]> git.zerfleddert.de Git - proxmark3-svn/blob - client/nonce2key/crapto1.c
4ecc594329d6373ca91757cb8c4b35b34bcb918f
[proxmark3-svn] / client / nonce2key / crapto1.c
1 /* crapto1.c
2
3 This program is free software; you can redistribute it and/or
4 modify it under the terms of the GNU General Public License
5 as published by the Free Software Foundation; either version 2
6 of the License, or (at your option) any later version.
7
8 This program is distributed in the hope that it will be useful,
9 but WITHOUT ANY WARRANTY; without even the implied warranty of
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 GNU General Public License for more details.
12
13 You should have received a copy of the GNU General Public License
14 along with this program; if not, write to the Free Software
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,
16 Boston, MA 02110-1301, US$
17
18 Copyright (C) 2008-2014 bla <blapost@gmail.com>
19 */
20 #include "crapto1.h"
21 #include <stdlib.h>
22
23 #if !defined LOWMEM && defined __GNUC__
24 static uint8_t filterlut[1 << 20];
25 static void __attribute__((constructor)) fill_lut()
26 {
27 uint32_t i;
28 for(i = 0; i < 1 << 20; ++i)
29 filterlut[i] = filter(i);
30 }
31 #define filter(x) (filterlut[(x) & 0xfffff])
32 #endif
33
34 static void quicksort(uint32_t* const start, uint32_t* const stop)
35 {
36 uint32_t *it = start + 1, *rit = stop, t;
37
38 if(it > rit)
39 return;
40
41 while(it < rit)
42 if(*it <= *start)
43 ++it;
44 else if(*rit > *start)
45 --rit;
46 else
47 t = *it, *it = *rit, *rit = t;
48
49 if(*rit >= *start)
50 --rit;
51 if(rit != start)
52 t = *rit, *rit = *start, *start = t;
53
54 quicksort(start, rit - 1);
55 quicksort(rit + 1, stop);
56 }
57 /** binsearch
58 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]
59 */
60 static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)
61 {
62 uint32_t mid, val = *stop & 0xff000000;
63 while(start != stop)
64 if(start[mid = (stop - start) >> 1] > val)
65 stop = &start[mid];
66 else
67 start += mid + 1;
68
69 return start;
70 }
71
72 /** update_contribution
73 * helper, calculates the partial linear feedback contributions and puts in MSB
74 */
75 static inline void
76 update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
77 {
78 uint32_t p = *item >> 25;
79
80 p = p << 1 | parity(*item & mask1);
81 p = p << 1 | parity(*item & mask2);
82 *item = p << 24 | (*item & 0xffffff);
83 }
84
85 /** extend_table
86 * using a bit of the keystream extend the table of possible lfsr states
87 */
88 static inline void
89 extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
90 {
91 in <<= 24;
92 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
93 if(filter(*tbl) ^ filter(*tbl | 1)) {
94 *tbl |= filter(*tbl) ^ bit;
95 update_contribution(tbl, m1, m2);
96 *tbl ^= in;
97 } else if(filter(*tbl) == bit) {
98 *++*end = tbl[1];
99 tbl[1] = tbl[0] | 1;
100 update_contribution(tbl, m1, m2);
101 *tbl++ ^= in;
102 update_contribution(tbl, m1, m2);
103 *tbl ^= in;
104 } else
105 *tbl-- = *(*end)--;
106 }
107 /** extend_table_simple
108 * using a bit of the keystream extend the table of possible lfsr states
109 */
110 static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
111 {
112 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
113 if(filter(*tbl) ^ filter(*tbl | 1)) { // replace
114 *tbl |= filter(*tbl) ^ bit;
115 } else if(filter(*tbl) == bit) { // insert
116 *++*end = *++tbl;
117 *tbl = tbl[-1] | 1;
118 } else // drop
119 *tbl-- = *(*end)--;
120 }
121
122
123 /** recover
124 * recursively narrow down the search space, 4 bits of keystream at a time
125 */
126 static struct Crypto1State*
127 recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
128 uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
129 struct Crypto1State *sl, uint32_t in)
130 {
131 uint32_t *o, *e, i;
132
133 if(rem == -1) {
134 for(e = e_head; e <= e_tail; ++e) {
135 *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
136 for(o = o_head; o <= o_tail; ++o, ++sl) {
137 sl->even = *o;
138 sl->odd = *e ^ parity(*o & LF_POLY_ODD);
139 sl[1].odd = sl[1].even = 0;
140 }
141 }
142 return sl;
143 }
144
145 for(i = 0; i < 4 && rem--; i++) {
146 oks >>= 1;
147 eks >>= 1;
148 in >>= 2;
149 extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,
150 LF_POLY_ODD << 1, 0);
151 if(o_head > o_tail)
152 return sl;
153
154 extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,
155 LF_POLY_EVEN << 1 | 1, in & 3);
156 if(e_head > e_tail)
157 return sl;
158 }
159
160 quicksort(o_head, o_tail);
161 quicksort(e_head, e_tail);
162
163 while(o_tail >= o_head && e_tail >= e_head)
164 if(((*o_tail ^ *e_tail) >> 24) == 0) {
165 o_tail = binsearch(o_head, o = o_tail);
166 e_tail = binsearch(e_head, e = e_tail);
167 sl = recover(o_tail--, o, oks,
168 e_tail--, e, eks, rem, sl, in);
169 }
170 else if(*o_tail > *e_tail)
171 o_tail = binsearch(o_head, o_tail) - 1;
172 else
173 e_tail = binsearch(e_head, e_tail) - 1;
174
175 return sl;
176 }
177 /** lfsr_recovery
178 * recover the state of the lfsr given 32 bits of the keystream
179 * additionally you can use the in parameter to specify the value
180 * that was fed into the lfsr at the time the keystream was generated
181 */
182 struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
183 {
184 struct Crypto1State *statelist;
185 uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
186 uint32_t *even_head = 0, *even_tail = 0, eks = 0;
187 int i;
188
189 // split the keystream into an odd and even part
190 for(i = 31; i >= 0; i -= 2)
191 oks = oks << 1 | BEBIT(ks2, i);
192 for(i = 30; i >= 0; i -= 2)
193 eks = eks << 1 | BEBIT(ks2, i);
194
195 odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
196 even_head = even_tail = malloc(sizeof(uint32_t) << 21);
197 statelist = malloc(sizeof(struct Crypto1State) << 18);
198 if(!odd_tail-- || !even_tail-- || !statelist) {
199 free(statelist);
200 statelist = 0;
201 goto out;
202 }
203
204 statelist->odd = statelist->even = 0;
205
206 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
207 for(i = 1 << 20; i >= 0; --i) {
208 if(filter(i) == (oks & 1))
209 *++odd_tail = i;
210 if(filter(i) == (eks & 1))
211 *++even_tail = i;
212 }
213
214 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
215 for(i = 0; i < 4; i++) {
216 extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
217 extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
218 }
219
220 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
221 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
222 // parameter into account.
223 in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
224 recover(odd_head, odd_tail, oks,
225 even_head, even_tail, eks, 11, statelist, in << 1);
226
227 out:
228 free(odd_head);
229 free(even_head);
230 return statelist;
231 }
232
233 static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
234 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
235 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
236 static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
237 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
238 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
239 0x7EC7EE90, 0x7F63F748, 0x79117020};
240 static const uint32_t T1[] = {
241 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
242 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
243 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
244 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
245 static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
246 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
247 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
248 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
249 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
250 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
251 static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
252 static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
253 /** Reverse 64 bits of keystream into possible cipher states
254 * Variation mentioned in the paper. Somewhat optimized version
255 */
256 struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
257 {
258 struct Crypto1State *statelist, *sl;
259 uint8_t oks[32], eks[32], hi[32];
260 uint32_t low = 0, win = 0;
261 uint32_t *tail, table[1 << 16];
262 int i, j;
263
264 sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
265 if(!sl)
266 return 0;
267 sl->odd = sl->even = 0;
268
269 for(i = 30; i >= 0; i -= 2) {
270 oks[i >> 1] = BEBIT(ks2, i);
271 oks[16 + (i >> 1)] = BEBIT(ks3, i);
272 }
273 for(i = 31; i >= 0; i -= 2) {
274 eks[i >> 1] = BEBIT(ks2, i);
275 eks[16 + (i >> 1)] = BEBIT(ks3, i);
276 }
277
278 for(i = 0xfffff; i >= 0; --i) {
279 if (filter(i) != oks[0])
280 continue;
281
282 *(tail = table) = i;
283 for(j = 1; tail >= table && j < 29; ++j)
284 extend_table_simple(table, &tail, oks[j]);
285
286 if(tail < table)
287 continue;
288
289 for(j = 0; j < 19; ++j)
290 low = low << 1 | parity(i & S1[j]);
291 for(j = 0; j < 32; ++j)
292 hi[j] = parity(i & T1[j]);
293
294 for(; tail >= table; --tail) {
295 for(j = 0; j < 3; ++j) {
296 *tail = *tail << 1;
297 *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
298 if(filter(*tail) != oks[29 + j])
299 goto continue2;
300 }
301
302 for(j = 0; j < 19; ++j)
303 win = win << 1 | parity(*tail & S2[j]);
304
305 win ^= low;
306 for(j = 0; j < 32; ++j) {
307 win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
308 if(filter(win) != eks[j])
309 goto continue2;
310 }
311
312 *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
313 sl->odd = *tail ^ parity(LF_POLY_ODD & win);
314 sl->even = win;
315 ++sl;
316 sl->odd = sl->even = 0;
317 continue2:;
318 }
319 }
320 return statelist;
321 }
322
323 /** lfsr_rollback_bit
324 * Rollback the shift register in order to get previous states
325 */
326 uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
327 {
328 int out;
329 uint8_t ret;
330 uint32_t t;
331
332 s->odd &= 0xffffff;
333 t = s->odd, s->odd = s->even, s->even = t;
334
335 out = s->even & 1;
336 out ^= LF_POLY_EVEN & (s->even >>= 1);
337 out ^= LF_POLY_ODD & s->odd;
338 out ^= !!in;
339 out ^= (ret = filter(s->odd)) & !!fb;
340
341 s->even |= parity(out) << 23;
342 return ret;
343 }
344 /** lfsr_rollback_byte
345 * Rollback the shift register in order to get previous states
346 */
347 uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
348 {
349 /*
350 int i, ret = 0;
351 for (i = 7; i >= 0; --i)
352 ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
353 */
354 // unfold loop 20160112
355 uint8_t ret = 0;
356 ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7;
357 ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6;
358 ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5;
359 ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4;
360 ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3;
361 ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2;
362 ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1;
363 ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0;
364 return ret;
365 }
366 /** lfsr_rollback_word
367 * Rollback the shift register in order to get previous states
368 */
369 uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
370 {
371 /*
372 int i;
373 uint32_t ret = 0;
374 for (i = 31; i >= 0; --i)
375 ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
376 */
377 // unfold loop 20160112
378 uint32_t ret = 0;
379 ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24);
380 ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24);
381 ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24);
382 ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24);
383 ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24);
384 ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24);
385 ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24);
386 ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24);
387
388 ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24);
389 ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24);
390 ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24);
391 ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24);
392 ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24);
393 ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24);
394 ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24);
395 ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24);
396
397 ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24);
398 ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24);
399 ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24);
400 ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24);
401 ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24);
402 ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24);
403 ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24);
404 ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24);
405
406 ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24);
407 ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24);
408 ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24);
409 ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24);
410 ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24);
411 ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24);
412 ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24);
413 ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24);
414 return ret;
415 }
416
417 /** nonce_distance
418 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
419 */
420 static uint16_t *dist = 0;
421 int nonce_distance(uint32_t from, uint32_t to)
422 {
423 uint16_t x, i;
424 if(!dist) {
425 dist = malloc(2 << 16);
426 if(!dist)
427 return -1;
428 for (x = i = 1; i; ++i) {
429 dist[(x & 0xff) << 8 | x >> 8] = i;
430 x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
431 }
432 }
433 return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
434 }
435
436
437 static uint32_t fastfwd[2][8] = {
438 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
439 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
440
441
442 /** lfsr_prefix_ks
443 *
444 * Is an exported helper function from the common prefix attack
445 * Described in the "dark side" paper. It returns an -1 terminated array
446 * of possible partial(21 bit) secret state.
447 * The required keystream(ks) needs to contain the keystream that was used to
448 * encrypt the NACK which is observed when varying only the 3 last bits of Nr
449 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
450 */
451 uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
452 {
453 uint32_t *candidates = malloc(4 << 10);
454 if(!candidates) return 0;
455
456 uint32_t c, entry;
457 int size = 0, i, good;
458
459 for(i = 0; i < 1 << 21; ++i) {
460 for(c = 0, good = 1; good && c < 8; ++c) {
461 entry = i ^ fastfwd[isodd][c];
462 good &= (BIT(ks[c], isodd) == filter(entry >> 1));
463 good &= (BIT(ks[c], isodd + 2) == filter(entry));
464 }
465 if(good)
466 candidates[size++] = i;
467 }
468
469 candidates[size] = -1;
470
471 return candidates;
472 }
473
474 /** check_pfx_parity
475 * helper function which eliminates possible secret states using parity bits
476 */
477 static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl)
478 {
479 uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
480
481 for(c = 0; good && c < 8; ++c) {
482 sl->odd = odd ^ fastfwd[1][c];
483 sl->even = even ^ fastfwd[0][c];
484
485 lfsr_rollback_bit(sl, 0, 0);
486 lfsr_rollback_bit(sl, 0, 0);
487
488 ks3 = lfsr_rollback_bit(sl, 0, 0);
489 ks2 = lfsr_rollback_word(sl, 0, 0);
490 ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
491
492 nr = ks1 ^ (prefix | c << 5);
493 rr = ks2 ^ rresp;
494
495 good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
496 good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
497 good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
498 good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
499 good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
500 }
501
502 return sl + good;
503 }
504
505 /** lfsr_common_prefix
506 * Implentation of the common prefix attack.
507 * Requires the 28 bit constant prefix used as reader nonce (pfx)
508 * The reader response used (rr)
509 * The keystream used to encrypt the observed NACK's (ks)
510 * The parity bits (par)
511 * It returns a zero terminated list of possible cipher states after the
512 * tag nonce was fed in
513 */
514
515 struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
516 {
517 struct Crypto1State *statelist, *s;
518 uint32_t *odd, *even, *o, *e, top;
519
520 odd = lfsr_prefix_ks(ks, 1);
521 even = lfsr_prefix_ks(ks, 0);
522
523 s = statelist = malloc((sizeof *statelist) << 20);
524 if(!s || !odd || !even) {
525 free(statelist);
526 free(odd);
527 free(even);
528 return 0;
529 }
530
531 for(o = odd; *o + 1; ++o)
532 for(e = even; *e + 1; ++e)
533 for(top = 0; top < 64; ++top) {
534 *o += 1 << 21;
535 *e += (!(top & 7) + 1) << 21;
536 s = check_pfx_parity(pfx, rr, par, *o, *e, s);
537 }
538
539 s->odd = s->even = 0;
540
541 free(odd);
542 free(even);
543 return statelist;
544 }
Impressum, Datenschutz