1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
18 #include "lfsampling.h"
19 #include "usb_cdc.h" //test
22 * Function to do a modulation and then get samples.
28 void ModThenAcquireRawAdcSamples125k(uint32_t delay_off
, uint32_t period_0
, uint32_t period_1
, uint8_t *command
)
31 int divisor_used
= 95; // 125 KHz
32 // see if 'h' was specified
34 if (command
[strlen((char *) command
) - 1] == 'h')
35 divisor_used
= 88; // 134.8 KHz
37 sample_config sc
= { 0,0,1, divisor_used
, 0};
38 setSamplingConfig(&sc
);
40 /* Make sure the tag is reset */
41 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
42 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
45 LFSetupFPGAForADC(sc
.divisor
, 1);
47 // And a little more time for the tag to fully power up
50 // now modulate the reader field
51 while(*command
!= '\0' && *command
!= ' ') {
52 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
54 SpinDelayUs(delay_off
);
55 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
57 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
59 if(*(command
++) == '0')
60 SpinDelayUs(period_0
);
62 SpinDelayUs(period_1
);
64 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
66 SpinDelayUs(delay_off
);
67 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, sc
.divisor
);
69 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
72 DoAcquisition_config(false);
77 /* blank r/w tag data stream
78 ...0000000000000000 01111111
79 1010101010101010101010101010101010101010101010101010101010101010
82 101010101010101[0]000...
84 [5555fe852c5555555555555555fe0000]
88 // some hardcoded initial params
89 // when we read a TI tag we sample the zerocross line at 2Mhz
90 // TI tags modulate a 1 as 16 cycles of 123.2Khz
91 // TI tags modulate a 0 as 16 cycles of 134.2Khz
92 #define FSAMPLE 2000000
96 signed char *dest
= (signed char *)BigBuf_get_addr();
97 uint16_t n
= BigBuf_max_traceLen();
98 // 128 bit shift register [shift3:shift2:shift1:shift0]
99 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
101 int i
, cycles
=0, samples
=0;
102 // how many sample points fit in 16 cycles of each frequency
103 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
104 // when to tell if we're close enough to one freq or another
105 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
107 // TI tags charge at 134.2Khz
108 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
109 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
111 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
112 // connects to SSP_DIN and the SSP_DOUT logic level controls
113 // whether we're modulating the antenna (high)
114 // or listening to the antenna (low)
115 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
117 // get TI tag data into the buffer
120 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
122 for (i
=0; i
<n
-1; i
++) {
123 // count cycles by looking for lo to hi zero crossings
124 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
126 // after 16 cycles, measure the frequency
129 samples
=i
-samples
; // number of samples in these 16 cycles
131 // TI bits are coming to us lsb first so shift them
132 // right through our 128 bit right shift register
133 shift0
= (shift0
>>1) | (shift1
<< 31);
134 shift1
= (shift1
>>1) | (shift2
<< 31);
135 shift2
= (shift2
>>1) | (shift3
<< 31);
138 // check if the cycles fall close to the number
139 // expected for either the low or high frequency
140 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
141 // low frequency represents a 1
143 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
144 // high frequency represents a 0
146 // probably detected a gay waveform or noise
147 // use this as gaydar or discard shift register and start again
148 shift3
= shift2
= shift1
= shift0
= 0;
152 // for each bit we receive, test if we've detected a valid tag
154 // if we see 17 zeroes followed by 6 ones, we might have a tag
155 // remember the bits are backwards
156 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
157 // if start and end bytes match, we have a tag so break out of the loop
158 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
159 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
167 // if flag is set we have a tag
169 DbpString("Info: No valid tag detected.");
171 // put 64 bit data into shift1 and shift0
172 shift0
= (shift0
>>24) | (shift1
<< 8);
173 shift1
= (shift1
>>24) | (shift2
<< 8);
175 // align 16 bit crc into lower half of shift2
176 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
178 // if r/w tag, check ident match
179 if (shift3
& (1<<15) ) {
180 DbpString("Info: TI tag is rewriteable");
181 // only 15 bits compare, last bit of ident is not valid
182 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
183 DbpString("Error: Ident mismatch!");
185 DbpString("Info: TI tag ident is valid");
188 DbpString("Info: TI tag is readonly");
191 // WARNING the order of the bytes in which we calc crc below needs checking
192 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
193 // bytes in reverse or something
197 crc
= update_crc16(crc
, (shift0
)&0xff);
198 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
199 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
200 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
201 crc
= update_crc16(crc
, (shift1
)&0xff);
202 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
203 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
204 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
206 Dbprintf("Info: Tag data: %x%08x, crc=%x",
207 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
208 if (crc
!= (shift2
&0xffff)) {
209 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
211 DbpString("Info: CRC is good");
218 void WriteTIbyte(uint8_t b
)
222 // modulate 8 bits out to the antenna
226 // stop modulating antenna
233 // stop modulating antenna
243 void AcquireTiType(void)
246 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
247 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
248 #define TIBUFLEN 1250
251 uint32_t *BigBuf
= (uint32_t *)BigBuf_get_addr();
252 memset(BigBuf
,0,BigBuf_max_traceLen()/sizeof(uint32_t));
254 // Set up the synchronous serial port
255 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
256 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
258 // steal this pin from the SSP and use it to control the modulation
259 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
260 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
262 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
263 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
265 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
266 // 48/2 = 24 MHz clock must be divided by 12
267 AT91C_BASE_SSC
->SSC_CMR
= 12;
269 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
270 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
271 AT91C_BASE_SSC
->SSC_TCMR
= 0;
272 AT91C_BASE_SSC
->SSC_TFMR
= 0;
279 // Charge TI tag for 50ms.
282 // stop modulating antenna and listen
289 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
290 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
291 i
++; if(i
>= TIBUFLEN
) break;
296 // return stolen pin to SSP
297 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
298 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
300 char *dest
= (char *)BigBuf_get_addr();
303 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
304 for (j
=0; j
<32; j
++) {
305 if(BigBuf
[i
] & (1 << j
)) {
317 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
318 // if crc provided, it will be written with the data verbatim (even if bogus)
319 // if not provided a valid crc will be computed from the data and written.
320 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
324 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
326 crc
= update_crc16(crc
, (idlo
)&0xff);
327 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
328 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
329 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
330 crc
= update_crc16(crc
, (idhi
)&0xff);
331 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
332 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
333 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
335 Dbprintf("Writing to tag: %x%08x, crc=%x",
336 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
338 // TI tags charge at 134.2Khz
339 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
340 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
341 // connects to SSP_DIN and the SSP_DOUT logic level controls
342 // whether we're modulating the antenna (high)
343 // or listening to the antenna (low)
344 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
347 // steal this pin from the SSP and use it to control the modulation
348 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
349 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
351 // writing algorithm:
352 // a high bit consists of a field off for 1ms and field on for 1ms
353 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
354 // initiate a charge time of 50ms (field on) then immediately start writing bits
355 // start by writing 0xBB (keyword) and 0xEB (password)
356 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
357 // finally end with 0x0300 (write frame)
358 // all data is sent lsb firts
359 // finish with 15ms programming time
363 SpinDelay(50); // charge time
365 WriteTIbyte(0xbb); // keyword
366 WriteTIbyte(0xeb); // password
367 WriteTIbyte( (idlo
)&0xff );
368 WriteTIbyte( (idlo
>>8 )&0xff );
369 WriteTIbyte( (idlo
>>16)&0xff );
370 WriteTIbyte( (idlo
>>24)&0xff );
371 WriteTIbyte( (idhi
)&0xff );
372 WriteTIbyte( (idhi
>>8 )&0xff );
373 WriteTIbyte( (idhi
>>16)&0xff );
374 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
375 WriteTIbyte( (crc
)&0xff ); // crc lo
376 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
377 WriteTIbyte(0x00); // write frame lo
378 WriteTIbyte(0x03); // write frame hi
380 SpinDelay(50); // programming time
384 // get TI tag data into the buffer
387 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
388 DbpString("Now use tiread to check");
391 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
394 uint8_t *tab
= BigBuf_get_addr();
396 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
397 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
399 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
401 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
402 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
404 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
405 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
409 //wait until SSC_CLK goes HIGH
410 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
411 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
412 DbpString("Stopped");
427 //wait until SSC_CLK goes LOW
428 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
430 DbpString("Stopped");
448 #define DEBUG_FRAME_CONTENTS 1
449 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
453 // compose fc/8 fc/10 waveform (FSK2)
454 static void fc(int c
, int *n
)
456 uint8_t *dest
= BigBuf_get_addr();
459 // for when we want an fc8 pattern every 4 logical bits
471 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
473 for (idx
=0; idx
<6; idx
++) {
485 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
487 for (idx
=0; idx
<5; idx
++) {
501 // compose fc/X fc/Y waveform (FSKx)
502 static void fcAll(uint8_t fc
, int *n
, uint8_t clock
, uint16_t *modCnt
)
504 uint8_t *dest
= BigBuf_get_addr();
505 uint8_t halfFC
= fc
/2;
506 uint8_t wavesPerClock
= clock
/fc
;
507 uint8_t mod
= clock
% fc
; //modifier
508 uint8_t modAdj
= fc
/mod
; //how often to apply modifier
509 bool modAdjOk
= !(fc
% mod
); //if (fc % mod==0) modAdjOk=TRUE;
510 // loop through clock - step field clock
511 for (uint8_t idx
=0; idx
< wavesPerClock
; idx
++){
512 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
513 memset(dest
+(*n
), 0, fc
-halfFC
); //in case of odd number use extra here
514 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
517 if (mod
>0) (*modCnt
)++;
518 if ((mod
>0) && modAdjOk
){ //fsk2
519 if ((*modCnt
% modAdj
) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
520 memset(dest
+(*n
), 0, fc
-halfFC
);
521 memset(dest
+(*n
)+(fc
-halfFC
), 1, halfFC
);
525 if (mod
>0 && !modAdjOk
){ //fsk1
526 memset(dest
+(*n
), 0, mod
-(mod
/2));
527 memset(dest
+(*n
)+(mod
-(mod
/2)), 1, mod
/2);
532 // prepare a waveform pattern in the buffer based on the ID given then
533 // simulate a HID tag until the button is pressed
534 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
538 HID tag bitstream format
539 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
540 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
541 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
542 A fc8 is inserted before every 4 bits
543 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
544 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
548 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
552 // special start of frame marker containing invalid bit sequences
553 fc(8, &n
); fc(8, &n
); // invalid
554 fc(8, &n
); fc(10, &n
); // logical 0
555 fc(10, &n
); fc(10, &n
); // invalid
556 fc(8, &n
); fc(10, &n
); // logical 0
559 // manchester encode bits 43 to 32
560 for (i
=11; i
>=0; i
--) {
561 if ((i
%4)==3) fc(0,&n
);
563 fc(10, &n
); fc(8, &n
); // low-high transition
565 fc(8, &n
); fc(10, &n
); // high-low transition
570 // manchester encode bits 31 to 0
571 for (i
=31; i
>=0; i
--) {
572 if ((i
%4)==3) fc(0,&n
);
574 fc(10, &n
); fc(8, &n
); // low-high transition
576 fc(8, &n
); fc(10, &n
); // high-low transition
582 SimulateTagLowFrequency(n
, 0, ledcontrol
);
588 // prepare a waveform pattern in the buffer based on the ID given then
589 // simulate a FSK tag until the button is pressed
590 // arg1 contains fcHigh and fcLow, arg2 contains invert and clock
591 void CmdFSKsimTAG(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
595 uint8_t fcHigh
= arg1
>> 8;
596 uint8_t fcLow
= arg1
& 0xFF;
598 uint8_t clk
= arg2
& 0xFF;
599 uint8_t invert
= (arg2
>> 8) & 1;
601 for (i
=0; i
<size
; i
++){
602 if (BitStream
[i
] == invert
){
603 fcAll(fcLow
, &n
, clk
, &modCnt
);
605 fcAll(fcHigh
, &n
, clk
, &modCnt
);
608 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh
, fcLow
, clk
, invert
, n
);
609 /*Dbprintf("DEBUG: First 32:");
610 uint8_t *dest = BigBuf_get_addr();
612 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
614 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
619 SimulateTagLowFrequency(n
, 0, ledcontrol
);
625 // compose ask waveform for one bit(ASK)
626 static void askSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t manchester
)
628 uint8_t *dest
= BigBuf_get_addr();
629 uint8_t halfClk
= clock
/2;
630 // c = current bit 1 or 0
632 memset(dest
+(*n
), c
, halfClk
);
633 memset(dest
+(*n
) + halfClk
, c
^1, halfClk
);
635 memset(dest
+(*n
), c
, clock
);
640 static void biphaseSimBit(uint8_t c
, int *n
, uint8_t clock
, uint8_t *phase
)
642 uint8_t *dest
= BigBuf_get_addr();
643 uint8_t halfClk
= clock
/2;
645 memset(dest
+(*n
), c
^ 1 ^ *phase
, halfClk
);
646 memset(dest
+(*n
) + halfClk
, c
^ *phase
, halfClk
);
648 memset(dest
+(*n
), c
^ *phase
, clock
);
654 // args clock, ask/man or askraw, invert, transmission separator
655 void CmdASKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
659 uint8_t clk
= (arg1
>> 8) & 0xFF;
660 uint8_t encoding
= arg1
& 0xFF;
661 uint8_t separator
= arg2
& 1;
662 uint8_t invert
= (arg2
>> 8) & 1;
664 if (encoding
==2){ //biphase
666 for (i
=0; i
<size
; i
++){
667 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
669 if (BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted to keep phase in check
670 for (i
=0; i
<size
; i
++){
671 biphaseSimBit(BitStream
[i
]^invert
, &n
, clk
, &phase
);
674 } else { // ask/manchester || ask/raw
675 for (i
=0; i
<size
; i
++){
676 askSimBit(BitStream
[i
]^invert
, &n
, clk
, encoding
);
678 if (encoding
==0 && BitStream
[0]==BitStream
[size
-1]){ //run a second set inverted (for biphase phase)
679 for (i
=0; i
<size
; i
++){
680 askSimBit(BitStream
[i
]^invert
^1, &n
, clk
, encoding
);
685 if (separator
==1) Dbprintf("sorry but separator option not yet available");
687 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk
, invert
, encoding
, separator
, n
);
689 //Dbprintf("First 32:");
690 //uint8_t *dest = BigBuf_get_addr();
692 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
694 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
699 SimulateTagLowFrequency(n
, 0, ledcontrol
);
705 //carrier can be 2,4 or 8
706 static void pskSimBit(uint8_t waveLen
, int *n
, uint8_t clk
, uint8_t *curPhase
, bool phaseChg
)
708 uint8_t *dest
= BigBuf_get_addr();
709 uint8_t halfWave
= waveLen
/2;
713 // write phase change
714 memset(dest
+(*n
), *curPhase
^1, halfWave
);
715 memset(dest
+(*n
) + halfWave
, *curPhase
, halfWave
);
720 //write each normal clock wave for the clock duration
721 for (; i
< clk
; i
+=waveLen
){
722 memset(dest
+(*n
), *curPhase
, halfWave
);
723 memset(dest
+(*n
) + halfWave
, *curPhase
^1, halfWave
);
728 // args clock, carrier, invert,
729 void CmdPSKsimTag(uint16_t arg1
, uint16_t arg2
, size_t size
, uint8_t *BitStream
)
733 uint8_t clk
= arg1
>> 8;
734 uint8_t carrier
= arg1
& 0xFF;
735 uint8_t invert
= arg2
& 0xFF;
736 uint8_t curPhase
= 0;
737 for (i
=0; i
<size
; i
++){
738 if (BitStream
[i
] == curPhase
){
739 pskSimBit(carrier
, &n
, clk
, &curPhase
, FALSE
);
741 pskSimBit(carrier
, &n
, clk
, &curPhase
, TRUE
);
744 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier
, clk
, invert
, n
);
745 //Dbprintf("DEBUG: First 32:");
746 //uint8_t *dest = BigBuf_get_addr();
748 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
750 //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
754 SimulateTagLowFrequency(n
, 0, ledcontrol
);
760 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
761 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
763 uint8_t *dest
= BigBuf_get_addr();
764 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
766 uint32_t hi2
=0, hi
=0, lo
=0;
768 // Configure to go in 125Khz listen mode
769 LFSetupFPGAForADC(95, true);
771 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
774 if (ledcontrol
) LED_A_ON();
776 DoAcquisition_default(-1,true);
778 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
779 size
= 50*128*2; //big enough to catch 2 sequences of largest format
780 idx
= HIDdemodFSK(dest
, &size
, &hi2
, &hi
, &lo
);
782 if (idx
>0 && lo
>0 && (size
==96 || size
==192)){
783 // go over previously decoded manchester data and decode into usable tag ID
784 if (hi2
!= 0){ //extra large HID tags 88/192 bits
785 Dbprintf("TAG ID: %x%08x%08x (%d)",
786 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
787 }else { //standard HID tags 44/96 bits
788 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
791 uint32_t cardnum
= 0;
792 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
794 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
796 while(lo2
> 1){ //find last bit set to 1 (format len bit)
804 cardnum
= (lo
>>1)&0xFFFF;
808 cardnum
= (lo
>>1)&0x7FFFF;
809 fc
= ((hi
&0xF)<<12)|(lo
>>20);
812 cardnum
= (lo
>>1)&0xFFFF;
813 fc
= ((hi
&1)<<15)|(lo
>>17);
816 cardnum
= (lo
>>1)&0xFFFFF;
817 fc
= ((hi
&1)<<11)|(lo
>>21);
820 else { //if bit 38 is not set then 37 bit format is used
825 cardnum
= (lo
>>1)&0x7FFFF;
826 fc
= ((hi
&0xF)<<12)|(lo
>>20);
829 //Dbprintf("TAG ID: %x%08x (%d)",
830 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
831 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
832 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
833 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
836 if (ledcontrol
) LED_A_OFF();
843 hi2
= hi
= lo
= idx
= 0;
846 DbpString("Stopped");
847 if (ledcontrol
) LED_A_OFF();
850 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
851 void CmdAWIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
853 uint8_t *dest
= BigBuf_get_addr();
854 //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
857 // Configure to go in 125Khz listen mode
858 LFSetupFPGAForADC(95, true);
860 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
863 if (ledcontrol
) LED_A_ON();
865 DoAcquisition_default(-1,true);
867 //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
868 size
= 50*128*2; //big enough to catch 2 sequences of largest format
869 idx
= AWIDdemodFSK(dest
, &size
);
871 if (idx
>0 && size
==96){
873 // 0 10 20 30 40 50 60
875 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
876 // -----------------------------------------------------------------------------
877 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
878 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
879 // |---26 bit---| |-----117----||-------------142-------------|
880 // b = format bit len, o = odd parity of last 3 bits
881 // f = facility code, c = card number
882 // w = wiegand parity
883 // (26 bit format shown)
885 //get raw ID before removing parities
886 uint32_t rawLo
= bytebits_to_byte(dest
+idx
+64,32);
887 uint32_t rawHi
= bytebits_to_byte(dest
+idx
+32,32);
888 uint32_t rawHi2
= bytebits_to_byte(dest
+idx
,32);
890 size
= removeParity(dest
, idx
+8, 4, 1, 88);
891 // ok valid card found!
894 // 0 10 20 30 40 50 60
896 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
897 // -----------------------------------------------------------------------------
898 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
899 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
900 // |26 bit| |-117--| |-----142------|
901 // b = format bit len, o = odd parity of last 3 bits
902 // f = facility code, c = card number
903 // w = wiegand parity
904 // (26 bit format shown)
907 uint32_t cardnum
= 0;
910 uint8_t fmtLen
= bytebits_to_byte(dest
,8);
912 fc
= bytebits_to_byte(dest
+9, 8);
913 cardnum
= bytebits_to_byte(dest
+17, 16);
914 code1
= bytebits_to_byte(dest
+8,fmtLen
);
915 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, fc
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
917 cardnum
= bytebits_to_byte(dest
+8+(fmtLen
-17), 16);
919 code1
= bytebits_to_byte(dest
+8,fmtLen
-32);
920 code2
= bytebits_to_byte(dest
+8+(fmtLen
-32),32);
921 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, code2
, rawHi2
, rawHi
, rawLo
);
923 code1
= bytebits_to_byte(dest
+8,fmtLen
);
924 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen
, cardnum
, code1
, rawHi2
, rawHi
, rawLo
);
928 if (ledcontrol
) LED_A_OFF();
936 DbpString("Stopped");
937 if (ledcontrol
) LED_A_OFF();
940 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
942 uint8_t *dest
= BigBuf_get_addr();
944 size_t size
=0, idx
=0;
945 int clk
=0, invert
=0, errCnt
=0, maxErr
=20;
948 // Configure to go in 125Khz listen mode
949 LFSetupFPGAForADC(95, true);
951 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
954 if (ledcontrol
) LED_A_ON();
956 DoAcquisition_default(-1,true);
957 size
= BigBuf_max_traceLen();
958 //askdemod and manchester decode
959 if (size
> 16385) size
= 16385; //big enough to catch 2 sequences of largest format
960 errCnt
= askdemod(dest
, &size
, &clk
, &invert
, maxErr
, 0, 1);
963 if (errCnt
<0) continue;
965 errCnt
= Em410xDecode(dest
, &size
, &idx
, &hi
, &lo
);
968 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
972 (uint32_t)(lo
&0xFFFF),
973 (uint32_t)((lo
>>16LL) & 0xFF),
974 (uint32_t)(lo
& 0xFFFFFF));
976 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
979 (uint32_t)(lo
&0xFFFF),
980 (uint32_t)((lo
>>16LL) & 0xFF),
981 (uint32_t)(lo
& 0xFFFFFF));
985 if (ledcontrol
) LED_A_OFF();
987 *low
=lo
& 0xFFFFFFFF;
992 hi
= lo
= size
= idx
= 0;
993 clk
= invert
= errCnt
= 0;
995 DbpString("Stopped");
996 if (ledcontrol
) LED_A_OFF();
999 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
1001 uint8_t *dest
= BigBuf_get_addr();
1003 uint32_t code
=0, code2
=0;
1005 uint8_t facilitycode
=0;
1007 // Configure to go in 125Khz listen mode
1008 LFSetupFPGAForADC(95, true);
1010 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
1012 if (ledcontrol
) LED_A_ON();
1013 DoAcquisition_default(-1,true);
1014 //fskdemod and get start index
1016 idx
= IOdemodFSK(dest
, BigBuf_max_traceLen());
1017 if (idx
<0) continue;
1021 //0 10 20 30 40 50 60
1023 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1024 //-----------------------------------------------------------------------------
1025 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
1027 //XSF(version)facility:codeone+codetwo
1029 if(findone
){ //only print binary if we are doing one
1030 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
1031 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
1032 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
1033 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
1034 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
1035 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
1036 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
1038 code
= bytebits_to_byte(dest
+idx
,32);
1039 code2
= bytebits_to_byte(dest
+idx
+32,32);
1040 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
1041 facilitycode
= bytebits_to_byte(dest
+idx
+18,8);
1042 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
1044 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
1045 // if we're only looking for one tag
1047 if (ledcontrol
) LED_A_OFF();
1054 version
=facilitycode
=0;
1060 DbpString("Stopped");
1061 if (ledcontrol
) LED_A_OFF();
1064 /*------------------------------
1065 * T5555/T5557/T5567 routines
1066 *------------------------------
1069 /* T55x7 configuration register definitions */
1070 #define T55x7_POR_DELAY 0x00000001
1071 #define T55x7_ST_TERMINATOR 0x00000008
1072 #define T55x7_PWD 0x00000010
1073 #define T55x7_MAXBLOCK_SHIFT 5
1074 #define T55x7_AOR 0x00000200
1075 #define T55x7_PSKCF_RF_2 0
1076 #define T55x7_PSKCF_RF_4 0x00000400
1077 #define T55x7_PSKCF_RF_8 0x00000800
1078 #define T55x7_MODULATION_DIRECT 0
1079 #define T55x7_MODULATION_PSK1 0x00001000
1080 #define T55x7_MODULATION_PSK2 0x00002000
1081 #define T55x7_MODULATION_PSK3 0x00003000
1082 #define T55x7_MODULATION_FSK1 0x00004000
1083 #define T55x7_MODULATION_FSK2 0x00005000
1084 #define T55x7_MODULATION_FSK1a 0x00006000
1085 #define T55x7_MODULATION_FSK2a 0x00007000
1086 #define T55x7_MODULATION_MANCHESTER 0x00008000
1087 #define T55x7_MODULATION_BIPHASE 0x00010000
1088 #define T55x7_MODULATION_DIPHASE 0x00018000
1089 #define T55x7_BITRATE_RF_8 0
1090 #define T55x7_BITRATE_RF_16 0x00040000
1091 #define T55x7_BITRATE_RF_32 0x00080000
1092 #define T55x7_BITRATE_RF_40 0x000C0000
1093 #define T55x7_BITRATE_RF_50 0x00100000
1094 #define T55x7_BITRATE_RF_64 0x00140000
1095 #define T55x7_BITRATE_RF_100 0x00180000
1096 #define T55x7_BITRATE_RF_128 0x001C0000
1098 /* T5555 (Q5) configuration register definitions */
1099 #define T5555_ST_TERMINATOR 0x00000001
1100 #define T5555_MAXBLOCK_SHIFT 0x00000001
1101 #define T5555_MODULATION_MANCHESTER 0
1102 #define T5555_MODULATION_PSK1 0x00000010
1103 #define T5555_MODULATION_PSK2 0x00000020
1104 #define T5555_MODULATION_PSK3 0x00000030
1105 #define T5555_MODULATION_FSK1 0x00000040
1106 #define T5555_MODULATION_FSK2 0x00000050
1107 #define T5555_MODULATION_BIPHASE 0x00000060
1108 #define T5555_MODULATION_DIRECT 0x00000070
1109 #define T5555_INVERT_OUTPUT 0x00000080
1110 #define T5555_PSK_RF_2 0
1111 #define T5555_PSK_RF_4 0x00000100
1112 #define T5555_PSK_RF_8 0x00000200
1113 #define T5555_USE_PWD 0x00000400
1114 #define T5555_USE_AOR 0x00000800
1115 #define T5555_BITRATE_SHIFT 12
1116 #define T5555_FAST_WRITE 0x00004000
1117 #define T5555_PAGE_SELECT 0x00008000
1120 * Relevant times in microsecond
1121 * To compensate antenna falling times shorten the write times
1122 * and enlarge the gap ones.
1123 * Q5 tags seems to have issues when these values changes.
1125 #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
1126 #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
1127 #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
1128 #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
1129 #define READ_GAP 52*8
1131 // VALUES TAKEN FROM EM4x function: SendForward
1132 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1133 // WRITE_GAP = 128; (16*8)
1134 // WRITE_1 = 256 32*8; (32*8)
1136 // These timings work for 4469/4269/4305 (with the 55*8 above)
1137 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1139 // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1140 // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1141 // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1142 // T0 = TIMER_CLOCK1 / 125000 = 192
1143 // 1 Cycle = 8 microseconds(us) == 1 field clock
1145 void TurnReadLFOn(int delay
) {
1146 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1147 // Give it a bit of time for the resonant antenna to settle.
1148 SpinDelayUs(delay
); //155*8 //50*8
1151 // Write one bit to card
1152 void T55xxWriteBit(int bit
) {
1153 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1155 SpinDelayUs(WRITE_0
);
1157 SpinDelayUs(WRITE_1
);
1158 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1159 SpinDelayUs(WRITE_GAP
);
1162 // Write one card block in page 0, no lock
1163 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t arg
) {
1165 bool PwdMode
= arg
& 0x1;
1166 uint8_t Page
= (arg
& 0x2)>>1;
1169 // Set up FPGA, 125kHz
1170 LFSetupFPGAForADC(95, true);
1172 // Trigger T55x7 in mode.
1173 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1174 SpinDelayUs(START_GAP
);
1178 T55xxWriteBit(Page
); //Page 0
1181 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1182 T55xxWriteBit(Pwd
& i
);
1188 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1189 T55xxWriteBit(Data
& i
);
1191 // Send Block number
1192 for (i
= 0x04; i
!= 0; i
>>= 1)
1193 T55xxWriteBit(Block
& i
);
1195 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1196 // so wait a little more)
1197 TurnReadLFOn(20 * 1000);
1198 //could attempt to do a read to confirm write took
1199 // as the tag should repeat back the new block
1200 // until it is reset, but to confirm it we would
1201 // need to know the current block 0 config mode
1204 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1205 cmd_send(CMD_ACK
,0,0,0,0,0);
1209 // Read one card block in page 0
1210 void T55xxReadBlock(uint16_t arg0
, uint8_t Block
, uint32_t Pwd
) {
1212 bool PwdMode
= arg0
& 0x1;
1213 uint8_t Page
= (arg0
& 0x2) >> 1;
1215 bool RegReadMode
= (Block
== 0xFF);
1217 //clear buffer now so it does not interfere with timing later
1218 BigBuf_Clear_ext(false);
1220 //make sure block is at max 7
1223 // Set up FPGA, 125kHz to power up the tag
1224 LFSetupFPGAForADC(95, true);
1226 // Trigger T55x7 Direct Access Mode with start gap
1227 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1228 SpinDelayUs(START_GAP
);
1232 T55xxWriteBit(Page
); //Page 0
1236 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1237 T55xxWriteBit(Pwd
& i
);
1239 // Send a zero bit separation
1242 // Send Block number (if direct access mode)
1244 for (i
= 0x04; i
!= 0; i
>>= 1)
1245 T55xxWriteBit(Block
& i
);
1247 // Turn field on to read the response
1248 TurnReadLFOn(READ_GAP
);
1251 doT55x7Acquisition();
1253 // Turn the field off
1254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1255 cmd_send(CMD_ACK
,0,0,0,0,0);
1260 // Read card traceability data (page 1)
1261 void T55xxReadTrace(void){
1264 //clear buffer now so it does not interfere with timing later
1265 BigBuf_Clear_ext(false);
1267 // Set up FPGA, 125kHz
1268 LFSetupFPGAForADC(95, true);
1270 // Trigger T55x7 Direct Access Mode
1271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1272 SpinDelayUs(START_GAP);
1276 T55xxWriteBit(1); //Page 1
1278 // Turn field on to read the response
1279 TurnReadLFOn(READ_GAP);
1282 doT55x7Acquisition();
1284 // Turn the field off
1285 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1286 cmd_send(CMD_ACK,0,0,0,0,0);
1290 void T55xxWakeUp(uint32_t Pwd
){
1294 // Set up FPGA, 125kHz
1295 LFSetupFPGAForADC(95, true);
1297 // Trigger T55x7 Direct Access Mode
1298 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1299 SpinDelayUs(START_GAP
);
1303 T55xxWriteBit(0); //Page 0
1306 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1307 T55xxWriteBit(Pwd
& i
);
1309 // Turn and leave field on to let the begin repeating transmission
1310 TurnReadLFOn(20*1000);
1313 /*-------------- Cloning routines -----------*/
1314 // Copy HID id to card and setup block 0 config
1315 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1317 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1321 // Ensure no more than 84 bits supplied
1323 DbpString("Tags can only have 84 bits.");
1326 // Build the 6 data blocks for supplied 84bit ID
1328 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1329 for (int i
=0;i
<4;i
++) {
1330 if (hi2
& (1<<(19-i
)))
1331 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1333 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1337 for (int i
=0;i
<16;i
++) {
1338 if (hi2
& (1<<(15-i
)))
1339 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1341 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1345 for (int i
=0;i
<16;i
++) {
1346 if (hi
& (1<<(31-i
)))
1347 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1349 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1353 for (int i
=0;i
<16;i
++) {
1354 if (hi
& (1<<(15-i
)))
1355 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1357 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1361 for (int i
=0;i
<16;i
++) {
1362 if (lo
& (1<<(31-i
)))
1363 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1365 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1369 for (int i
=0;i
<16;i
++) {
1370 if (lo
& (1<<(15-i
)))
1371 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1373 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1377 // Ensure no more than 44 bits supplied
1379 DbpString("Tags can only have 44 bits.");
1383 // Build the 3 data blocks for supplied 44bit ID
1386 data1
= 0x1D000000; // load preamble
1388 for (int i
=0;i
<12;i
++) {
1389 if (hi
& (1<<(11-i
)))
1390 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1392 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1396 for (int i
=0;i
<16;i
++) {
1397 if (lo
& (1<<(31-i
)))
1398 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1400 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1404 for (int i
=0;i
<16;i
++) {
1405 if (lo
& (1<<(15-i
)))
1406 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1408 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1413 // Program the data blocks for supplied ID
1414 // and the block 0 for HID format
1415 T55xxWriteBlock(data1
,1,0,0);
1416 T55xxWriteBlock(data2
,2,0,0);
1417 T55xxWriteBlock(data3
,3,0,0);
1419 if (longFMT
) { // if long format there are 6 blocks
1420 T55xxWriteBlock(data4
,4,0,0);
1421 T55xxWriteBlock(data5
,5,0,0);
1422 T55xxWriteBlock(data6
,6,0,0);
1425 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1426 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1427 T55x7_MODULATION_FSK2a
|
1428 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1436 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1438 int data1
=0, data2
=0; //up to six blocks for long format
1440 data1
= hi
; // load preamble
1444 // Program the data blocks for supplied ID
1445 // and the block 0 for HID format
1446 T55xxWriteBlock(data1
,1,0,0);
1447 T55xxWriteBlock(data2
,2,0,0);
1450 T55xxWriteBlock(0x00147040,0,0,0);
1456 // Define 9bit header for EM410x tags
1457 #define EM410X_HEADER 0x1FF
1458 #define EM410X_ID_LENGTH 40
1460 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1463 uint64_t id
= EM410X_HEADER
;
1464 uint64_t rev_id
= 0; // reversed ID
1465 int c_parity
[4]; // column parity
1466 int r_parity
= 0; // row parity
1469 // Reverse ID bits given as parameter (for simpler operations)
1470 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1472 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1475 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1480 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1481 id_bit
= rev_id
& 1;
1484 // Don't write row parity bit at start of parsing
1486 id
= (id
<< 1) | r_parity
;
1487 // Start counting parity for new row
1494 // First elements in column?
1496 // Fill out first elements
1497 c_parity
[i
] = id_bit
;
1499 // Count column parity
1500 c_parity
[i
% 4] ^= id_bit
;
1503 id
= (id
<< 1) | id_bit
;
1507 // Insert parity bit of last row
1508 id
= (id
<< 1) | r_parity
;
1510 // Fill out column parity at the end of tag
1511 for (i
= 0; i
< 4; ++i
)
1512 id
= (id
<< 1) | c_parity
[i
];
1517 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1521 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1522 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1524 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1526 // Clock rate is stored in bits 8-15 of the card value
1527 clock
= (card
& 0xFF00) >> 8;
1528 Dbprintf("Clock rate: %d", clock
);
1531 clock
= T55x7_BITRATE_RF_50
;
1533 clock
= T55x7_BITRATE_RF_40
;
1535 clock
= T55x7_BITRATE_RF_32
;
1538 clock
= T55x7_BITRATE_RF_16
;
1541 // A value of 0 is assumed to be 64 for backwards-compatibility
1544 clock
= T55x7_BITRATE_RF_64
;
1547 Dbprintf("Invalid clock rate: %d", clock
);
1551 // Writing configuration for T55x7 tag
1552 T55xxWriteBlock(clock
|
1553 T55x7_MODULATION_MANCHESTER
|
1554 2 << T55x7_MAXBLOCK_SHIFT
,
1558 // Writing configuration for T5555(Q5) tag
1559 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1560 T5555_MODULATION_MANCHESTER
|
1561 2 << T5555_MAXBLOCK_SHIFT
,
1565 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1566 (uint32_t)(id
>> 32), (uint32_t)id
);
1569 // Clone Indala 64-bit tag by UID to T55x7
1570 void CopyIndala64toT55x7(int hi
, int lo
)
1573 //Program the 2 data blocks for supplied 64bit UID
1574 // and the block 0 for Indala64 format
1575 T55xxWriteBlock(hi
,1,0,0);
1576 T55xxWriteBlock(lo
,2,0,0);
1577 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1578 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1579 T55x7_MODULATION_PSK1
|
1580 2 << T55x7_MAXBLOCK_SHIFT
,
1582 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1583 // T5567WriteBlock(0x603E1042,0);
1589 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1592 //Program the 7 data blocks for supplied 224bit UID
1593 // and the block 0 for Indala224 format
1594 T55xxWriteBlock(uid1
,1,0,0);
1595 T55xxWriteBlock(uid2
,2,0,0);
1596 T55xxWriteBlock(uid3
,3,0,0);
1597 T55xxWriteBlock(uid4
,4,0,0);
1598 T55xxWriteBlock(uid5
,5,0,0);
1599 T55xxWriteBlock(uid6
,6,0,0);
1600 T55xxWriteBlock(uid7
,7,0,0);
1601 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1602 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1603 T55x7_MODULATION_PSK1
|
1604 7 << T55x7_MAXBLOCK_SHIFT
,
1606 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1607 // T5567WriteBlock(0x603E10E2,0);
1613 //-----------------------------------
1614 // EM4469 / EM4305 routines
1615 //-----------------------------------
1616 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1617 #define FWD_CMD_WRITE 0xA
1618 #define FWD_CMD_READ 0x9
1619 #define FWD_CMD_DISABLE 0x5
1622 uint8_t forwardLink_data
[64]; //array of forwarded bits
1623 uint8_t * forward_ptr
; //ptr for forward message preparation
1624 uint8_t fwd_bit_sz
; //forwardlink bit counter
1625 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1627 //====================================================================
1628 // prepares command bits
1630 //====================================================================
1631 //--------------------------------------------------------------------
1632 uint8_t Prepare_Cmd( uint8_t cmd
) {
1633 //--------------------------------------------------------------------
1635 *forward_ptr
++ = 0; //start bit
1636 *forward_ptr
++ = 0; //second pause for 4050 code
1638 *forward_ptr
++ = cmd
;
1640 *forward_ptr
++ = cmd
;
1642 *forward_ptr
++ = cmd
;
1644 *forward_ptr
++ = cmd
;
1646 return 6; //return number of emited bits
1649 //====================================================================
1650 // prepares address bits
1652 //====================================================================
1654 //--------------------------------------------------------------------
1655 uint8_t Prepare_Addr( uint8_t addr
) {
1656 //--------------------------------------------------------------------
1658 register uint8_t line_parity
;
1663 *forward_ptr
++ = addr
;
1664 line_parity
^= addr
;
1668 *forward_ptr
++ = (line_parity
& 1);
1670 return 7; //return number of emited bits
1673 //====================================================================
1674 // prepares data bits intreleaved with parity bits
1676 //====================================================================
1678 //--------------------------------------------------------------------
1679 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1680 //--------------------------------------------------------------------
1682 register uint8_t line_parity
;
1683 register uint8_t column_parity
;
1684 register uint8_t i
, j
;
1685 register uint16_t data
;
1690 for(i
=0; i
<4; i
++) {
1692 for(j
=0; j
<8; j
++) {
1693 line_parity
^= data
;
1694 column_parity
^= (data
& 1) << j
;
1695 *forward_ptr
++ = data
;
1698 *forward_ptr
++ = line_parity
;
1703 for(j
=0; j
<8; j
++) {
1704 *forward_ptr
++ = column_parity
;
1705 column_parity
>>= 1;
1709 return 45; //return number of emited bits
1712 //====================================================================
1713 // Forward Link send function
1714 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1715 // fwd_bit_count set with number of bits to be sent
1716 //====================================================================
1717 void SendForward(uint8_t fwd_bit_count
) {
1719 fwd_write_ptr
= forwardLink_data
;
1720 fwd_bit_sz
= fwd_bit_count
;
1724 // Set up FPGA, 125kHz
1725 LFSetupFPGAForADC(95, true);
1727 // force 1st mod pulse (start gap must be longer for 4305)
1728 fwd_bit_sz
--; //prepare next bit modulation
1730 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1731 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1732 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1733 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1734 SpinDelayUs(16*8); //16 cycles on (8us each)
1736 // now start writting
1737 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1738 if(((*fwd_write_ptr
++) & 1) == 1)
1739 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1741 //These timings work for 4469/4269/4305 (with the 55*8 above)
1742 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1743 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1744 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1745 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1746 SpinDelayUs(9*8); //16 cycles on (8us each)
1751 void EM4xLogin(uint32_t Password
) {
1753 uint8_t fwd_bit_count
;
1755 forward_ptr
= forwardLink_data
;
1756 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1757 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1759 SendForward(fwd_bit_count
);
1761 //Wait for command to complete
1766 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1768 uint8_t fwd_bit_count
;
1769 uint8_t *dest
= BigBuf_get_addr();
1770 uint16_t bufferlength
= BigBuf_max_traceLen();
1773 // Clear destination buffer before sending the command
1774 memset(dest
, 0x80, bufferlength
);
1776 //If password mode do login
1777 if (PwdMode
== 1) EM4xLogin(Pwd
);
1779 forward_ptr
= forwardLink_data
;
1780 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1781 fwd_bit_count
+= Prepare_Addr( Address
);
1783 // Connect the A/D to the peak-detected low-frequency path.
1784 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1785 // Now set up the SSC to get the ADC samples that are now streaming at us.
1788 SendForward(fwd_bit_count
);
1790 // Now do the acquisition
1793 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1794 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1796 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1797 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1799 if (i
>= bufferlength
) break;
1802 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1803 cmd_send(CMD_ACK
,0,0,0,0,0);
1807 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1809 uint8_t fwd_bit_count
;
1811 //If password mode do login
1812 if (PwdMode
== 1) EM4xLogin(Pwd
);
1814 forward_ptr
= forwardLink_data
;
1815 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1816 fwd_bit_count
+= Prepare_Addr( Address
);
1817 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1819 SendForward(fwd_bit_count
);
1821 //Wait for write to complete
1823 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off