,48 kbit/s
38 // high FSK: 26,69 kbit/s
39 //-----------------------------------------------------------------------------
43 // *) UID is always used "transmission order" (LSB), which is reverse to display order
45 // TODO / BUGS / ISSUES:
46 // *) signal decoding is unable to detect collisions.
47 // *) add anti-collision support for inventory-commands
48 // *) read security status of a block
49 // *) sniffing and simulation do not support two subcarrier modes.
50 // *) remove or refactor code under "deprecated"
51 // *) document all the functions
55 #include "proxmark3.h"
59 #include "iso15693tools.h"
60 #include "protocols.h"
63 #include "fpgaloader.h"
65 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
69 ///////////////////////////////////////////////////////////////////////
70 // ISO 15693 Part 2 - Air Interface
71 // This section basically contains transmission and receiving of bits
72 ///////////////////////////////////////////////////////////////////////
75 #define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2
76 #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
77 #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
79 // ---------------------------
81 // ---------------------------
83 // prepare data using "1 out of 4" code for later transmission
84 // resulting data rate is 26.48 kbit/s (fc/512)
86 // n ... length of data
87 static void CodeIso15693AsReader(uint8_t *cmd
, int n
)
93 // Give it a bit of slack at the beginning
94 for(i
= 0; i
< 24; i
++) {
107 for(i
= 0; i
< n
; i
++) {
108 for(j
= 0; j
< 8; j
+= 2) {
109 int these
= (cmd
[i
] >> j
) & 3;
160 // Fill remainder of last byte with 1
161 for(i
= 0; i
< 4; i
++) {
168 // encode data using "1 out of 256" scheme
169 // data rate is 1,66 kbit/s (fc/8192)
170 // is designed for more robust communication over longer distances
171 static void CodeIso15693AsReader256(uint8_t *cmd
, int n
)
177 // Give it a bit of slack at the beginning
178 for(i
= 0; i
< 24; i
++) {
192 for(i
= 0; i
< n
; i
++) {
193 for (j
= 0; j
<=255; j
++) {
209 // Fill remainder of last byte with 1
210 for(i
= 0; i
< 4; i
++) {
218 // static uint8_t encode4Bits(const uint8_t b) {
219 // uint8_t c = b & 0xF;
220 // // OTA, the least significant bits first
221 // // The columns are
222 // // 1 - Bit value to send
223 // // 2 - Reversed (big-endian)
224 // // 3 - Manchester Encoded
229 // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
230 // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
231 // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
232 // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
233 // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
234 // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
235 // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
236 // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
237 // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
238 // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
239 // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
240 // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
241 // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
242 // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
243 // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
244 // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
249 void CodeIso15693AsTag(uint8_t *cmd
, size_t len
) {
251 * SOF comprises 3 parts;
252 * * An unmodulated time of 56.64 us
253 * * 24 pulses of 423.75 kHz (fc/32)
254 * * A logic 1, which starts with an unmodulated time of 18.88us
255 * followed by 8 pulses of 423.75kHz (fc/32)
257 * EOF comprises 3 parts:
258 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
260 * - 24 pulses of fc/32
261 * - An unmodulated time of 56.64 us
263 * A logic 0 starts with 8 pulses of fc/32
264 * followed by an unmodulated time of 256/fc (~18,88us).
266 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
267 * 8 pulses of fc/32 (also 18.88us)
269 * A bit here becomes 8 pulses of fc/32. Therefore:
270 * The SOF can be written as 00011101 = 0x1D
271 * The EOF can be written as 10111000 = 0xb8
280 ToSend
[++ToSendMax
] = 0x1D; // 00011101
283 for(int i
= 0; i
< len
; i
++) {
284 for(int j
= 0; j
< 8; j
++) {
285 if ((cmd
[i
] >> j
) & 0x01) {
296 ToSend
[++ToSendMax
] = 0xB8; // 10111000
302 // Transmit the command (to the tag) that was placed in cmd[].
303 static void TransmitTo15693Tag(const uint8_t *cmd
, int len
, uint32_t start_time
)
305 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SEND_FULL_MOD
);
306 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
308 while (GetCountSspClk() < start_time
) ;
311 for(int c
= 0; c
< len
; c
++) {
312 uint8_t data
= cmd
[c
];
313 for (int i
= 0; i
< 8; i
++) {
314 uint16_t send_word
= (data
& 0x80) ? 0x0000 : 0xffff;
315 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
316 AT91C_BASE_SSC
->SSC_THR
= send_word
;
317 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
318 AT91C_BASE_SSC
->SSC_THR
= send_word
;
327 //-----------------------------------------------------------------------------
328 // Transmit the tag response (to the reader) that was placed in cmd[].
329 //-----------------------------------------------------------------------------
330 void TransmitTo15693Reader(const uint8_t *cmd
, size_t len
, uint32_t start_time
, bool slow
) {
331 // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
332 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_424K
);
334 uint8_t shift_delay
= start_time
& 0x00000007;
336 while (GetCountSspClk() < (start_time
& 0xfffffff8)) ;
339 uint8_t bits_to_shift
= 0x00;
340 uint8_t bits_to_send
= 0x00;
341 for(size_t c
= 0; c
< len
; c
++) {
342 for (int i
= 7; i
>= 0; i
--) {
343 uint8_t cmd_bits
= ((cmd
[c
] >> i
) & 0x01) ? 0xff : 0x00;
344 for (int j
= 0; j
< (slow
?4:1); ) {
345 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
346 bits_to_send
= bits_to_shift
<< (8 - shift_delay
) | cmd_bits
>> shift_delay
;
347 AT91C_BASE_SSC
->SSC_THR
= bits_to_send
;
348 bits_to_shift
= cmd_bits
;
355 // send the remaining bits, padded with 0:
356 bits_to_send
= bits_to_shift
<< (8 - shift_delay
);
358 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
359 AT91C_BASE_SSC
->SSC_THR
= bits_to_send
;
368 //=============================================================================
369 // An ISO 15693 decoder for tag responses (one subcarrier only).
370 // Uses cross correlation to identify each bit and EOF.
371 // This function is called 8 times per bit (every 2 subcarrier cycles).
372 // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
373 // i.e. function is called every 4,72us
375 // LED C -> ON once we have received the SOF and are expecting the rest.
376 // LED C -> OFF once we have received EOF or are unsynced
378 // Returns: true if we received a EOF
379 // false if we are still waiting for some more
380 //=============================================================================
382 #define NOISE_THRESHOLD 160 // don't try to correlate noise
384 typedef struct DecodeTag
{
388 STATE_TAG_SOF_HIGH_END
,
389 STATE_TAG_RECEIVING_DATA
,
408 static int inline __attribute__((always_inline
)) Handle15693SamplesFromTag(uint16_t amplitude
, DecodeTag_t
*DecodeTag
)
410 switch(DecodeTag
->state
) {
411 case STATE_TAG_SOF_LOW
:
412 // waiting for 12 times low (11 times low is accepted as well)
413 if (amplitude
< NOISE_THRESHOLD
) {
414 DecodeTag
->posCount
++;
416 if (DecodeTag
->posCount
> 10) {
417 DecodeTag
->posCount
= 1;
419 DecodeTag
->state
= STATE_TAG_SOF_HIGH
;
421 DecodeTag
->posCount
= 0;
426 case STATE_TAG_SOF_HIGH
:
427 // waiting for 10 times high. Take average over the last 8
428 if (amplitude
> NOISE_THRESHOLD
) {
429 DecodeTag
->posCount
++;
430 if (DecodeTag
->posCount
> 2) {
431 DecodeTag
->sum1
+= amplitude
; // keep track of average high value
433 if (DecodeTag
->posCount
== 10) {
434 DecodeTag
->sum1
>>= 4; // calculate half of average high value (8 samples)
435 DecodeTag
->state
= STATE_TAG_SOF_HIGH_END
;
437 } else { // high phase was too short
438 DecodeTag
->posCount
= 1;
439 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
443 case STATE_TAG_SOF_HIGH_END
:
444 // waiting for a falling edge
445 if (amplitude
< DecodeTag
->sum1
) { // signal drops below 50% average high: a falling edge
446 DecodeTag
->lastBit
= SOF_PART1
; // detected 1st part of SOF (12 samples low and 12 samples high)
447 DecodeTag
->shiftReg
= 0;
448 DecodeTag
->bitCount
= 0;
450 DecodeTag
->sum1
= amplitude
;
452 DecodeTag
->posCount
= 2;
453 DecodeTag
->state
= STATE_TAG_RECEIVING_DATA
;
456 DecodeTag
->posCount
++;
457 if (DecodeTag
->posCount
> 13) { // high phase too long
458 DecodeTag
->posCount
= 0;
459 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
465 case STATE_TAG_RECEIVING_DATA
:
466 if (DecodeTag
->posCount
== 1) {
470 if (DecodeTag
->posCount
<= 4) {
471 DecodeTag
->sum1
+= amplitude
;
473 DecodeTag
->sum2
+= amplitude
;
475 if (DecodeTag
->posCount
== 8) {
476 int32_t corr_1
= DecodeTag
->sum2
- DecodeTag
->sum1
;
477 int32_t corr_0
= -corr_1
;
478 int32_t corr_EOF
= (DecodeTag
->sum1
+ DecodeTag
->sum2
) / 2;
479 if (corr_EOF
> corr_0
&& corr_EOF
> corr_1
) {
480 if (DecodeTag
->lastBit
== LOGIC0
) { // this was already part of EOF
481 DecodeTag
->state
= STATE_TAG_EOF
;
483 DecodeTag
->posCount
= 0;
484 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
487 } else if (corr_1
> corr_0
) {
489 if (DecodeTag
->lastBit
== SOF_PART1
) { // still part of SOF
490 DecodeTag
->lastBit
= SOF_PART2
; // SOF completed
492 DecodeTag
->lastBit
= LOGIC1
;
493 DecodeTag
->shiftReg
>>= 1;
494 DecodeTag
->shiftReg
|= 0x80;
495 DecodeTag
->bitCount
++;
496 if (DecodeTag
->bitCount
== 8) {
497 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
499 if (DecodeTag
->len
> DecodeTag
->max_len
) {
500 // buffer overflow, give up
501 DecodeTag
->posCount
= 0;
502 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
505 DecodeTag
->bitCount
= 0;
506 DecodeTag
->shiftReg
= 0;
511 if (DecodeTag
->lastBit
== SOF_PART1
) { // incomplete SOF
512 DecodeTag
->posCount
= 0;
513 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
516 DecodeTag
->lastBit
= LOGIC0
;
517 DecodeTag
->shiftReg
>>= 1;
518 DecodeTag
->bitCount
++;
519 if (DecodeTag
->bitCount
== 8) {
520 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
522 if (DecodeTag
->len
> DecodeTag
->max_len
) {
523 // buffer overflow, give up
524 DecodeTag
->posCount
= 0;
525 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
528 DecodeTag
->bitCount
= 0;
529 DecodeTag
->shiftReg
= 0;
533 DecodeTag
->posCount
= 0;
535 DecodeTag
->posCount
++;
539 if (DecodeTag
->posCount
== 1) {
543 if (DecodeTag
->posCount
<= 4) {
544 DecodeTag
->sum1
+= amplitude
;
546 DecodeTag
->sum2
+= amplitude
;
548 if (DecodeTag
->posCount
== 8) {
549 int32_t corr_1
= DecodeTag
->sum2
- DecodeTag
->sum1
;
550 int32_t corr_0
= -corr_1
;
551 int32_t corr_EOF
= (DecodeTag
->sum1
+ DecodeTag
->sum2
) / 2;
552 if (corr_EOF
> corr_0
|| corr_1
> corr_0
) {
553 DecodeTag
->posCount
= 0;
554 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
561 DecodeTag
->posCount
++;
570 static void DecodeTagInit(DecodeTag_t
*DecodeTag
, uint8_t *data
, uint16_t max_len
)
572 DecodeTag
->posCount
= 0;
573 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
574 DecodeTag
->output
= data
;
575 DecodeTag
->max_len
= max_len
;
579 static void DecodeTagReset(DecodeTag_t
*DecodeTag
)
581 DecodeTag
->posCount
= 0;
582 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
587 * Receive and decode the tag response, also log to tracebuffer
589 static int GetIso15693AnswerFromTag(uint8_t* response
, uint16_t max_len
, int timeout
)
592 bool gotFrame
= false;
594 uint16_t *dmaBuf
= (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE
*sizeof(uint16_t));
596 // the Decoder data structure
597 DecodeTag_t DecodeTag
= { 0 };
598 DecodeTagInit(&DecodeTag
, response
, max_len
);
600 // wait for last transfer to complete
601 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
603 // And put the FPGA in the appropriate mode
604 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
606 // Setup and start DMA.
607 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
608 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
609 uint16_t *upTo
= dmaBuf
;
612 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
614 if (behindBy
== 0) continue;
616 uint16_t tagdata
= *upTo
++;
618 if(upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
619 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
620 if(behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
621 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
625 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
626 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
627 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
632 if (Handle15693SamplesFromTag(tagdata
, &DecodeTag
)) {
637 if (samples
> timeout
&& DecodeTag
.state
< STATE_TAG_RECEIVING_DATA
) {
647 if (DEBUG
) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
648 samples
, gotFrame
, DecodeTag
.state
, DecodeTag
.len
, DecodeTag
.bitCount
, DecodeTag
.posCount
);
650 if (DecodeTag
.len
> 0) {
651 LogTrace(DecodeTag
.output
, DecodeTag
.len
, 0, 0, NULL
, false);
654 return DecodeTag
.len
;
658 //=============================================================================
659 // An ISO15693 decoder for reader commands.
661 // This function is called 4 times per bit (every 2 subcarrier cycles).
662 // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
664 // LED B -> ON once we have received the SOF and are expecting the rest.
665 // LED B -> OFF once we have received EOF or are in error state or unsynced
667 // Returns: true if we received a EOF
668 // false if we are still waiting for some more
669 //=============================================================================
671 typedef struct DecodeReader
{
673 STATE_READER_UNSYNCD
,
674 STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
,
675 STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
,
676 STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
,
677 STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
,
678 STATE_READER_RECEIVE_DATA_1_OUT_OF_4
,
679 STATE_READER_RECEIVE_DATA_1_OUT_OF_256
695 static void DecodeReaderInit(DecodeReader_t
* DecodeReader
, uint8_t *data
, uint16_t max_len
)
697 DecodeReader
->output
= data
;
698 DecodeReader
->byteCountMax
= max_len
;
699 DecodeReader
->state
= STATE_READER_UNSYNCD
;
700 DecodeReader
->byteCount
= 0;
701 DecodeReader
->bitCount
= 0;
702 DecodeReader
->posCount
= 1;
703 DecodeReader
->shiftReg
= 0;
707 static void DecodeReaderReset(DecodeReader_t
* DecodeReader
)
709 DecodeReader
->state
= STATE_READER_UNSYNCD
;
713 static int inline __attribute__((always_inline
)) Handle15693SampleFromReader(uint8_t bit
, DecodeReader_t
*restrict DecodeReader
)
715 switch (DecodeReader
->state
) {
716 case STATE_READER_UNSYNCD
:
718 // we went low, so this could be the beginning of a SOF
719 DecodeReader
->posCount
= 1;
720 DecodeReader
->state
= STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
;
724 case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
:
725 DecodeReader
->posCount
++;
726 if (bit
) { // detected rising edge
727 if (DecodeReader
->posCount
< 4) { // rising edge too early (nominally expected at 5)
728 DecodeReaderReset(DecodeReader
);
730 DecodeReader
->state
= STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
;
733 if (DecodeReader
->posCount
> 5) { // stayed low for too long
734 DecodeReaderReset(DecodeReader
);
736 // do nothing, keep waiting
741 case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
:
742 DecodeReader
->posCount
++;
743 if (!bit
) { // detected a falling edge
744 if (DecodeReader
->posCount
< 20) { // falling edge too early (nominally expected at 21 earliest)
745 DecodeReaderReset(DecodeReader
);
746 } else if (DecodeReader
->posCount
< 23) { // SOF for 1 out of 4 coding
747 DecodeReader
->Coding
= CODING_1_OUT_OF_4
;
748 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
749 } else if (DecodeReader
->posCount
< 28) { // falling edge too early (nominally expected at 29 latest)
750 DecodeReaderReset(DecodeReader
);
751 } else { // SOF for 1 out of 4 coding
752 DecodeReader
->Coding
= CODING_1_OUT_OF_256
;
753 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
756 if (DecodeReader
->posCount
> 29) { // stayed high for too long
757 DecodeReaderReset(DecodeReader
);
759 // do nothing, keep waiting
764 case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
:
765 DecodeReader
->posCount
++;
766 if (bit
) { // detected rising edge
767 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
768 if (DecodeReader
->posCount
< 32) { // rising edge too early (nominally expected at 33)
769 DecodeReaderReset(DecodeReader
);
771 DecodeReader
->posCount
= 1;
772 DecodeReader
->bitCount
= 0;
773 DecodeReader
->byteCount
= 0;
774 DecodeReader
->sum1
= 1;
775 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_256
;
778 } else { // CODING_1_OUT_OF_4
779 if (DecodeReader
->posCount
< 24) { // rising edge too early (nominally expected at 25)
780 DecodeReaderReset(DecodeReader
);
782 DecodeReader
->state
= STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
;
786 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
787 if (DecodeReader
->posCount
> 34) { // signal stayed low for too long
788 DecodeReaderReset(DecodeReader
);
790 // do nothing, keep waiting
792 } else { // CODING_1_OUT_OF_4
793 if (DecodeReader
->posCount
> 26) { // signal stayed low for too long
794 DecodeReaderReset(DecodeReader
);
796 // do nothing, keep waiting
802 case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
:
803 DecodeReader
->posCount
++;
805 if (DecodeReader
->posCount
== 33) {
806 DecodeReader
->posCount
= 1;
807 DecodeReader
->bitCount
= 0;
808 DecodeReader
->byteCount
= 0;
809 DecodeReader
->sum1
= 1;
810 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_4
;
813 // do nothing, keep waiting
815 } else { // unexpected falling edge
816 DecodeReaderReset(DecodeReader
);
820 case STATE_READER_RECEIVE_DATA_1_OUT_OF_4
:
821 DecodeReader
->posCount
++;
822 if (DecodeReader
->posCount
== 1) {
823 DecodeReader
->sum1
= bit
;
824 } else if (DecodeReader
->posCount
<= 4) {
825 DecodeReader
->sum1
+= bit
;
826 } else if (DecodeReader
->posCount
== 5) {
827 DecodeReader
->sum2
= bit
;
829 DecodeReader
->sum2
+= bit
;
831 if (DecodeReader
->posCount
== 8) {
832 DecodeReader
->posCount
= 0;
833 int corr10
= DecodeReader
->sum1
- DecodeReader
->sum2
;
834 int corr01
= DecodeReader
->sum2
- DecodeReader
->sum1
;
835 int corr11
= (DecodeReader
->sum1
+ DecodeReader
->sum2
) / 2;
836 if (corr01
> corr11
&& corr01
> corr10
) { // EOF
837 LED_B_OFF(); // Finished receiving
838 DecodeReaderReset(DecodeReader
);
839 if (DecodeReader
->byteCount
!= 0) {
843 if (corr10
> corr11
) { // detected a 2bit position
844 DecodeReader
->shiftReg
>>= 2;
845 DecodeReader
->shiftReg
|= (DecodeReader
->bitCount
<< 6);
847 if (DecodeReader
->bitCount
== 15) { // we have a full byte
848 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
849 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
850 // buffer overflow, give up
852 DecodeReaderReset(DecodeReader
);
854 DecodeReader
->bitCount
= 0;
855 DecodeReader
->shiftReg
= 0;
857 DecodeReader
->bitCount
++;
862 case STATE_READER_RECEIVE_DATA_1_OUT_OF_256
:
863 DecodeReader
->posCount
++;
864 if (DecodeReader
->posCount
== 1) {
865 DecodeReader
->sum1
= bit
;
866 } else if (DecodeReader
->posCount
<= 4) {
867 DecodeReader
->sum1
+= bit
;
868 } else if (DecodeReader
->posCount
== 5) {
869 DecodeReader
->sum2
= bit
;
871 DecodeReader
->sum2
+= bit
;
873 if (DecodeReader
->posCount
== 8) {
874 DecodeReader
->posCount
= 0;
875 int corr10
= DecodeReader
->sum1
- DecodeReader
->sum2
;
876 int corr01
= DecodeReader
->sum2
- DecodeReader
->sum1
;
877 int corr11
= (DecodeReader
->sum1
+ DecodeReader
->sum2
) / 2;
878 if (corr01
> corr11
&& corr01
> corr10
) { // EOF
879 LED_B_OFF(); // Finished receiving
880 DecodeReaderReset(DecodeReader
);
881 if (DecodeReader
->byteCount
!= 0) {
885 if (corr10
> corr11
) { // detected the bit position
886 DecodeReader
->shiftReg
= DecodeReader
->bitCount
;
888 if (DecodeReader
->bitCount
== 255) { // we have a full byte
889 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
890 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
891 // buffer overflow, give up
893 DecodeReaderReset(DecodeReader
);
896 DecodeReader
->bitCount
++;
902 DecodeReaderReset(DecodeReader
);
910 //-----------------------------------------------------------------------------
911 // Receive a command (from the reader to us, where we are the simulated tag),
912 // and store it in the given buffer, up to the given maximum length. Keeps
913 // spinning, waiting for a well-framed command, until either we get one
914 // (returns len) or someone presses the pushbutton on the board (returns -1).
916 // Assume that we're called with the SSC (to the FPGA) and ADC path set
918 //-----------------------------------------------------------------------------
920 int GetIso15693CommandFromReader(uint8_t *received
, size_t max_len
, uint32_t *eof_time
) {
922 bool gotFrame
= false;
925 uint8_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
927 // the decoder data structure
928 DecodeReader_t DecodeReader
= {0};
929 DecodeReaderInit(&DecodeReader
, received
, max_len
);
931 // wait for last transfer to complete
932 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
935 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
937 // clear receive register and wait for next transfer
938 uint32_t temp
= AT91C_BASE_SSC
->SSC_RHR
;
940 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)) ;
942 uint32_t dma_start_time
= GetCountSspClk() & 0xfffffff8;
944 // Setup and start DMA.
945 FpgaSetupSscDma(dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
946 uint8_t *upTo
= dmaBuf
;
949 uint16_t behindBy
= ((uint8_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
951 if (behindBy
== 0) continue;
954 if (upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
955 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
956 if (behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
957 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
961 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
962 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
963 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
966 for (int i
= 7; i
>= 0; i
--) {
967 if (Handle15693SampleFromReader((b
>> i
) & 0x01, &DecodeReader
)) {
968 *eof_time
= dma_start_time
+ samples
- DELAY_READER_TO_ARM_SIM
; // end of EOF
979 if (BUTTON_PRESS()) {
980 DecodeReader
.byteCount
= -1;
989 if (DEBUG
) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
990 samples
, gotFrame
, DecodeReader
.state
, DecodeReader
.byteCount
, DecodeReader
.bitCount
, DecodeReader
.posCount
);
992 if (DecodeReader
.byteCount
> 0) {
993 uint32_t sof_time
= *eof_time
994 - DecodeReader
.byteCount
* (DecodeReader
.Coding
==CODING_1_OUT_OF_4
?128:2048) // time for byte transfers
995 - 32 // time for SOF transfer
996 - 16; // time for EOF transfer
997 LogTrace(DecodeReader
.output
, DecodeReader
.byteCount
, sof_time
, *eof_time
, NULL
, true);
1000 return DecodeReader
.byteCount
;
1004 // Encode (into the ToSend buffers) an identify request, which is the first
1005 // thing that you must send to a tag to get a response.
1006 static void BuildIdentifyRequest(void)
1011 // one sub-carrier, inventory, 1 slot, fast rate
1012 // AFI is at bit 5 (1<<4) when doing an INVENTORY
1013 cmd
[0] = (1 << 2) | (1 << 5) | (1 << 1);
1014 // inventory command code
1019 crc
= Iso15693Crc(cmd
, 3);
1020 cmd
[3] = crc
& 0xff;
1023 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1027 //-----------------------------------------------------------------------------
1028 // Start to read an ISO 15693 tag. We send an identify request, then wait
1029 // for the response. The response is not demodulated, just left in the buffer
1030 // so that it can be downloaded to a PC and processed there.
1031 //-----------------------------------------------------------------------------
1032 void AcquireRawAdcSamplesIso15693(void)
1037 uint8_t *dest
= BigBuf_get_addr();
1039 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1040 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1041 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1042 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1044 BuildIdentifyRequest();
1046 // Give the tags time to energize
1050 // Now send the command
1051 TransmitTo15693Tag(ToSend
, ToSendMax
, 0);
1053 // wait for last transfer to complete
1054 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
)) ;
1056 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
1058 for(int c
= 0; c
< 4000; ) {
1059 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1060 uint16_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1065 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1070 void SnoopIso15693(void)
1073 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1079 // The DMA buffer, used to stream samples from the FPGA
1080 uint16_t* dmaBuf
= (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE
*sizeof(uint16_t));
1083 // Count of samples received so far, so that we can include timing
1084 // information in the trace buffer.
1087 DecodeTag_t DecodeTag
= {0};
1088 uint8_t response
[ISO15693_MAX_RESPONSE_LENGTH
];
1089 DecodeTagInit(&DecodeTag
, response
, sizeof(response
));
1091 DecodeReader_t DecodeReader
= {0};;
1092 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1093 DecodeReaderInit(&DecodeReader
, cmd
, sizeof(cmd
));
1095 // Print some debug information about the buffer sizes
1097 Dbprintf("Snooping buffers initialized:");
1098 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1099 Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH
);
1100 Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH
);
1101 Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE
* sizeof(uint16_t));
1103 Dbprintf("Snoop started. Press PM3 Button to stop.");
1105 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SNOOP_AMPLITUDE
);
1106 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1108 // Setup for the DMA.
1109 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1111 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1113 bool TagIsActive
= false;
1114 bool ReaderIsActive
= false;
1115 bool ExpectTagAnswer
= false;
1117 // And now we loop, receiving samples.
1119 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
1121 if (behindBy
== 0) continue;
1123 uint16_t snoopdata
= *upTo
++;
1125 if(upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1126 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
1127 if(behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
1128 Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy
, samples
);
1131 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1132 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1133 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
1135 if(BUTTON_PRESS()) {
1136 DbpString("Snoop stopped.");
1143 if (!TagIsActive
) { // no need to try decoding reader data if the tag is sending
1144 if (Handle15693SampleFromReader(snoopdata
& 0x02, &DecodeReader
)) {
1145 FpgaDisableSscDma();
1146 ExpectTagAnswer
= true;
1147 LogTrace(DecodeReader
.output
, DecodeReader
.byteCount
, samples
, samples
, NULL
, true);
1148 /* And ready to receive another command. */
1149 DecodeReaderReset(&DecodeReader
);
1150 /* And also reset the demod code, which might have been */
1151 /* false-triggered by the commands from the reader. */
1152 DecodeTagReset(&DecodeTag
);
1154 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1156 if (Handle15693SampleFromReader(snoopdata
& 0x01, &DecodeReader
)) {
1157 FpgaDisableSscDma();
1158 ExpectTagAnswer
= true;
1159 LogTrace(DecodeReader
.output
, DecodeReader
.byteCount
, samples
, samples
, NULL
, true);
1160 /* And ready to receive another command. */
1161 DecodeReaderReset(&DecodeReader
);
1162 /* And also reset the demod code, which might have been */
1163 /* false-triggered by the commands from the reader. */
1164 DecodeTagReset(&DecodeTag
);
1166 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1168 ReaderIsActive
= (DecodeReader
.state
>= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
);
1171 if (!ReaderIsActive
&& ExpectTagAnswer
) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
1172 if (Handle15693SamplesFromTag(snoopdata
>> 2, &DecodeTag
)) {
1173 FpgaDisableSscDma();
1174 //Use samples as a time measurement
1175 LogTrace(DecodeTag
.output
, DecodeTag
.len
, samples
, samples
, NULL
, false);
1176 // And ready to receive another response.
1177 DecodeTagReset(&DecodeTag
);
1178 DecodeReaderReset(&DecodeReader
);
1179 ExpectTagAnswer
= false;
1181 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1183 TagIsActive
= (DecodeTag
.state
>= STATE_TAG_RECEIVING_DATA
);
1188 FpgaDisableSscDma();
1193 DbpString("Snoop statistics:");
1194 Dbprintf(" ExpectTagAnswer: %d", ExpectTagAnswer
);
1195 Dbprintf(" DecodeTag State: %d", DecodeTag
.state
);
1196 Dbprintf(" DecodeTag byteCnt: %d", DecodeTag
.len
);
1197 Dbprintf(" DecodeReader State: %d", DecodeReader
.state
);
1198 Dbprintf(" DecodeReader byteCnt: %d", DecodeReader
.byteCount
);
1199 Dbprintf(" Trace length: %d", BigBuf_get_traceLen());
1203 // Initialize the proxmark as iso15k reader
1204 static void Iso15693InitReader() {
1205 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1209 // Start from off (no field generated)
1211 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1214 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1215 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1217 // Give the tags time to energize
1219 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1223 ///////////////////////////////////////////////////////////////////////
1224 // ISO 15693 Part 3 - Air Interface
1225 // This section basically contains transmission and receiving of bits
1226 ///////////////////////////////////////////////////////////////////////
1229 // uid is in transmission order (which is reverse of display order)
1230 static void BuildReadBlockRequest(uint8_t *uid
, uint8_t blockNumber
)
1235 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1236 // followed by the block data
1237 cmd
[0] = ISO15693_REQ_OPTION
| ISO15693_REQ_ADDRESS
| ISO15693_REQ_DATARATE_HIGH
;
1238 // READ BLOCK command code
1239 cmd
[1] = ISO15693_READBLOCK
;
1240 // UID may be optionally specified here
1249 cmd
[9] = uid
[7]; // 0xe0; // always e0 (not exactly unique)
1250 // Block number to read
1251 cmd
[10] = blockNumber
;
1253 crc
= Iso15693Crc(cmd
, 11); // the crc needs to be calculated over 11 bytes
1254 cmd
[11] = crc
& 0xff;
1257 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1261 // Now the VICC>VCD responses when we are simulating a tag
1262 static void BuildInventoryResponse(uint8_t *uid
)
1268 cmd
[0] = 0; // No error, no protocol format extension
1269 cmd
[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
1271 cmd
[2] = uid
[7]; //0x32;
1272 cmd
[3] = uid
[6]; //0x4b;
1273 cmd
[4] = uid
[5]; //0x03;
1274 cmd
[5] = uid
[4]; //0x01;
1275 cmd
[6] = uid
[3]; //0x00;
1276 cmd
[7] = uid
[2]; //0x10;
1277 cmd
[8] = uid
[1]; //0x05;
1278 cmd
[9] = uid
[0]; //0xe0;
1280 crc
= Iso15693Crc(cmd
, 10);
1281 cmd
[10] = crc
& 0xff;
1284 CodeIso15693AsTag(cmd
, sizeof(cmd
));
1287 // Universal Method for sending to and recv bytes from a tag
1288 // init ... should we initialize the reader?
1289 // speed ... 0 low speed, 1 hi speed
1290 // *recv will contain the tag's answer
1291 // return: lenght of received data
1292 int SendDataTag(uint8_t *send
, int sendlen
, bool init
, int speed
, uint8_t *recv
, uint16_t max_recv_len
, uint32_t start_time
) {
1298 if (init
) Iso15693InitReader();
1303 // low speed (1 out of 256)
1304 CodeIso15693AsReader256(send
, sendlen
);
1306 // high speed (1 out of 4)
1307 CodeIso15693AsReader(send
, sendlen
);
1310 TransmitTo15693Tag(ToSend
, ToSendMax
, start_time
);
1312 // Now wait for a response
1314 answerLen
= GetIso15693AnswerFromTag(recv
, max_recv_len
, DELAY_ISO15693_VCD_TO_VICC_READER
* 2);
1323 // --------------------------------------------------------------------
1325 // --------------------------------------------------------------------
1327 // Decodes a message from a tag and displays its metadata and content
1328 #define DBD15STATLEN 48
1329 void DbdecodeIso15693Answer(int len
, uint8_t *d
) {
1330 char status
[DBD15STATLEN
+1]={0};
1334 if (d
[0] & ISO15693_RES_EXT
)
1335 strncat(status
,"ProtExt ", DBD15STATLEN
);
1336 if (d
[0] & ISO15693_RES_ERROR
) {
1338 strncat(status
,"Error ", DBD15STATLEN
);
1341 strncat(status
,"01:notSupp", DBD15STATLEN
);
1344 strncat(status
,"02:notRecog", DBD15STATLEN
);
1347 strncat(status
,"03:optNotSupp", DBD15STATLEN
);
1350 strncat(status
,"0f:noInfo", DBD15STATLEN
);
1353 strncat(status
,"10:doesn'tExist", DBD15STATLEN
);
1356 strncat(status
,"11:lockAgain", DBD15STATLEN
);
1359 strncat(status
,"12:locked", DBD15STATLEN
);
1362 strncat(status
,"13:progErr", DBD15STATLEN
);
1365 strncat(status
,"14:lockErr", DBD15STATLEN
);
1368 strncat(status
,"unknownErr", DBD15STATLEN
);
1370 strncat(status
," ", DBD15STATLEN
);
1372 strncat(status
,"NoErr ", DBD15STATLEN
);
1375 crc
=Iso15693Crc(d
,len
-2);
1376 if ( (( crc
& 0xff ) == d
[len
-2]) && (( crc
>> 8 ) == d
[len
-1]) )
1377 strncat(status
,"CrcOK",DBD15STATLEN
);
1379 strncat(status
,"CrcFail!",DBD15STATLEN
);
1381 Dbprintf("%s",status
);
1387 ///////////////////////////////////////////////////////////////////////
1388 // Functions called via USB/Client
1389 ///////////////////////////////////////////////////////////////////////
1391 void SetDebugIso15693(uint32_t debug
) {
1393 Dbprintf("Iso15693 Debug is now %s",DEBUG
?"on":"off");
1398 //---------------------------------------------------------------------------------------
1399 // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
1400 // all demodulation performed in arm rather than host. - greg
1401 //---------------------------------------------------------------------------------------
1402 void ReaderIso15693(uint32_t parameter
)
1410 uint8_t TagUID
[8] = {0x00};
1412 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1414 uint8_t answer
[ISO15693_MAX_RESPONSE_LENGTH
];
1416 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1418 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1420 // Start from off (no field generated)
1421 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1424 // Give the tags time to energize
1426 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1431 // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
1432 // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
1434 // Now send the IDENTIFY command
1435 BuildIdentifyRequest();
1436 TransmitTo15693Tag(ToSend
, ToSendMax
, 0);
1438 // Now wait for a response
1439 answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2) ;
1440 uint32_t start_time
= GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER
;
1442 if (answerLen
>=12) // we should do a better check than this
1444 TagUID
[0] = answer
[2];
1445 TagUID
[1] = answer
[3];
1446 TagUID
[2] = answer
[4];
1447 TagUID
[3] = answer
[5];
1448 TagUID
[4] = answer
[6];
1449 TagUID
[5] = answer
[7];
1450 TagUID
[6] = answer
[8]; // IC Manufacturer code
1451 TagUID
[7] = answer
[9]; // always E0
1455 Dbprintf("%d octets read from IDENTIFY request:", answerLen
);
1456 DbdecodeIso15693Answer(answerLen
, answer
);
1457 Dbhexdump(answerLen
, answer
, false);
1460 if (answerLen
>= 12)
1461 Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
1462 TagUID
[7],TagUID
[6],TagUID
[5],TagUID
[4],
1463 TagUID
[3],TagUID
[2],TagUID
[1],TagUID
[0]);
1466 // Dbprintf("%d octets read from SELECT request:", answerLen2);
1467 // DbdecodeIso15693Answer(answerLen2,answer2);
1468 // Dbhexdump(answerLen2,answer2,true);
1470 // Dbprintf("%d octets read from XXX request:", answerLen3);
1471 // DbdecodeIso15693Answer(answerLen3,answer3);
1472 // Dbhexdump(answerLen3,answer3,true);
1475 if (answerLen
>= 12 && DEBUG
) {
1476 for (int i
= 0; i
< 32; i
++) { // sanity check, assume max 32 pages
1477 BuildReadBlockRequest(TagUID
, i
);
1478 TransmitTo15693Tag(ToSend
, ToSendMax
, start_time
);
1479 int answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2);
1480 start_time
= GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER
;
1481 if (answerLen
> 0) {
1482 Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i
, answerLen
);
1483 DbdecodeIso15693Answer(answerLen
, answer
);
1484 Dbhexdump(answerLen
, answer
, false);
1485 if ( *((uint32_t*) answer
) == 0x07160101 ) break; // exit on NoPageErr
1490 // for the time being, switch field off to protect rdv4.0
1491 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1492 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1499 // Simulate an ISO15693 TAG.
1500 // For Inventory command: print command and send Inventory Response with given UID
1501 // TODO: interpret other reader commands and send appropriate response
1502 void SimTagIso15693(uint32_t parameter
, uint8_t *uid
)
1507 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1508 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1509 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1510 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1514 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1516 // Build a suitable response to the reader INVENTORY command
1517 BuildInventoryResponse(uid
);
1520 while (!BUTTON_PRESS()) {
1521 uint32_t eof_time
= 0, start_time
= 0;
1522 int cmd_len
= GetIso15693CommandFromReader(cmd
, sizeof(cmd
), &eof_time
);
1524 if ((cmd_len
>= 5) && (cmd
[0] & ISO15693_REQ_INVENTORY
) && (cmd
[1] == ISO15693_INVENTORY
)) { // TODO: check more flags
1525 bool slow
= !(cmd
[0] & ISO15693_REQ_DATARATE_HIGH
);
1526 start_time
= eof_time
+ DELAY_ISO15693_VCD_TO_VICC_SIM
- DELAY_ARM_TO_READER_SIM
;
1527 TransmitTo15693Reader(ToSend
, ToSendMax
, start_time
, slow
);
1530 Dbprintf("%d bytes read from reader:", cmd_len
);
1531 Dbhexdump(cmd_len
, cmd
, false);
1534 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1539 // Since there is no standardized way of reading the AFI out of a tag, we will brute force it
1540 // (some manufactures offer a way to read the AFI, though)
1541 void BruteforceIso15693Afi(uint32_t speed
)
1547 uint8_t recv
[ISO15693_MAX_RESPONSE_LENGTH
];
1549 int datalen
=0, recvlen
=0;
1551 Iso15693InitReader();
1554 // first without AFI
1555 // Tags should respond without AFI and with AFI=0 even when AFI is active
1557 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_SLOT1
;
1558 data
[1] = ISO15693_INVENTORY
;
1559 data
[2] = 0; // mask length
1560 datalen
= Iso15693AddCrc(data
,3);
1561 recvlen
= SendDataTag(data
, datalen
, false, speed
, recv
, sizeof(recv
), 0);
1562 uint32_t start_time
= GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER
;
1565 Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL
, &recv
[2]));
1570 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_AFI
| ISO15693_REQINV_SLOT1
;
1571 data
[1] = ISO15693_INVENTORY
;
1573 data
[3] = 0; // mask length
1575 for (int i
= 0; i
< 256; i
++) {
1577 datalen
= Iso15693AddCrc(data
,4);
1578 recvlen
= SendDataTag(data
, datalen
, false, speed
, recv
, sizeof(recv
), start_time
);
1579 start_time
= GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER
;
1581 if (recvlen
>= 12) {
1582 Dbprintf("AFI=%i UID=%s", i
, Iso15693sprintUID(NULL
, &recv
[2]));
1585 Dbprintf("AFI Bruteforcing done.");
1587 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1591 // Allows to directly send commands to the tag via the client
1592 void DirectTag15693Command(uint32_t datalen
, uint32_t speed
, uint32_t recv
, uint8_t data
[]) {
1595 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1601 Dbhexdump(datalen
, data
, false);
1604 recvlen
= SendDataTag(data
, datalen
, true, speed
, (recv
?recvbuf
:NULL
), sizeof(recvbuf
), 0);
1609 Dbhexdump(recvlen
, recvbuf
, false);
1610 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1613 cmd_send(CMD_ACK
, recvlen
>ISO15693_MAX_RESPONSE_LENGTH
?ISO15693_MAX_RESPONSE_LENGTH
:recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1617 // for the time being, switch field off to protect rdv4.0
1618 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1619 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1625 //-----------------------------------------------------------------------------
1626 // Work with "magic Chinese" card.
1628 //-----------------------------------------------------------------------------
1630 // Set the UID to the tag (based on Iceman work).
1631 void SetTag15693Uid(uint8_t *uid
)
1633 uint8_t cmd
[4][9] = {0x00};
1638 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1642 // Command 1 : 02213E00000000
1651 // Command 2 : 02213F69960000
1660 // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
1669 // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
1678 for (int i
=0; i
<4; i
++) {
1680 crc
= Iso15693Crc(cmd
[i
], 7);
1681 cmd
[i
][7] = crc
& 0xff;
1682 cmd
[i
][8] = crc
>> 8;
1686 Dbhexdump(sizeof(cmd
[i
]), cmd
[i
], false);
1689 recvlen
= SendDataTag(cmd
[i
], sizeof(cmd
[i
]), true, 1, recvbuf
, sizeof(recvbuf
), 0);
1693 Dbhexdump(recvlen
, recvbuf
, false);
1694 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1697 cmd_send(CMD_ACK
, recvlen
>ISO15693_MAX_RESPONSE_LENGTH
?ISO15693_MAX_RESPONSE_LENGTH
:recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1707 // --------------------------------------------------------------------
1708 // -- Misc & deprecated functions
1709 // --------------------------------------------------------------------
1713 // do not use; has a fix UID
1714 static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
1719 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1720 // followed by the block data
1721 // one sub-carrier, inventory, 1 slot, fast rate
1722 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1723 // System Information command code
1725 // UID may be optionally specified here
1734 cmd[9]= 0xe0; // always e0 (not exactly unique)
1736 crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
1737 cmd[10] = crc & 0xff;
1740 CodeIso15693AsReader(cmd, sizeof(cmd));
1744 // do not use; has a fix UID
1745 static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
1750 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1751 // followed by the block data
1752 // one sub-carrier, inventory, 1 slot, fast rate
1753 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1754 // READ Multi BLOCK command code
1756 // UID may be optionally specified here
1765 cmd[9]= 0xe0; // always e0 (not exactly unique)
1766 // First Block number to read
1768 // Number of Blocks to read
1769 cmd[11] = 0x2f; // read quite a few
1771 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1772 cmd[12] = crc & 0xff;
1775 CodeIso15693AsReader(cmd, sizeof(cmd));
1778 // do not use; has a fix UID
1779 static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
1784 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1785 // followed by the block data
1786 // one sub-carrier, inventory, 1 slot, fast rate
1787 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1788 // READ BLOCK command code
1790 // UID may be optionally specified here
1799 cmd[9]= 0xe0; // always e0 (not exactly unique)
1805 // cmd[13] = 0x00; //Now the CRC
1806 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1807 cmd[12] = crc & 0xff;
1810 CodeIso15693AsReader(cmd, sizeof(cmd));
1813 // do not use; has a fix UID
1814 static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
1819 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1820 // followed by the block data
1821 // one sub-carrier, inventory, 1 slot, fast rate
1822 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1823 // READ BLOCK command code
1825 // UID may be optionally specified here
1834 cmd[9]= 0xe0; // always e0 (not exactly unique)
1836 cmd[10] = 0x05; // for custom codes this must be manufacturer code
1840 // cmd[13] = 0x00; //Now the CRC
1841 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1842 cmd[12] = crc & 0xff;
1845 CodeIso15693AsReader(cmd, sizeof(cmd));