1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
24 #include "legicrfsim.h"
27 #include "iso14443b.h"
29 #include "lfsampling.h"
31 #include "mifareutil.h"
32 #include "mifaresim.h"
36 #include "fpgaloader.h"
41 static uint32_t hw_capabilities
;
43 // Craig Young - 14a stand-alone code
45 #include "iso14443a.h"
48 //=============================================================================
49 // A buffer where we can queue things up to be sent through the FPGA, for
50 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
51 // is the order in which they go out on the wire.
52 //=============================================================================
54 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
55 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
58 struct common_area common_area
__attribute__((section(".commonarea")));
60 void ToSendReset(void)
66 void ToSendStuffBit(int b
)
70 ToSend
[ToSendMax
] = 0;
75 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
80 if(ToSendMax
>= sizeof(ToSend
)) {
82 DbpString("ToSendStuffBit overflowed!");
86 //=============================================================================
87 // Debug print functions, to go out over USB, to the usual PC-side client.
88 //=============================================================================
90 void DbpString(char *str
)
92 byte_t len
= strlen(str
);
93 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
97 void DbpIntegers(int x1
, int x2
, int x3
)
99 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
103 void Dbprintf(const char *fmt
, ...) {
104 // should probably limit size here; oh well, let's just use a big buffer
105 char output_string
[128];
109 kvsprintf(fmt
, output_string
, 10, ap
);
112 DbpString(output_string
);
115 // prints HEX & ASCII
116 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
129 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
132 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
134 Dbprintf("%*D",l
,d
," ");
142 //-----------------------------------------------------------------------------
143 // Read an ADC channel and block till it completes, then return the result
144 // in ADC units (0 to 1023). Also a routine to average 32 samples and
146 //-----------------------------------------------------------------------------
147 static int ReadAdc(int ch
)
149 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
150 // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
151 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
154 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
156 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
158 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
159 AT91C_BASE_ADC
->ADC_MR
=
160 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
161 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
162 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
164 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
165 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
167 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
169 return AT91C_BASE_ADC
->ADC_CDR
[ch
] & 0x3ff;
172 int AvgAdc(int ch
) // was static - merlok
177 for(i
= 0; i
< 32; i
++) {
181 return (a
+ 15) >> 5;
184 static int AvgAdc_Voltage_HF(void)
186 int AvgAdc_Voltage_Low
, AvgAdc_Voltage_High
;
188 AvgAdc_Voltage_Low
= (MAX_ADC_HF_VOLTAGE_LOW
* AvgAdc(ADC_CHAN_HF_LOW
)) >> 10;
189 // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
190 if (AvgAdc_Voltage_Low
> MAX_ADC_HF_VOLTAGE_LOW
- 300) {
191 AvgAdc_Voltage_High
= (MAX_ADC_HF_VOLTAGE_HIGH
* AvgAdc(ADC_CHAN_HF_HIGH
)) >> 10;
192 if (AvgAdc_Voltage_High
>= AvgAdc_Voltage_Low
) {
193 return AvgAdc_Voltage_High
;
196 return AvgAdc_Voltage_Low
;
199 static int AvgAdc_Voltage_LF(void)
201 return (MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10;
204 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
206 int i
, adcval
= 0, peak
= 0;
209 * Sweeps the useful LF range of the proxmark from
210 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
211 * read the voltage in the antenna, the result left
212 * in the buffer is a graph which should clearly show
213 * the resonating frequency of your LF antenna
214 * ( hopefully around 95 if it is tuned to 125kHz!)
217 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
221 for (i
=255; i
>=19; i
--) {
223 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
225 adcval
= AvgAdc_Voltage_LF();
226 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
227 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
229 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
230 if(LF_Results
[i
] > peak
) {
232 peak
= LF_Results
[i
];
238 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
243 void MeasureAntennaTuningHfOnly(int *vHf
)
245 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
247 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
250 *vHf
= AvgAdc_Voltage_HF();
255 void MeasureAntennaTuning(int mode
)
257 uint8_t LF_Results
[256] = {0};
258 int peakv
= 0, peakf
= 0;
259 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
263 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
264 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
265 MeasureAntennaTuningHfOnly(&vHf
);
266 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
268 if (mode
& FLAG_TUNE_LF
) {
269 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
271 if (mode
& FLAG_TUNE_HF
) {
272 MeasureAntennaTuningHfOnly(&vHf
);
276 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
277 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
282 void MeasureAntennaTuningHf(void)
284 int vHf
= 0; // in mV
286 DbpString("Measuring HF antenna, press button to exit");
288 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
289 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
290 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
294 vHf
= AvgAdc_Voltage_HF();
296 Dbprintf("%d mV",vHf
);
297 if (BUTTON_PRESS()) break;
299 DbpString("cancelled");
301 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
306 void ReadMem(int addr
)
308 const uint8_t *data
= ((uint8_t *)addr
);
310 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
311 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
314 /* osimage version information is linked in */
315 extern struct version_information version_information
;
316 /* bootrom version information is pointed to from _bootphase1_version_pointer */
317 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
320 void set_hw_capabilities(void)
322 if (I2C_is_available()) {
323 hw_capabilities
|= HAS_SMARTCARD_SLOT
;
326 if (false) { // TODO: implement a test
327 hw_capabilities
|= HAS_EXTRA_FLASH_MEM
;
332 void SendVersion(void)
334 set_hw_capabilities();
336 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
337 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
339 /* Try to find the bootrom version information. Expect to find a pointer at
340 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
341 * pointer, then use it.
343 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
344 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
345 strcat(VersionString
, "bootrom version information appears invalid\n");
347 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
348 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
351 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
352 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
354 for (int i
= 0; i
< fpga_bitstream_num
; i
++) {
355 strncat(VersionString
, fpga_version_information
[i
], sizeof(VersionString
) - strlen(VersionString
) - 1);
356 strncat(VersionString
, "\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
359 // test availability of SmartCard slot
360 if (I2C_is_available()) {
361 strncat(VersionString
, "SmartCard Slot: available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
363 strncat(VersionString
, "SmartCard Slot: not available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
366 // Send Chip ID and used flash memory
367 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
368 uint32_t compressed_data_section_size
= common_area
.arg1
;
369 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, hw_capabilities
, VersionString
, strlen(VersionString
));
372 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
373 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
374 void printUSBSpeed(void)
376 Dbprintf("USB Speed:");
377 Dbprintf(" Sending USB packets to client...");
379 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
380 uint8_t *test_data
= BigBuf_get_addr();
383 uint32_t start_time
= end_time
= GetTickCount();
384 uint32_t bytes_transferred
= 0;
387 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
388 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
389 end_time
= GetTickCount();
390 bytes_transferred
+= USB_CMD_DATA_SIZE
;
394 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
395 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
396 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
397 1000 * bytes_transferred
/ (end_time
- start_time
));
402 * Prints runtime information about the PM3.
404 void SendStatus(void)
406 BigBuf_print_status();
408 #ifdef WITH_SMARTCARD
411 printConfig(); //LF Sampling config
414 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
415 Dbprintf(" ToSendMax..........%d", ToSendMax
);
416 Dbprintf(" ToSendBit..........%d", ToSendBit
);
418 cmd_send(CMD_ACK
,1,0,0,0,0);
421 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
425 void StandAloneMode()
427 DbpString("Stand-alone mode! No PC necessary.");
428 // Oooh pretty -- notify user we're in elite samy mode now
430 LED(LED_ORANGE
, 200);
432 LED(LED_ORANGE
, 200);
434 LED(LED_ORANGE
, 200);
436 LED(LED_ORANGE
, 200);
445 #ifdef WITH_ISO14443a_StandAlone
446 void StandAloneMode14a()
449 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
452 bool playing
= false, GotoRecord
= false, GotoClone
= false;
453 bool cardRead
[OPTS
] = {false};
454 uint8_t readUID
[10] = {0};
455 uint32_t uid_1st
[OPTS
]={0};
456 uint32_t uid_2nd
[OPTS
]={0};
457 uint32_t uid_tmp1
= 0;
458 uint32_t uid_tmp2
= 0;
459 iso14a_card_select_t hi14a_card
[OPTS
];
461 LED(selected
+ 1, 0);
469 if (GotoRecord
|| !cardRead
[selected
])
473 LED(selected
+ 1, 0);
477 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
478 /* need this delay to prevent catching some weird data */
480 /* Code for reading from 14a tag */
481 uint8_t uid
[10] ={0};
483 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
488 if (BUTTON_PRESS()) {
489 if (cardRead
[selected
]) {
490 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
493 else if (cardRead
[(selected
+1)%OPTS
]) {
494 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
495 selected
= (selected
+1)%OPTS
;
499 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
503 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
507 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
508 memcpy(readUID
,uid
,10*sizeof(uint8_t));
509 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
510 // Set UID byte order
511 for (int i
=0; i
<4; i
++)
513 dst
= (uint8_t *)&uid_tmp2
;
514 for (int i
=0; i
<4; i
++)
516 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
517 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
521 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
522 uid_1st
[selected
] = (uid_tmp1
)>>8;
523 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
526 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
527 uid_1st
[selected
] = uid_tmp1
;
528 uid_2nd
[selected
] = uid_tmp2
;
534 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
535 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
538 LED(LED_ORANGE
, 200);
540 LED(LED_ORANGE
, 200);
543 LED(selected
+ 1, 0);
545 // Next state is replay:
548 cardRead
[selected
] = true;
550 /* MF Classic UID clone */
555 LED(selected
+ 1, 0);
556 LED(LED_ORANGE
, 250);
560 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
562 // wait for button to be released
563 while(BUTTON_PRESS())
565 // Delay cloning until card is in place
568 Dbprintf("Starting clone. [Bank: %u]", selected
);
569 // need this delay to prevent catching some weird data
571 // Begin clone function here:
572 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
573 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
574 memcpy(c.d.asBytes, data, 16);
577 Block read is similar:
578 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
579 We need to imitate that call with blockNo 0 to set a uid.
581 The get and set commands are handled in this file:
582 // Work with "magic Chinese" card
583 case CMD_MIFARE_CSETBLOCK:
584 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
586 case CMD_MIFARE_CGETBLOCK:
587 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
590 mfCSetUID provides example logic for UID set workflow:
591 -Read block0 from card in field with MifareCGetBlock()
592 -Configure new values without replacing reserved bytes
593 memcpy(block0, uid, 4); // Copy UID bytes from byte array
595 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
596 Bytes 5-7 are reserved SAK and ATQA for mifare classic
597 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
599 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
600 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
601 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
602 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
603 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
607 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
608 memcpy(newBlock0
,oldBlock0
,16);
609 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
611 newBlock0
[0] = uid_1st
[selected
]>>24;
612 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
613 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
614 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
615 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
616 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
617 MifareCSetBlock(0, 0xFF,0, newBlock0
);
618 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
619 if (memcmp(testBlock0
,newBlock0
,16)==0)
621 DbpString("Cloned successfull!");
622 cardRead
[selected
] = false; // Only if the card was cloned successfully should we clear it
625 selected
= (selected
+1) % OPTS
;
628 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
633 LED(selected
+ 1, 0);
636 // Change where to record (or begin playing)
637 else if (playing
) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
640 LED(selected
+ 1, 0);
642 // Begin transmitting
644 DbpString("Playing");
647 int button_action
= BUTTON_HELD(1000);
648 if (button_action
== 0) { // No button action, proceed with sim
649 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
650 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
651 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
652 DbpString("Mifare Classic");
653 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
655 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
656 DbpString("Mifare Ultralight");
657 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
659 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
660 DbpString("Mifare DESFire");
661 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
664 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
665 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
668 else if (button_action
== BUTTON_SINGLE_CLICK
) {
669 selected
= (selected
+ 1) % OPTS
;
670 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
674 else if (button_action
== BUTTON_HOLD
) {
675 Dbprintf("Playtime over. Begin cloning...");
682 /* We pressed a button so ignore it here with a delay */
685 LED(selected
+ 1, 0);
689 #elif WITH_LF_StandAlone
690 // samy's sniff and repeat routine
694 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
696 int tops
[OPTS
], high
[OPTS
], low
[OPTS
];
701 // Turn on selected LED
702 LED(selected
+ 1, 0);
709 // Was our button held down or pressed?
710 int button_pressed
= BUTTON_HELD(1000);
713 // Button was held for a second, begin recording
714 if (button_pressed
> 0 && cardRead
== 0)
717 LED(selected
+ 1, 0);
721 DbpString("Starting recording");
723 // wait for button to be released
724 while(BUTTON_PRESS())
727 /* need this delay to prevent catching some weird data */
730 CmdHIDdemodFSK(1, &tops
[selected
], &high
[selected
], &low
[selected
], 0);
731 if (tops
[selected
] > 0)
732 Dbprintf("Recorded %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
734 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
737 LED(selected
+ 1, 0);
738 // Finished recording
740 // If we were previously playing, set playing off
741 // so next button push begins playing what we recorded
748 else if (button_pressed
> 0 && cardRead
== 1)
751 LED(selected
+ 1, 0);
755 if (tops
[selected
] > 0)
756 Dbprintf("Cloning %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
758 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
760 // wait for button to be released
761 while(BUTTON_PRESS())
764 /* need this delay to prevent catching some weird data */
767 CopyHIDtoT55x7(tops
[selected
] & 0x000FFFFF, high
[selected
], low
[selected
], (tops
[selected
] != 0 && ((high
[selected
]& 0xFFFFFFC0) != 0)), 0x1D);
768 if (tops
[selected
] > 0)
769 Dbprintf("Cloned %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
771 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
774 LED(selected
+ 1, 0);
775 // Finished recording
777 // If we were previously playing, set playing off
778 // so next button push begins playing what we recorded
785 // Change where to record (or begin playing)
786 else if (button_pressed
)
788 // Next option if we were previously playing
790 selected
= (selected
+ 1) % OPTS
;
794 LED(selected
+ 1, 0);
796 // Begin transmitting
800 DbpString("Playing");
801 // wait for button to be released
802 while(BUTTON_PRESS())
804 if (tops
[selected
] > 0)
805 Dbprintf("%x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
807 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
809 CmdHIDsimTAG(tops
[selected
], high
[selected
], low
[selected
], 0);
810 DbpString("Done playing");
811 if (BUTTON_HELD(1000) > 0)
813 DbpString("Exiting");
818 /* We pressed a button so ignore it here with a delay */
821 // when done, we're done playing, move to next option
822 selected
= (selected
+ 1) % OPTS
;
825 LED(selected
+ 1, 0);
828 while(BUTTON_PRESS())
837 Listen and detect an external reader. Determine the best location
841 Inside the ListenReaderField() function, there is two mode.
842 By default, when you call the function, you will enter mode 1.
843 If you press the PM3 button one time, you will enter mode 2.
844 If you press the PM3 button a second time, you will exit the function.
846 DESCRIPTION OF MODE 1:
847 This mode just listens for an external reader field and lights up green
848 for HF and/or red for LF. This is the original mode of the detectreader
851 DESCRIPTION OF MODE 2:
852 This mode will visually represent, using the LEDs, the actual strength of the
853 current compared to the maximum current detected. Basically, once you know
854 what kind of external reader is present, it will help you spot the best location to place
855 your antenna. You will probably not get some good results if there is a LF and a HF reader
856 at the same place! :-)
860 static const char LIGHT_SCHEME
[] = {
861 0x0, /* ---- | No field detected */
862 0x1, /* X--- | 14% of maximum current detected */
863 0x2, /* -X-- | 29% of maximum current detected */
864 0x4, /* --X- | 43% of maximum current detected */
865 0x8, /* ---X | 57% of maximum current detected */
866 0xC, /* --XX | 71% of maximum current detected */
867 0xE, /* -XXX | 86% of maximum current detected */
868 0xF, /* XXXX | 100% of maximum current detected */
870 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
872 void ListenReaderField(int limit
)
874 int lf_av
, lf_av_new
=0, lf_baseline
= 0, lf_max
;
875 int hf_av
, hf_av_new
=0, hf_baseline
= 0, hf_max
;
876 int mode
=1, display_val
, display_max
, i
;
880 #define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
881 #define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
882 #define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
885 // switch off FPGA - we don't want to measure our own signal
886 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
887 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
891 lf_av
= lf_max
= AvgAdc_Voltage_LF();
893 if(limit
!= HF_ONLY
) {
894 Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av
);
898 hf_av
= hf_max
= AvgAdc_Voltage_HF();
900 if (limit
!= LF_ONLY
) {
901 Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av
);
907 if (BUTTON_PRESS()) {
911 DbpString("Signal Strength Mode");
915 DbpString("Stopped");
920 while (BUTTON_PRESS());
924 if (limit
!= HF_ONLY
) {
926 if (lf_av
- lf_baseline
> MIN_LF_FIELD
)
932 lf_av_new
= AvgAdc_Voltage_LF();
933 // see if there's a significant change
934 if (ABS((lf_av
- lf_av_new
)*100/(lf_av
?lf_av
:1)) > REPORT_CHANGE_PERCENT
) {
935 Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new
);
942 if (limit
!= LF_ONLY
) {
944 if (hf_av
- hf_baseline
> MIN_HF_FIELD
)
950 hf_av_new
= AvgAdc_Voltage_HF();
952 // see if there's a significant change
953 if (ABS((hf_av
- hf_av_new
)*100/(hf_av
?hf_av
:1)) > REPORT_CHANGE_PERCENT
) {
954 Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new
);
962 if (limit
== LF_ONLY
) {
964 display_max
= lf_max
;
965 } else if (limit
== HF_ONLY
) {
967 display_max
= hf_max
;
968 } else { /* Pick one at random */
969 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
971 display_max
= hf_max
;
974 display_max
= lf_max
;
977 for (i
=0; i
<LIGHT_LEN
; i
++) {
978 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
979 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
980 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
981 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
982 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
990 void UsbPacketReceived(uint8_t *packet
, int len
)
992 UsbCommand
*c
= (UsbCommand
*)packet
;
994 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
998 case CMD_SET_LF_SAMPLING_CONFIG
:
999 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
1001 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
1002 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
1004 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
1005 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1007 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
1008 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
1010 case CMD_HID_DEMOD_FSK
:
1011 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 0, 1);
1013 case CMD_HID_SIM_TAG
:
1014 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], 1);
1016 case CMD_FSK_SIM_TAG
:
1017 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1019 case CMD_ASK_SIM_TAG
:
1020 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1022 case CMD_PSK_SIM_TAG
:
1023 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1025 case CMD_HID_CLONE_TAG
:
1026 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x1D);
1028 case CMD_PARADOX_CLONE_TAG
:
1029 // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
1030 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x0F);
1032 case CMD_IO_DEMOD_FSK
:
1033 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
1035 case CMD_IO_CLONE_TAG
:
1036 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
1038 case CMD_EM410X_DEMOD
:
1039 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
1041 case CMD_EM410X_WRITE_TAG
:
1042 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1044 case CMD_READ_TI_TYPE
:
1047 case CMD_WRITE_TI_TYPE
:
1048 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
1050 case CMD_SIMULATE_TAG_125K
:
1052 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
1055 case CMD_LF_SIMULATE_BIDIR
:
1056 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
1058 case CMD_INDALA_CLONE_TAG
:
1059 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
1061 case CMD_INDALA_CLONE_TAG_L
:
1062 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
1064 case CMD_T55XX_READ_BLOCK
:
1065 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1067 case CMD_T55XX_WRITE_BLOCK
:
1068 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1070 case CMD_T55XX_WAKEUP
:
1071 T55xxWakeUp(c
->arg
[0]);
1073 case CMD_T55XX_RESET_READ
:
1076 case CMD_PCF7931_READ
:
1079 case CMD_PCF7931_WRITE
:
1080 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1082 case CMD_PCF7931_BRUTEFORCE
:
1083 BruteForcePCF7931(c
->arg
[0], (c
->arg
[1] & 0xFF), c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128);
1085 case CMD_EM4X_READ_WORD
:
1086 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1088 case CMD_EM4X_WRITE_WORD
:
1089 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1091 case CMD_EM4X_PROTECT
:
1092 EM4xProtect(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1094 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1095 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1097 case CMD_VIKING_CLONE_TAG
:
1098 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1106 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1107 SnoopHitag(c
->arg
[0]);
1109 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1110 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1112 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1113 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1115 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1116 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1118 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1119 check_challenges_cmd((bool)c
->arg
[0], (byte_t
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1]);
1121 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1122 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], false);
1124 case CMD_READ_HITAG_S_BLK
:
1125 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], true);
1127 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1128 if ((hitag_function
)c
->arg
[0] < 10) {
1129 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1131 else if ((hitag_function
)c
->arg
[0] >= 10) {
1132 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1137 #ifdef WITH_ISO15693
1138 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1139 AcquireRawAdcSamplesIso15693();
1142 case CMD_SNOOP_ISO_15693
:
1146 case CMD_ISO_15693_COMMAND
:
1147 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1150 case CMD_ISO_15693_FIND_AFI
:
1151 BruteforceIso15693Afi(c
->arg
[0]);
1154 case CMD_ISO_15693_DEBUG
:
1155 SetDebugIso15693(c
->arg
[0]);
1158 case CMD_READER_ISO_15693
:
1159 ReaderIso15693(c
->arg
[0]);
1161 case CMD_SIMTAG_ISO_15693
:
1162 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1167 case CMD_SIMULATE_TAG_LEGIC_RF
:
1168 LegicRfSimulate(c
->arg
[0]);
1171 case CMD_WRITER_LEGIC_RF
:
1172 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1175 case CMD_READER_LEGIC_RF
:
1176 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1180 #ifdef WITH_ISO14443b
1181 case CMD_READ_SRI512_TAG
:
1182 ReadSTMemoryIso14443b(0x0F);
1184 case CMD_READ_SRIX4K_TAG
:
1185 ReadSTMemoryIso14443b(0x7F);
1187 case CMD_SNOOP_ISO_14443B
:
1190 case CMD_SIMULATE_TAG_ISO_14443B
:
1191 SimulateIso14443bTag();
1193 case CMD_ISO_14443B_COMMAND
:
1194 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1198 #ifdef WITH_ISO14443a
1199 case CMD_SNOOP_ISO_14443a
:
1200 SnoopIso14443a(c
->arg
[0]);
1202 case CMD_READER_ISO_14443a
:
1205 case CMD_SIMULATE_TAG_ISO_14443a
:
1206 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1209 case CMD_EPA_PACE_COLLECT_NONCE
:
1210 EPA_PACE_Collect_Nonce(c
);
1212 case CMD_EPA_PACE_REPLAY
:
1216 case CMD_READER_MIFARE
:
1217 ReaderMifare(c
->arg
[0]);
1219 case CMD_MIFARE_READBL
:
1220 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1222 case CMD_MIFAREU_READBL
:
1223 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1225 case CMD_MIFAREUC_AUTH
:
1226 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1228 case CMD_MIFAREU_READCARD
:
1229 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1231 case CMD_MIFAREUC_SETPWD
:
1232 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1234 case CMD_MIFARE_READSC
:
1235 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1237 case CMD_MIFARE_WRITEBL
:
1238 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1240 //case CMD_MIFAREU_WRITEBL_COMPAT:
1241 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1243 case CMD_MIFAREU_WRITEBL
:
1244 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1246 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1247 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1249 case CMD_MIFARE_NESTED
:
1250 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1252 case CMD_MIFARE_CHKKEYS
:
1253 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1255 case CMD_SIMULATE_MIFARE_CARD
:
1256 MifareSim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1260 case CMD_MIFARE_SET_DBGMODE
:
1261 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1263 case CMD_MIFARE_EML_MEMCLR
:
1264 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1266 case CMD_MIFARE_EML_MEMSET
:
1267 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1269 case CMD_MIFARE_EML_MEMGET
:
1270 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1272 case CMD_MIFARE_EML_CARDLOAD
:
1273 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1276 // Work with "magic Chinese" card
1277 case CMD_MIFARE_CWIPE
:
1278 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1280 case CMD_MIFARE_CSETBLOCK
:
1281 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1283 case CMD_MIFARE_CGETBLOCK
:
1284 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1286 case CMD_MIFARE_CIDENT
:
1291 case CMD_MIFARE_SNIFFER
:
1292 SniffMifare(c
->arg
[0]);
1298 // Makes use of ISO14443a FPGA Firmware
1299 case CMD_SNOOP_ICLASS
:
1302 case CMD_SIMULATE_TAG_ICLASS
:
1303 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1305 case CMD_READER_ICLASS
:
1306 ReaderIClass(c
->arg
[0]);
1308 case CMD_READER_ICLASS_REPLAY
:
1309 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1311 case CMD_ICLASS_EML_MEMSET
:
1312 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1314 case CMD_ICLASS_WRITEBLOCK
:
1315 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1317 case CMD_ICLASS_READCHECK
: // auth step 1
1318 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1320 case CMD_ICLASS_READBLOCK
:
1321 iClass_ReadBlk(c
->arg
[0]);
1323 case CMD_ICLASS_AUTHENTICATION
: //check
1324 iClass_Authentication(c
->d
.asBytes
);
1326 case CMD_ICLASS_DUMP
:
1327 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1329 case CMD_ICLASS_CLONE
:
1330 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1335 case CMD_HF_SNIFFER
:
1336 HfSnoop(c
->arg
[0], c
->arg
[1]);
1343 #ifdef WITH_SMARTCARD
1344 case CMD_SMART_ATR
: {
1348 case CMD_SMART_SETCLOCK
:{
1349 SmartCardSetClock(c
->arg
[0]);
1352 case CMD_SMART_RAW
: {
1353 SmartCardRaw(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1356 case CMD_SMART_UPLOAD
: {
1357 // upload file from client
1358 uint8_t *mem
= BigBuf_get_addr();
1359 memcpy( mem
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1360 cmd_send(CMD_ACK
,1,0,0,0,0);
1363 case CMD_SMART_UPGRADE
: {
1364 SmartCardUpgrade(c
->arg
[0]);
1369 case CMD_BUFF_CLEAR
:
1373 case CMD_MEASURE_ANTENNA_TUNING
:
1374 MeasureAntennaTuning(c
->arg
[0]);
1377 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1378 MeasureAntennaTuningHf();
1381 case CMD_LISTEN_READER_FIELD
:
1382 ListenReaderField(c
->arg
[0]);
1385 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1386 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1388 LED_D_OFF(); // LED D indicates field ON or OFF
1391 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1393 uint8_t *BigBuf
= BigBuf_get_addr();
1394 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1395 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1396 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1398 // Trigger a finish downloading signal with an ACK frame
1399 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1403 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1404 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1405 // to be able to use this one for uploading data to device
1406 // arg1 = 0 upload for LF usage
1407 // 1 upload for HF usage
1409 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1411 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1413 uint8_t *b
= BigBuf_get_addr();
1414 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1415 cmd_send(CMD_ACK
,0,0,0,0,0);
1422 case CMD_SET_LF_DIVISOR
:
1423 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1424 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1427 case CMD_SET_ADC_MUX
:
1429 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1430 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1431 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1432 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1443 cmd_send(CMD_ACK
,0,0,0,0,0);
1453 case CMD_SETUP_WRITE
:
1454 case CMD_FINISH_WRITE
:
1455 case CMD_HARDWARE_RESET
:
1459 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1461 // We're going to reset, and the bootrom will take control.
1465 case CMD_START_FLASH
:
1466 if(common_area
.flags
.bootrom_present
) {
1467 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1470 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1474 case CMD_DEVICE_INFO
: {
1475 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1476 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1477 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1481 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1486 void __attribute__((noreturn
)) AppMain(void)
1490 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1491 /* Initialize common area */
1492 memset(&common_area
, 0, sizeof(common_area
));
1493 common_area
.magic
= COMMON_AREA_MAGIC
;
1494 common_area
.version
= 1;
1496 common_area
.flags
.osimage_present
= 1;
1503 // The FPGA gets its clock from us from PCK0 output, so set that up.
1504 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1505 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1506 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1507 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1508 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1509 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1510 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1513 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1515 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1517 // Load the FPGA image, which we have stored in our flash.
1518 // (the HF version by default)
1519 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1527 byte_t rx
[sizeof(UsbCommand
)];
1532 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1534 UsbPacketReceived(rx
,rx_len
);
1539 #ifdef WITH_LF_StandAlone
1540 #ifndef WITH_ISO14443a_StandAlone
1541 if (BUTTON_HELD(1000) > 0)
1545 #ifdef WITH_ISO14443a
1546 #ifdef WITH_ISO14443a_StandAlone
1547 if (BUTTON_HELD(1000) > 0)
1548 StandAloneMode14a();