]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/legicrf.c
530970dee40ad1e96ea59ece4a9b6f25e9377a46
[proxmark3-svn] / armsrc / legicrf.c
1 //-----------------------------------------------------------------------------
2 // (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // LEGIC RF simulation code
9 //-----------------------------------------------------------------------------
10
11 #include "legicrf.h"
12
13 static struct legic_frame {
14 int bits;
15 uint32_t data;
16 } current_frame;
17
18 static enum {
19 STATE_DISCON,
20 STATE_IV,
21 STATE_CON,
22 } legic_state;
23
24 static crc_t legic_crc;
25 static int legic_read_count;
26 static uint32_t legic_prng_bc;
27 static uint32_t legic_prng_iv;
28
29 static int legic_phase_drift;
30 static int legic_frame_drift;
31 static int legic_reqresp_drift;
32
33 int timestamp;
34
35 AT91PS_TC timer;
36 AT91PS_TC prng_timer;
37
38 /*
39 static void setup_timer(void) {
40 // Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
41 // this it won't be terribly accurate but should be good enough.
42 //
43 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
44 timer = AT91C_BASE_TC1;
45 timer->TC_CCR = AT91C_TC_CLKDIS;
46 timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
47 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
48
49 //
50 // Set up Timer 2 to use for measuring time between frames in
51 // tag simulation mode. Runs 4x faster as Timer 1
52 //
53 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
54 prng_timer = AT91C_BASE_TC2;
55 prng_timer->TC_CCR = AT91C_TC_CLKDIS;
56 prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
57 prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
58 }
59 */
60
61 // At TIMER_CLOCK3 (MCK/32)
62 //#define RWD_TIME_1 150 /* RWD_TIME_PAUSE off, 80us on = 100us */
63 //#define RWD_TIME_0 90 /* RWD_TIME_PAUSE off, 40us on = 60us */
64 //#define RWD_TIME_PAUSE 30 /* 20us */
65 #define US_CALIBRATION 4
66 #define RWD_TIME_1 80-US_CALIBRATION /* READER_TIME_PAUSE off, 80us on = 100us */
67 #define RWD_TIME_0 40-US_CALIBRATION /* READER_TIME_PAUSE off, 40us on = 60us */
68 #define RWD_TIME_PAUSE 20-US_CALIBRATION /* 20us */
69
70 #define TAG_BIT_PERIOD 100-US_CALIBRATION // 100us for every bit
71
72 #define RWD_TIME_FUZZ 20 /* rather generous 13us, since the peak detector + hysteresis fuzz quite a bit */
73
74 #define TAG_TIME_WAIT 330 - US_CALIBRATION // 330us from READER frame end to TAG frame start, experimentally determined (490)
75 #define RDW_TIME_WAIT 258 //
76
77
78 #define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
79 #define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
80
81 #define OFFSET_LOG 1024
82
83 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
84
85 #ifndef SHORT_COIL
86 //#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x)
87 # define SHORT_COIL LOW(GPIO_SSC_DOUT);
88 #endif
89 #ifndef OPEN_COIL
90 //#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x)
91 # define OPEN_COIL HIGH(GPIO_SSC_DOUT);
92 #endif
93
94 uint32_t stop_send_frame_us = 0;
95
96 // ~ 258us + 100us*delay
97 #define WAIT(delay) SpinDelayCountUs((delay));
98 #define COIL_PULSE(x) { SHORT_COIL; WAIT(RWD_TIME_PAUSE); OPEN_COIL; WAIT((x)); }
99 #define COIL_PULSE_PAUSE { SHORT_COIL; WAIT(RWD_TIME_PAUSE); OPEN_COIL; }
100
101 // ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
102 // Historically it used to be FREE_BUFFER_SIZE, which was 2744.
103 #define LEGIC_CARD_MEMSIZE 1024
104 static uint8_t* cardmem;
105
106 // Starts Clock and waits until its reset
107 static void Reset(AT91PS_TC clock){
108 clock->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
109 while(clock->TC_CV > 1) ;
110 }
111
112 // Starts Clock and waits until its reset
113 static void ResetClock(void){
114 Reset(timer);
115 }
116
117 static void frame_append_bit(struct legic_frame * const f, int bit) {
118 // Overflow, won't happen
119 if (f->bits >= 31) return;
120
121 f->data |= (bit << f->bits);
122 f->bits++;
123 }
124
125 static void frame_clean(struct legic_frame * const f) {
126 f->data = 0;
127 f->bits = 0;
128 }
129
130 // Prng works when waiting in 99.1us cycles.
131 // and while sending/receiving in bit frames (100, 60)
132 /*static void CalibratePrng( uint32_t time){
133 // Calculate Cycles based on timer 100us
134 uint32_t i = (time - stop_send_frame_us) / 100 ;
135
136 // substract cycles of finished frames
137 int k = i - legic_prng_count()+1;
138
139 // substract current frame length, rewind to beginning
140 if ( k > 0 )
141 legic_prng_forward(k);
142 }
143 */
144
145 /* Generate Keystream */
146 static uint32_t get_key_stream(int skip, int count)
147 {
148 uint32_t key = 0;
149 int i;
150
151 // Use int to enlarge timer tc to 32bit
152 legic_prng_bc += prng_timer->TC_CV;
153
154 // reset the prng timer.
155 Reset(prng_timer);
156
157 /* If skip == -1, forward prng time based */
158 if(skip == -1) {
159 i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */
160 i -= legic_prng_count(); /* substract cycles of finished frames */
161 i -= count; /* substract current frame length, rewind to beginning */
162 legic_prng_forward(i);
163 } else {
164 legic_prng_forward(skip);
165 }
166
167 i = (count == 6) ? -1 : legic_read_count;
168
169 /* Write Time Data into LOG */
170 // uint8_t *BigBuf = BigBuf_get_addr();
171 // BigBuf[OFFSET_LOG+128+i] = legic_prng_count();
172 // BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff;
173 // BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff;
174 // BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff;
175 // BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff;
176 // BigBuf[OFFSET_LOG+384+i] = count;
177
178 /* Generate KeyStream */
179 for(i=0; i<count; i++) {
180 key |= legic_prng_get_bit() << i;
181 legic_prng_forward(1);
182 }
183 return key;
184 }
185
186 /* Send a frame in tag mode, the FPGA must have been set up by
187 * LegicRfSimulate
188 */
189 static void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt) {
190 /* Bitbang the response */
191 LOW(GPIO_SSC_DOUT);
192 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
193 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
194
195 /* Use time to crypt frame */
196 if(crypt) {
197 legic_prng_forward(2); /* TAG_TIME_WAIT -> shift by 2 */
198 response ^= legic_prng_get_bits(bits);
199 }
200
201 /* Wait for the frame start */
202 WAIT( TAG_TIME_WAIT )
203
204 uint8_t bit = 0;
205 for(int i = 0; i < bits; i++) {
206
207 bit = response & 1;
208 response >>= 1;
209
210 if (bit)
211 HIGH(GPIO_SSC_DOUT);
212 else
213 LOW(GPIO_SSC_DOUT);
214
215 WAIT(100)
216 }
217 LOW(GPIO_SSC_DOUT);
218 }
219
220 /* Send a frame in reader mode, the FPGA must have been set up by
221 * LegicRfReader
222 */
223 static void frame_sendAsReader(uint32_t data, uint8_t bits){
224
225 uint32_t starttime = GetCountUS();
226 uint32_t send = data;
227 uint8_t prng1 = legic_prng_count() ;
228 uint16_t mask = 1;
229 uint16_t lfsr = legic_prng_get_bits(bits);
230
231 // xor the lsfr onto data.
232 send ^= lfsr;
233
234 for (; mask < BITMASK(bits); mask <<= 1) {
235 if (send & mask) {
236 COIL_PULSE(RWD_TIME_1);
237 } else {
238 COIL_PULSE(RWD_TIME_0);
239 }
240 }
241
242 // One final pause to mark the end of the frame
243 COIL_PULSE_PAUSE;
244
245 stop_send_frame_us = GetCountUS();
246 uint8_t cmdbytes[] = {
247 data & 0xFF,
248 (data >> 8) & 0xFF,
249 bits,
250 lfsr & 0xFF,
251 (lfsr >> 8) & 0xFF,
252 prng1,
253 legic_prng_count()
254 };
255 LogTrace(cmdbytes, sizeof(cmdbytes), starttime, stop_send_frame_us, NULL, TRUE);
256 }
257
258 /* Receive a frame from the card in reader emulation mode, the FPGA and
259 * timer must have been set up by LegicRfReader and frame_sendAsReader.
260 *
261 * The LEGIC RF protocol from card to reader does not include explicit
262 * frame start/stop information or length information. The reader must
263 * know beforehand how many bits it wants to receive. (Notably: a card
264 * sending a stream of 0-bits is indistinguishable from no card present.)
265 *
266 * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
267 * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
268 * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
269 * for edges. Count the edges in each bit interval. If they are approximately
270 * 0 this was a 0-bit, if they are approximately equal to the number of edges
271 * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
272 * timer that's still running from frame_sendAsReader in order to get a synchronization
273 * with the frame that we just sent.
274 *
275 * FIXME: Because we're relying on the hysteresis to just do the right thing
276 * the range is severely reduced (and you'll probably also need a good antenna).
277 * So this should be fixed some time in the future for a proper receiver.
278 */
279 static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits, uint8_t crypt) {
280
281 uint32_t starttime = GetCountUS();
282
283 frame_clean(f);
284
285 uint8_t i = 0, edges = 0;
286 uint16_t lsfr = 0;
287 uint32_t the_bit = 1, next_bit_at = 0, data;
288 int old_level = 0, level = 0;
289
290 if(bits > 32) bits = 32;
291
292 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
293 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
294
295 // calibrate the prng.
296 legic_prng_forward(2);
297 //CalibratePrng( starttime );
298
299 // precompute the cipher
300 uint8_t prng_before = legic_prng_count() ;
301
302 if(crypt)
303 lsfr = legic_prng_get_bits(bits);
304
305 data = lsfr;
306
307 //FIXED time between sending frame and now listening frame. 330us
308 uint32_t icetime = TAG_TIME_WAIT - ( GetCountUS() - stop_send_frame_us );
309 WAIT( icetime ); // 8-10us
310
311 next_bit_at = GetCountUS();
312 next_bit_at += TAG_BIT_PERIOD;
313
314 for( i = 0; i < bits; i++) {
315 edges = 0;
316 while ( GetCountUS() < next_bit_at) {
317
318 level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
319
320 if (level != old_level)
321 ++edges;
322
323 old_level = level;
324 }
325 next_bit_at += TAG_BIT_PERIOD;
326
327 // We expect 42 edges == ONE
328 if(edges > 20 && edges < 60)
329 data ^= the_bit;
330
331 the_bit <<= 1;
332 }
333
334 // output
335 f->data = data;
336 f->bits = bits;
337
338 // log
339 stop_send_frame_us = GetCountUS();
340
341 uint8_t cmdbytes[] = {
342 (data & 0xFF),
343 (data >> 8) & 0xFF,
344 bits,
345 (lsfr & 0xFF),
346 (lsfr >> 8) & 0xFF,
347 prng_before,
348 legic_prng_count(),
349 icetime & 0xff,
350 (icetime >> 8) & 0xFF
351 };
352 LogTrace(cmdbytes, sizeof(cmdbytes), starttime, stop_send_frame_us, NULL, FALSE);
353
354 }
355
356 // Setup pm3 as a Legic Reader
357 static uint32_t perform_setup_phase_rwd(uint8_t iv) {
358
359 // Switch on carrier and let the tag charge for 1ms
360 HIGH(GPIO_SSC_DOUT);
361 SpinDelay(20);
362
363 ResetUSClock();
364
365 // no keystream yet
366 legic_prng_init(0);
367
368 // send IV handshake
369 frame_sendAsReader(iv, 7);
370
371 // Now both tag and reader has same IV. Prng can start.
372 legic_prng_init(iv);
373
374 frame_receiveAsReader(&current_frame, 6, 1);
375
376 // fixed delay before sending ack.
377 WAIT(TAG_BIT_PERIOD);
378
379 // Send obsfuscated acknowledgment frame.
380 // 0x19 = 0x18 MIM22, 0x01 LSB READCMD
381 // 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
382 switch ( current_frame.data ) {
383 case 0x0D:
384 frame_sendAsReader(0x19, 6);
385 break;
386 case 0x1D:
387 case 0x3D:
388 frame_sendAsReader(0x39, 6);
389 break;
390 default:
391 break;
392 }
393 return current_frame.data;
394
395 // End of Setup Phase.
396 }
397
398 static void LegicCommonInit(void) {
399 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
400 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
401 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
402 FpgaSetupSsc();
403
404 /* Bitbang the transmitter */
405 LOW(GPIO_SSC_DOUT);
406 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
407 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
408
409 // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
410 cardmem = BigBuf_malloc(LEGIC_CARD_MEMSIZE);
411 memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE);
412
413 clear_trace();
414 set_tracing(TRUE);
415
416 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
417
418 StartCountUS();
419 }
420
421 /* Switch off carrier, make sure tag is reset */
422 static void switch_off_tag_rwd(void) {
423 LOW(GPIO_SSC_DOUT);
424 SpinDelay(10);
425 WDT_HIT();
426 set_tracing(FALSE);
427 }
428
429 // calculate crc4 for a legic READ command
430 // 5,8,10 address size.
431 static uint32_t LegicCRC(uint16_t byte_index, uint8_t value, uint8_t cmd_sz) {
432 crc_clear(&legic_crc);
433 uint32_t temp = (value << cmd_sz) | (byte_index << 1) | LEGIC_READ;
434 crc_update(&legic_crc, temp, cmd_sz + 8 );
435 // crc_update(&legic_crc, LEGIC_READ, 1);
436 // crc_update(&legic_crc, byte_index, cmd_sz-1);
437 // crc_update(&legic_crc, value, 8);
438 return crc_finish(&legic_crc);
439 }
440
441 int legic_read_byte(int byte_index, int cmd_sz) {
442
443 uint8_t byte = 0, crc = 0;
444 uint32_t calcCrc = 0;
445 uint32_t cmd = (byte_index << 1) | LEGIC_READ;
446
447 legic_prng_forward(3);
448 WAIT(TAG_TIME_WAIT)
449
450 frame_sendAsReader(cmd, cmd_sz);
451
452 frame_receiveAsReader(&current_frame, 12, 1);
453
454 byte = current_frame.data & 0xFF;
455
456 calcCrc = LegicCRC(byte_index, byte, cmd_sz);
457 crc = (current_frame.data >> 8);
458
459 if( calcCrc != crc ) {
460 Dbprintf("!!! crc mismatch: expected %x but got %x !!!", calcCrc, crc);
461 return -1;
462 }
463
464 return byte;
465 }
466
467 /*
468 * - assemble a write_cmd_frame with crc and send it
469 * - wait until the tag sends back an ACK ('1' bit unencrypted)
470 * - forward the prng based on the timing
471 */
472 //int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) {
473 int legic_write_byte(int byte, int addr, int addr_sz) {
474
475 //do not write UID, CRC at offset 0-4.
476 if(addr <= 0x04) return 0;
477
478 // crc
479 crc_clear(&legic_crc);
480 crc_update(&legic_crc, 0, 1); /* CMD_WRITE */
481 crc_update(&legic_crc, addr, addr_sz);
482 crc_update(&legic_crc, byte, 8);
483 uint32_t crc = crc_finish(&legic_crc);
484
485 // send write command
486 uint32_t cmd = ((crc <<(addr_sz+1+8)) //CRC
487 |(byte <<(addr_sz+1)) //Data
488 |(addr <<1) //Address
489 |(0x00 <<0)); //CMD = W
490 uint32_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd
491
492 legic_prng_forward(2); /* we wait anyways */
493
494 while(timer->TC_CV < 387) ; /* ~ 258us */
495
496 frame_sendAsReader(cmd, cmd_sz);
497
498 // wllm-rbnt doesnt have these
499 // AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
500 // AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
501
502 // wait for ack
503 int t, old_level = 0, edges = 0;
504 int next_bit_at = 0;
505
506 while(timer->TC_CV < 387) ; /* ~ 258us */
507
508 for( t = 0; t < 80; t++) {
509 edges = 0;
510 next_bit_at += TAG_BIT_PERIOD;
511 while(timer->TC_CV < next_bit_at) {
512 int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
513 if(level != old_level) {
514 edges++;
515 }
516 old_level = level;
517 }
518 if(edges > 20 && edges < 60) { /* expected are 42 edges */
519 int t = timer->TC_CV;
520 int c = t / TAG_BIT_PERIOD;
521
522 ResetClock();
523 legic_prng_forward(c);
524 return 0;
525 }
526 }
527
528 ResetClock();
529 return -1;
530 }
531
532 int LegicRfReader(int offset, int bytes, int iv) {
533
534 int byte_index = 0, cmd_sz = 0, card_sz = 0;
535
536 if ( MF_DBGLEVEL >= 2) {
537 Dbprintf("setting up legic card, IV = %x", iv);
538
539 Dbprintf("ONE %d ZERO %d PAUSE %d", RWD_TIME_1 , RWD_TIME_0 , RWD_TIME_PAUSE);
540 Dbprintf("TAG BIT PERIOD %d FUZZ %d TAG WAIT TIME %d", TAG_BIT_PERIOD, RWD_TIME_FUZZ, TAG_TIME_WAIT);
541 }
542
543 LegicCommonInit();
544
545 uint32_t tag_type = perform_setup_phase_rwd(iv);
546
547 //we lose to mutch time with dprintf
548 switch_off_tag_rwd();
549
550 switch(tag_type) {
551 case 0x0d:
552 if ( MF_DBGLEVEL >= 2) DbpString("MIM22 card found, reading card ...");
553 cmd_sz = 6;
554 card_sz = 22;
555 break;
556 case 0x1d:
557 if ( MF_DBGLEVEL >= 2) DbpString("MIM256 card found, reading card ...");
558 cmd_sz = 9;
559 card_sz = 256;
560 break;
561 case 0x3d:
562 if ( MF_DBGLEVEL >= 2) DbpString("MIM1024 card found, reading card ...");
563 cmd_sz = 11;
564 card_sz = 1024;
565 break;
566 default:
567 if ( MF_DBGLEVEL >= 1) Dbprintf("Unknown card format: %x",tag_type);
568 return 1;
569 }
570 if(bytes == -1)
571 bytes = card_sz;
572
573 if(bytes+offset >= card_sz)
574 bytes = card_sz - offset;
575
576 // Start setup and read bytes.
577 perform_setup_phase_rwd(iv);
578
579 LED_B_ON();
580 while (byte_index < bytes) {
581 int r = legic_read_byte(byte_index+offset, cmd_sz);
582
583 if (r == -1 || BUTTON_PRESS()) {
584 switch_off_tag_rwd();
585 LEDsoff();
586 if ( MF_DBGLEVEL >= 2) DbpString("operation aborted");
587 cmd_send(CMD_ACK,0,0,0,0,0);
588 return 1;
589 }
590 cardmem[byte_index] = r;
591 WDT_HIT();
592 byte_index++;
593 }
594
595 switch_off_tag_rwd();
596 LEDsoff();
597 uint8_t len = (bytes & 0x3FF);
598 cmd_send(CMD_ACK,1,len,0,0,0);
599 return 0;
600 }
601
602 /*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) {
603 int byte_index=0;
604
605 LED_B_ON();
606 perform_setup_phase_rwd(iv);
607 //legic_prng_forward(2);
608 while(byte_index < bytes) {
609 int r;
610
611 //check if the DCF should be changed
612 if ( (offset == 0x05) && (bytes == 0x02) ) {
613 //write DCF in reverse order (addr 0x06 before 0x05)
614 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
615 //legic_prng_forward(1);
616 if(r == 0) {
617 byte_index++;
618 r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
619 }
620 //legic_prng_forward(1);
621 }
622 else {
623 r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue);
624 }
625 if((r != 0) || BUTTON_PRESS()) {
626 Dbprintf("operation aborted @ 0x%03.3x", byte_index);
627 switch_off_tag_rwd();
628 LED_B_OFF();
629 LED_C_OFF();
630 return -1;
631 }
632
633 WDT_HIT();
634 byte_index++;
635 if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
636 }
637 LED_B_OFF();
638 LED_C_OFF();
639 DbpString("write successful");
640 return 0;
641 }*/
642
643 void LegicRfWriter(int offset, int bytes, int iv) {
644
645 int byte_index = 0, addr_sz = 0;
646
647 LegicCommonInit();
648
649 if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card");
650
651 uint32_t tag_type = perform_setup_phase_rwd(iv);
652
653 switch_off_tag_rwd();
654
655 switch(tag_type) {
656 case 0x0d:
657 if(offset+bytes > 22) {
658 Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset+bytes);
659 return;
660 }
661 addr_sz = 5;
662 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes);
663 break;
664 case 0x1d:
665 if(offset+bytes > 0x100) {
666 Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset+bytes);
667 return;
668 }
669 addr_sz = 8;
670 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes);
671 break;
672 case 0x3d:
673 if(offset+bytes > 0x400) {
674 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset+bytes);
675 return;
676 }
677 addr_sz = 10;
678 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset+bytes);
679 break;
680 default:
681 Dbprintf("No or unknown card found, aborting");
682 return;
683 }
684
685 LED_B_ON();
686 perform_setup_phase_rwd(iv);
687 while(byte_index < bytes) {
688 int r;
689
690 //check if the DCF should be changed
691 if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) {
692 //write DCF in reverse order (addr 0x06 before 0x05)
693 r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), addr_sz);
694
695 // write second byte on success...
696 if(r == 0) {
697 byte_index++;
698 r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), addr_sz);
699 }
700 }
701 else {
702 r = legic_write_byte(cardmem[byte_index+offset], byte_index+offset, addr_sz);
703 }
704
705 if((r != 0) || BUTTON_PRESS()) {
706 Dbprintf("operation aborted @ 0x%03.3x", byte_index);
707 switch_off_tag_rwd();
708 LEDsoff();
709 return;
710 }
711
712 WDT_HIT();
713 byte_index++;
714 }
715 LEDsoff();
716 if ( MF_DBGLEVEL >= 1) DbpString("write successful");
717 }
718
719 void LegicRfRawWriter(int address, int byte, int iv) {
720
721 int byte_index = 0, addr_sz = 0;
722
723 LegicCommonInit();
724
725 if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card");
726
727 uint32_t tag_type = perform_setup_phase_rwd(iv);
728
729 switch_off_tag_rwd();
730
731 switch(tag_type) {
732 case 0x0d:
733 if(address > 22) {
734 Dbprintf("Error: can not write to 0x%03.3x on MIM22", address);
735 return;
736 }
737 addr_sz = 5;
738 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte);
739 break;
740 case 0x1d:
741 if(address > 0x100) {
742 Dbprintf("Error: can not write to 0x%03.3x on MIM256", address);
743 return;
744 }
745 addr_sz = 8;
746 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte);
747 break;
748 case 0x3d:
749 if(address > 0x400) {
750 Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address);
751 return;
752 }
753 addr_sz = 10;
754 if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address, byte);
755 break;
756 default:
757 Dbprintf("No or unknown card found, aborting");
758 return;
759 }
760
761 Dbprintf("integer value: %d address: %d addr_sz: %d", byte, address, addr_sz);
762 LED_B_ON();
763
764 perform_setup_phase_rwd(iv);
765 //legic_prng_forward(2);
766
767 int r = legic_write_byte(byte, address, addr_sz);
768
769 if((r != 0) || BUTTON_PRESS()) {
770 Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r);
771 switch_off_tag_rwd();
772 LEDsoff();
773 return;
774 }
775
776 LEDsoff();
777 if ( MF_DBGLEVEL >= 1) DbpString("write successful");
778 }
779
780 /* Handle (whether to respond) a frame in tag mode
781 * Only called when simulating a tag.
782 */
783 static void frame_handle_tag(struct legic_frame const * const f)
784 {
785 uint8_t *BigBuf = BigBuf_get_addr();
786
787 /* First Part of Handshake (IV) */
788 if(f->bits == 7) {
789
790 LED_C_ON();
791
792 // Reset prng timer
793 Reset(prng_timer);
794
795 legic_prng_init(f->data);
796 frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */
797 legic_state = STATE_IV;
798 legic_read_count = 0;
799 legic_prng_bc = 0;
800 legic_prng_iv = f->data;
801
802 /* TIMEOUT */
803 ResetClock();
804
805 //while(timer->TC_CV < 280);
806 WAIT(280)
807 return;
808 }
809
810 /* 0x19==??? */
811 if(legic_state == STATE_IV) {
812 int local_key = get_key_stream(3, 6);
813 int xored = 0x39 ^ local_key;
814 if((f->bits == 6) && (f->data == xored)) {
815 legic_state = STATE_CON;
816
817 /* TIMEOUT */
818 ResetClock();
819
820 //while(timer->TC_CV < 200);
821 WAIT(200)
822
823 return;
824 } else {
825 legic_state = STATE_DISCON;
826 LED_C_OFF();
827 Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored);
828 return;
829 }
830 }
831
832 /* Read */
833 if(f->bits == 11) {
834 if(legic_state == STATE_CON) {
835 int key = get_key_stream(2, 11); //legic_phase_drift, 11);
836 int addr = f->data ^ key; addr = addr >> 1;
837 int data = BigBuf[addr];
838 int hash = LegicCRC(addr, data, 11) << 8;
839 BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr;
840 legic_read_count++;
841
842 //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c);
843 legic_prng_forward(legic_reqresp_drift);
844
845 frame_send_tag(hash | data, 12, 1);
846
847 /* TIMEOUT */
848 ResetClock();
849
850 legic_prng_forward(2);
851 //while(timer->TC_CV < 180);
852 WAIT(180)
853
854 return;
855 }
856 }
857
858 /* Write */
859 if(f->bits == 23) {
860 int key = get_key_stream(-1, 23); //legic_frame_drift, 23);
861 int addr = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff;
862 int data = f->data ^ key; data = data >> 11; data = data & 0xff;
863
864 /* write command */
865 legic_state = STATE_DISCON;
866 LED_C_OFF();
867 Dbprintf("write - addr: %x, data: %x", addr, data);
868 return;
869 }
870
871 if(legic_state != STATE_DISCON) {
872 Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count);
873 int i;
874 Dbprintf("IV: %03.3x", legic_prng_iv);
875 for(i = 0; i<legic_read_count; i++) {
876 Dbprintf("Read Nb: %u, Addr: %u", i, BigBuf[OFFSET_LOG+i]);
877 }
878
879 for(i = -1; i<legic_read_count; i++) {
880 uint32_t t;
881 t = BigBuf[OFFSET_LOG+256+i*4];
882 t |= BigBuf[OFFSET_LOG+256+i*4+1] << 8;
883 t |= BigBuf[OFFSET_LOG+256+i*4+2] <<16;
884 t |= BigBuf[OFFSET_LOG+256+i*4+3] <<24;
885
886 Dbprintf("Cycles: %u, Frame Length: %u, Time: %u",
887 BigBuf[OFFSET_LOG+128+i],
888 BigBuf[OFFSET_LOG+384+i],
889 t);
890 }
891 }
892 legic_state = STATE_DISCON;
893 legic_read_count = 0;
894 SpinDelay(10);
895 LED_C_OFF();
896 return;
897 }
898
899 /* Read bit by bit untill full frame is received
900 * Call to process frame end answer
901 */
902 static void emit(int bit) {
903
904 switch (bit) {
905 case 1:
906 frame_append_bit(&current_frame, 1);
907 break;
908 case 0:
909 frame_append_bit(&current_frame, 0);
910 break;
911 default:
912 if(current_frame.bits <= 4) {
913 frame_clean(&current_frame);
914 } else {
915 frame_handle_tag(&current_frame);
916 frame_clean(&current_frame);
917 }
918 WDT_HIT();
919 break;
920 }
921 }
922
923 void LegicRfSimulate(int phase, int frame, int reqresp)
924 {
925 /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
926 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
927 * envelope waveform on DIN and should send our response on DOUT.
928 *
929 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
930 * measure the time between two rising edges on DIN, and no encoding on the
931 * subcarrier from card to reader, so we'll just shift out our verbatim data
932 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
933 * seems to be 300us-ish.
934 */
935
936 legic_phase_drift = phase;
937 legic_frame_drift = frame;
938 legic_reqresp_drift = reqresp;
939
940 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
941 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
942 FpgaSetupSsc();
943 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K);
944
945 /* Bitbang the receiver */
946 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
947 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
948
949 //setup_timer();
950 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
951
952 int old_level = 0;
953 int active = 0;
954 legic_state = STATE_DISCON;
955
956 LED_B_ON();
957 DbpString("Starting Legic emulator, press button to end");
958
959 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
960 int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
961 int time = timer->TC_CV;
962
963 if(level != old_level) {
964 if(level == 1) {
965 timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
966
967 if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) {
968 /* 1 bit */
969 emit(1);
970 active = 1;
971 LED_A_ON();
972 } else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) {
973 /* 0 bit */
974 emit(0);
975 active = 1;
976 LED_A_ON();
977 } else if (active) {
978 /* invalid */
979 emit(-1);
980 active = 0;
981 LED_A_OFF();
982 }
983 }
984 }
985
986 /* Frame end */
987 if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) {
988 emit(-1);
989 active = 0;
990 LED_A_OFF();
991 }
992
993 if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) {
994 timer->TC_CCR = AT91C_TC_CLKDIS;
995 }
996
997 old_level = level;
998 WDT_HIT();
999 }
1000 if ( MF_DBGLEVEL >= 1) DbpString("Stopped");
1001 LEDsoff();
1002 }
1003
1004 //-----------------------------------------------------------------------------
1005 //-----------------------------------------------------------------------------
1006
1007
1008 //-----------------------------------------------------------------------------
1009 // Code up a string of octets at layer 2 (including CRC, we don't generate
1010 // that here) so that they can be transmitted to the reader. Doesn't transmit
1011 // them yet, just leaves them ready to send in ToSend[].
1012 //-----------------------------------------------------------------------------
1013 // static void CodeLegicAsTag(const uint8_t *cmd, int len)
1014 // {
1015 // int i;
1016
1017 // ToSendReset();
1018
1019 // // Transmit a burst of ones, as the initial thing that lets the
1020 // // reader get phase sync. This (TR1) must be > 80/fs, per spec,
1021 // // but tag that I've tried (a Paypass) exceeds that by a fair bit,
1022 // // so I will too.
1023 // for(i = 0; i < 20; i++) {
1024 // ToSendStuffBit(1);
1025 // ToSendStuffBit(1);
1026 // ToSendStuffBit(1);
1027 // ToSendStuffBit(1);
1028 // }
1029
1030 // // Send SOF.
1031 // for(i = 0; i < 10; i++) {
1032 // ToSendStuffBit(0);
1033 // ToSendStuffBit(0);
1034 // ToSendStuffBit(0);
1035 // ToSendStuffBit(0);
1036 // }
1037 // for(i = 0; i < 2; i++) {
1038 // ToSendStuffBit(1);
1039 // ToSendStuffBit(1);
1040 // ToSendStuffBit(1);
1041 // ToSendStuffBit(1);
1042 // }
1043
1044 // for(i = 0; i < len; i++) {
1045 // int j;
1046 // uint8_t b = cmd[i];
1047
1048 // // Start bit
1049 // ToSendStuffBit(0);
1050 // ToSendStuffBit(0);
1051 // ToSendStuffBit(0);
1052 // ToSendStuffBit(0);
1053
1054 // // Data bits
1055 // for(j = 0; j < 8; j++) {
1056 // if(b & 1) {
1057 // ToSendStuffBit(1);
1058 // ToSendStuffBit(1);
1059 // ToSendStuffBit(1);
1060 // ToSendStuffBit(1);
1061 // } else {
1062 // ToSendStuffBit(0);
1063 // ToSendStuffBit(0);
1064 // ToSendStuffBit(0);
1065 // ToSendStuffBit(0);
1066 // }
1067 // b >>= 1;
1068 // }
1069
1070 // // Stop bit
1071 // ToSendStuffBit(1);
1072 // ToSendStuffBit(1);
1073 // ToSendStuffBit(1);
1074 // ToSendStuffBit(1);
1075 // }
1076
1077 // // Send EOF.
1078 // for(i = 0; i < 10; i++) {
1079 // ToSendStuffBit(0);
1080 // ToSendStuffBit(0);
1081 // ToSendStuffBit(0);
1082 // ToSendStuffBit(0);
1083 // }
1084 // for(i = 0; i < 2; i++) {
1085 // ToSendStuffBit(1);
1086 // ToSendStuffBit(1);
1087 // ToSendStuffBit(1);
1088 // ToSendStuffBit(1);
1089 // }
1090
1091 // // Convert from last byte pos to length
1092 // ToSendMax++;
1093 // }
1094
1095 //-----------------------------------------------------------------------------
1096 // The software UART that receives commands from the reader, and its state
1097 // variables.
1098 //-----------------------------------------------------------------------------
1099 static struct {
1100 enum {
1101 STATE_UNSYNCD,
1102 STATE_GOT_FALLING_EDGE_OF_SOF,
1103 STATE_AWAITING_START_BIT,
1104 STATE_RECEIVING_DATA
1105 } state;
1106 uint16_t shiftReg;
1107 int bitCnt;
1108 int byteCnt;
1109 int byteCntMax;
1110 int posCnt;
1111 uint8_t *output;
1112 } Uart;
1113
1114 /* Receive & handle a bit coming from the reader.
1115 *
1116 * This function is called 4 times per bit (every 2 subcarrier cycles).
1117 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1118 *
1119 * LED handling:
1120 * LED A -> ON once we have received the SOF and are expecting the rest.
1121 * LED A -> OFF once we have received EOF or are in error state or unsynced
1122 *
1123 * Returns: true if we received a EOF
1124 * false if we are still waiting for some more
1125 */
1126 // static RAMFUNC int HandleLegicUartBit(uint8_t bit)
1127 // {
1128 // switch(Uart.state) {
1129 // case STATE_UNSYNCD:
1130 // if(!bit) {
1131 // // we went low, so this could be the beginning of an SOF
1132 // Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
1133 // Uart.posCnt = 0;
1134 // Uart.bitCnt = 0;
1135 // }
1136 // break;
1137
1138 // case STATE_GOT_FALLING_EDGE_OF_SOF:
1139 // Uart.posCnt++;
1140 // if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
1141 // if(bit) {
1142 // if(Uart.bitCnt > 9) {
1143 // // we've seen enough consecutive
1144 // // zeros that it's a valid SOF
1145 // Uart.posCnt = 0;
1146 // Uart.byteCnt = 0;
1147 // Uart.state = STATE_AWAITING_START_BIT;
1148 // LED_A_ON(); // Indicate we got a valid SOF
1149 // } else {
1150 // // didn't stay down long enough
1151 // // before going high, error
1152 // Uart.state = STATE_UNSYNCD;
1153 // }
1154 // } else {
1155 // // do nothing, keep waiting
1156 // }
1157 // Uart.bitCnt++;
1158 // }
1159 // if(Uart.posCnt >= 4) Uart.posCnt = 0;
1160 // if(Uart.bitCnt > 12) {
1161 // // Give up if we see too many zeros without
1162 // // a one, too.
1163 // LED_A_OFF();
1164 // Uart.state = STATE_UNSYNCD;
1165 // }
1166 // break;
1167
1168 // case STATE_AWAITING_START_BIT:
1169 // Uart.posCnt++;
1170 // if(bit) {
1171 // if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
1172 // // stayed high for too long between
1173 // // characters, error
1174 // Uart.state = STATE_UNSYNCD;
1175 // }
1176 // } else {
1177 // // falling edge, this starts the data byte
1178 // Uart.posCnt = 0;
1179 // Uart.bitCnt = 0;
1180 // Uart.shiftReg = 0;
1181 // Uart.state = STATE_RECEIVING_DATA;
1182 // }
1183 // break;
1184
1185 // case STATE_RECEIVING_DATA:
1186 // Uart.posCnt++;
1187 // if(Uart.posCnt == 2) {
1188 // // time to sample a bit
1189 // Uart.shiftReg >>= 1;
1190 // if(bit) {
1191 // Uart.shiftReg |= 0x200;
1192 // }
1193 // Uart.bitCnt++;
1194 // }
1195 // if(Uart.posCnt >= 4) {
1196 // Uart.posCnt = 0;
1197 // }
1198 // if(Uart.bitCnt == 10) {
1199 // if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
1200 // {
1201 // // this is a data byte, with correct
1202 // // start and stop bits
1203 // Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
1204 // Uart.byteCnt++;
1205
1206 // if(Uart.byteCnt >= Uart.byteCntMax) {
1207 // // Buffer overflowed, give up
1208 // LED_A_OFF();
1209 // Uart.state = STATE_UNSYNCD;
1210 // } else {
1211 // // so get the next byte now
1212 // Uart.posCnt = 0;
1213 // Uart.state = STATE_AWAITING_START_BIT;
1214 // }
1215 // } else if (Uart.shiftReg == 0x000) {
1216 // // this is an EOF byte
1217 // LED_A_OFF(); // Finished receiving
1218 // Uart.state = STATE_UNSYNCD;
1219 // if (Uart.byteCnt != 0) {
1220 // return TRUE;
1221 // }
1222 // } else {
1223 // // this is an error
1224 // LED_A_OFF();
1225 // Uart.state = STATE_UNSYNCD;
1226 // }
1227 // }
1228 // break;
1229
1230 // default:
1231 // LED_A_OFF();
1232 // Uart.state = STATE_UNSYNCD;
1233 // break;
1234 // }
1235
1236 // return FALSE;
1237 // }
1238
1239
1240 static void UartReset() {
1241 Uart.byteCntMax = 3;
1242 Uart.state = STATE_UNSYNCD;
1243 Uart.byteCnt = 0;
1244 Uart.bitCnt = 0;
1245 Uart.posCnt = 0;
1246 memset(Uart.output, 0x00, 3);
1247 }
1248
1249 // static void UartInit(uint8_t *data) {
1250 // Uart.output = data;
1251 // UartReset();
1252 // }
1253
1254 //=============================================================================
1255 // An LEGIC reader. We take layer two commands, code them
1256 // appropriately, and then send them to the tag. We then listen for the
1257 // tag's response, which we leave in the buffer to be demodulated on the
1258 // PC side.
1259 //=============================================================================
1260
1261 static struct {
1262 enum {
1263 DEMOD_UNSYNCD,
1264 DEMOD_PHASE_REF_TRAINING,
1265 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
1266 DEMOD_GOT_FALLING_EDGE_OF_SOF,
1267 DEMOD_AWAITING_START_BIT,
1268 DEMOD_RECEIVING_DATA
1269 } state;
1270 int bitCount;
1271 int posCount;
1272 int thisBit;
1273 uint16_t shiftReg;
1274 uint8_t *output;
1275 int len;
1276 int sumI;
1277 int sumQ;
1278 } Demod;
1279
1280 /*
1281 * Handles reception of a bit from the tag
1282 *
1283 * This function is called 2 times per bit (every 4 subcarrier cycles).
1284 * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
1285 *
1286 * LED handling:
1287 * LED C -> ON once we have received the SOF and are expecting the rest.
1288 * LED C -> OFF once we have received EOF or are unsynced
1289 *
1290 * Returns: true if we received a EOF
1291 * false if we are still waiting for some more
1292 *
1293 */
1294
1295 #ifndef SUBCARRIER_DETECT_THRESHOLD
1296 # define SUBCARRIER_DETECT_THRESHOLD 8
1297 #endif
1298
1299 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
1300 #ifndef CHECK_FOR_SUBCARRIER
1301 # define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); }
1302 #endif
1303
1304 // The soft decision on the bit uses an estimate of just the
1305 // quadrant of the reference angle, not the exact angle.
1306 // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
1307 #define MAKE_SOFT_DECISION() { \
1308 if(Demod.sumI > 0) \
1309 v = ci; \
1310 else \
1311 v = -ci; \
1312 \
1313 if(Demod.sumQ > 0) \
1314 v += cq; \
1315 else \
1316 v -= cq; \
1317 \
1318 }
1319
1320 static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
1321 {
1322 int v = 0;
1323 int ai = ABS(ci);
1324 int aq = ABS(cq);
1325 int halfci = (ai >> 1);
1326 int halfcq = (aq >> 1);
1327
1328 switch(Demod.state) {
1329 case DEMOD_UNSYNCD:
1330
1331 CHECK_FOR_SUBCARRIER()
1332
1333 if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
1334 Demod.state = DEMOD_PHASE_REF_TRAINING;
1335 Demod.sumI = ci;
1336 Demod.sumQ = cq;
1337 Demod.posCount = 1;
1338 }
1339 break;
1340
1341 case DEMOD_PHASE_REF_TRAINING:
1342 if(Demod.posCount < 8) {
1343
1344 CHECK_FOR_SUBCARRIER()
1345
1346 if (v > SUBCARRIER_DETECT_THRESHOLD) {
1347 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
1348 // note: synchronization time > 80 1/fs
1349 Demod.sumI += ci;
1350 Demod.sumQ += cq;
1351 ++Demod.posCount;
1352 } else {
1353 // subcarrier lost
1354 Demod.state = DEMOD_UNSYNCD;
1355 }
1356 } else {
1357 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
1358 }
1359 break;
1360
1361 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
1362
1363 MAKE_SOFT_DECISION()
1364
1365 //Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
1366 // logic '0' detected
1367 if (v <= 0) {
1368
1369 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
1370
1371 // start of SOF sequence
1372 Demod.posCount = 0;
1373 } else {
1374 // maximum length of TR1 = 200 1/fs
1375 if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
1376 }
1377 ++Demod.posCount;
1378 break;
1379
1380 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
1381 ++Demod.posCount;
1382
1383 MAKE_SOFT_DECISION()
1384
1385 if(v > 0) {
1386 // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
1387 if(Demod.posCount < 10*2) {
1388 Demod.state = DEMOD_UNSYNCD;
1389 } else {
1390 LED_C_ON(); // Got SOF
1391 Demod.state = DEMOD_AWAITING_START_BIT;
1392 Demod.posCount = 0;
1393 Demod.len = 0;
1394 }
1395 } else {
1396 // low phase of SOF too long (> 12 etu)
1397 if(Demod.posCount > 13*2) {
1398 Demod.state = DEMOD_UNSYNCD;
1399 LED_C_OFF();
1400 }
1401 }
1402 break;
1403
1404 case DEMOD_AWAITING_START_BIT:
1405 ++Demod.posCount;
1406
1407 MAKE_SOFT_DECISION()
1408
1409 if(v > 0) {
1410 // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
1411 if(Demod.posCount > 3*2) {
1412 Demod.state = DEMOD_UNSYNCD;
1413 LED_C_OFF();
1414 }
1415 } else {
1416 // start bit detected
1417 Demod.bitCount = 0;
1418 Demod.posCount = 1; // this was the first half
1419 Demod.thisBit = v;
1420 Demod.shiftReg = 0;
1421 Demod.state = DEMOD_RECEIVING_DATA;
1422 }
1423 break;
1424
1425 case DEMOD_RECEIVING_DATA:
1426
1427 MAKE_SOFT_DECISION()
1428
1429 if(Demod.posCount == 0) {
1430 // first half of bit
1431 Demod.thisBit = v;
1432 Demod.posCount = 1;
1433 } else {
1434 // second half of bit
1435 Demod.thisBit += v;
1436 Demod.shiftReg >>= 1;
1437 // logic '1'
1438 if(Demod.thisBit > 0)
1439 Demod.shiftReg |= 0x200;
1440
1441 ++Demod.bitCount;
1442
1443 if(Demod.bitCount == 10) {
1444
1445 uint16_t s = Demod.shiftReg;
1446
1447 if((s & 0x200) && !(s & 0x001)) {
1448 // stop bit == '1', start bit == '0'
1449 uint8_t b = (s >> 1);
1450 Demod.output[Demod.len] = b;
1451 ++Demod.len;
1452 Demod.state = DEMOD_AWAITING_START_BIT;
1453 } else {
1454 Demod.state = DEMOD_UNSYNCD;
1455 LED_C_OFF();
1456
1457 if(s == 0x000) {
1458 // This is EOF (start, stop and all data bits == '0'
1459 return TRUE;
1460 }
1461 }
1462 }
1463 Demod.posCount = 0;
1464 }
1465 break;
1466
1467 default:
1468 Demod.state = DEMOD_UNSYNCD;
1469 LED_C_OFF();
1470 break;
1471 }
1472 return FALSE;
1473 }
1474
1475 // Clear out the state of the "UART" that receives from the tag.
1476 static void DemodReset() {
1477 Demod.len = 0;
1478 Demod.state = DEMOD_UNSYNCD;
1479 Demod.posCount = 0;
1480 Demod.sumI = 0;
1481 Demod.sumQ = 0;
1482 Demod.bitCount = 0;
1483 Demod.thisBit = 0;
1484 Demod.shiftReg = 0;
1485 memset(Demod.output, 0x00, 3);
1486 }
1487
1488 static void DemodInit(uint8_t *data) {
1489 Demod.output = data;
1490 DemodReset();
1491 }
1492
1493 /*
1494 * Demodulate the samples we received from the tag, also log to tracebuffer
1495 * quiet: set to 'TRUE' to disable debug output
1496 */
1497 #define LEGIC_DMA_BUFFER_SIZE 256
1498 static void GetSamplesForLegicDemod(int n, bool quiet)
1499 {
1500 int max = 0;
1501 bool gotFrame = FALSE;
1502 int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1503 int ci, cq, samples = 0;
1504
1505 BigBuf_free();
1506
1507 // And put the FPGA in the appropriate mode
1508 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
1509
1510 // The response (tag -> reader) that we're receiving.
1511 // Set up the demodulator for tag -> reader responses.
1512 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1513
1514 // The DMA buffer, used to stream samples from the FPGA
1515 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
1516 int8_t *upTo = dmaBuf;
1517
1518 // Setup and start DMA.
1519 if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
1520 if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
1521 return;
1522 }
1523
1524 // Signal field is ON with the appropriate LED:
1525 LED_D_ON();
1526 for(;;) {
1527 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
1528 if(behindBy > max) max = behindBy;
1529
1530 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
1531 ci = upTo[0];
1532 cq = upTo[1];
1533 upTo += 2;
1534 if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
1535 upTo = dmaBuf;
1536 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
1537 AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
1538 }
1539 lastRxCounter -= 2;
1540 if(lastRxCounter <= 0)
1541 lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
1542
1543 samples += 2;
1544
1545 gotFrame = HandleLegicSamplesDemod(ci , cq );
1546 if ( gotFrame )
1547 break;
1548 }
1549
1550 if(samples > n || gotFrame)
1551 break;
1552 }
1553
1554 FpgaDisableSscDma();
1555
1556 if (!quiet && Demod.len == 0) {
1557 Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
1558 max,
1559 samples,
1560 gotFrame,
1561 Demod.len,
1562 Demod.sumI,
1563 Demod.sumQ
1564 );
1565 }
1566
1567 //Tracing
1568 if (Demod.len > 0) {
1569 uint8_t parity[MAX_PARITY_SIZE] = {0x00};
1570 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
1571 }
1572 }
1573 //-----------------------------------------------------------------------------
1574 // Transmit the command (to the tag) that was placed in ToSend[].
1575 //-----------------------------------------------------------------------------
1576 static void TransmitForLegic(void)
1577 {
1578 int c;
1579
1580 FpgaSetupSsc();
1581
1582 while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
1583 AT91C_BASE_SSC->SSC_THR = 0xff;
1584
1585 // Signal field is ON with the appropriate Red LED
1586 LED_D_ON();
1587
1588 // Signal we are transmitting with the Green LED
1589 LED_B_ON();
1590 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1591
1592 for(c = 0; c < 10;) {
1593 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1594 AT91C_BASE_SSC->SSC_THR = 0xff;
1595 c++;
1596 }
1597 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1598 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1599 (void)r;
1600 }
1601 WDT_HIT();
1602 }
1603
1604 c = 0;
1605 for(;;) {
1606 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1607 AT91C_BASE_SSC->SSC_THR = ToSend[c];
1608 legic_prng_forward(1); // forward the lfsr
1609 c++;
1610 if(c >= ToSendMax) {
1611 break;
1612 }
1613 }
1614 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1615 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
1616 (void)r;
1617 }
1618 WDT_HIT();
1619 }
1620 LED_B_OFF();
1621 }
1622
1623
1624 //-----------------------------------------------------------------------------
1625 // Code a layer 2 command (string of octets, including CRC) into ToSend[],
1626 // so that it is ready to transmit to the tag using TransmitForLegic().
1627 //-----------------------------------------------------------------------------
1628 static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
1629 {
1630 int i, j;
1631 uint8_t b;
1632
1633 ToSendReset();
1634
1635 // Send SOF
1636 for(i = 0; i < 7; i++)
1637 ToSendStuffBit(1);
1638
1639
1640 for(i = 0; i < cmdlen; i++) {
1641 // Start bit
1642 ToSendStuffBit(0);
1643
1644 // Data bits
1645 b = cmd[i];
1646 for(j = 0; j < bits; j++) {
1647 if(b & 1) {
1648 ToSendStuffBit(1);
1649 } else {
1650 ToSendStuffBit(0);
1651 }
1652 b >>= 1;
1653 }
1654 }
1655
1656 // Convert from last character reference to length
1657 ++ToSendMax;
1658 }
1659
1660 /**
1661 Convenience function to encode, transmit and trace Legic comms
1662 **/
1663 static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
1664 {
1665 CodeLegicBitsAsReader(cmd, cmdlen, bits);
1666 TransmitForLegic();
1667 if (tracing) {
1668 uint8_t parity[1] = {0x00};
1669 LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
1670 }
1671 }
1672
1673 int ice_legic_select_card()
1674 {
1675 //int cmd_size=0, card_size=0;
1676 uint8_t wakeup[] = { 0x7F };
1677 uint8_t getid[] = {0x19};
1678
1679 //legic_prng_init(SESSION_IV);
1680
1681 // first, wake up the tag, 7bits
1682 CodeAndTransmitLegicAsReader(wakeup, sizeof(wakeup), 7);
1683
1684 GetSamplesForLegicDemod(1000, TRUE);
1685
1686 //frame_receiveAsReader(&current_frame, 6, 1);
1687
1688 legic_prng_forward(1); /* we wait anyways */
1689
1690 //while(timer->TC_CV < 387) ; /* ~ 258us */
1691 //frame_sendAsReader(0x19, 6);
1692 CodeAndTransmitLegicAsReader(getid, sizeof(getid), 8);
1693 GetSamplesForLegicDemod(1000, TRUE);
1694
1695 //if (Demod.len < 14) return 2;
1696 Dbprintf("CARD TYPE: %02x LEN: %d", Demod.output[0], Demod.len);
1697
1698 switch(Demod.output[0]) {
1699 case 0x1d:
1700 DbpString("MIM 256 card found");
1701 // cmd_size = 9;
1702 // card_size = 256;
1703 break;
1704 case 0x3d:
1705 DbpString("MIM 1024 card found");
1706 // cmd_size = 11;
1707 // card_size = 1024;
1708 break;
1709 default:
1710 return -1;
1711 }
1712
1713 // if(bytes == -1)
1714 // bytes = card_size;
1715
1716 // if(bytes + offset >= card_size)
1717 // bytes = card_size - offset;
1718
1719 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1720 set_tracing(FALSE);
1721 return 1;
1722 }
1723
1724 // Set up LEGIC communication
1725 void ice_legic_setup() {
1726
1727 // standard things.
1728 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1729 BigBuf_free(); BigBuf_Clear_ext(false);
1730 clear_trace();
1731 set_tracing(TRUE);
1732 DemodReset();
1733 UartReset();
1734
1735 // Set up the synchronous serial port
1736 FpgaSetupSsc();
1737
1738 // connect Demodulated Signal to ADC:
1739 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1740
1741 // Signal field is on with the appropriate LED
1742 LED_D_ON();
1743 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
1744 SpinDelay(20);
1745 // Start the timer
1746 //StartCountSspClk();
1747
1748 // initalize CRC
1749 crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
1750
1751 // initalize prng
1752 legic_prng_init(0);
1753 }
Impressum, Datenschutz