1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015, 2016 by piwi
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
17 #include "cmdhfmfhard.h"
27 #include "proxmark3.h"
31 #include "crapto1/crapto1.h"
33 #include "hardnested/hardnested_bruteforce.h"
34 #include "hardnested/hardnested_bitarray_core.h"
36 #define NUM_CHECK_BITFLIPS_THREADS (num_CPUs())
37 #define NUM_REDUCTION_WORKING_THREADS (num_CPUs())
39 #define IGNORE_BITFLIP_THRESHOLD 0.99 // ignore bitflip arrays which have nearly only valid states
41 #define STATE_FILES_DIRECTORY "hardnested/tables/"
42 #define STATE_FILE_TEMPLATE "bitflip_%d_%03" PRIx16 "_states.bin"
44 #define DEBUG_KEY_ELIMINATION
45 // #define DEBUG_REDUCTION
47 static uint16_t sums
[NUM_SUMS
] = {0, 32, 56, 64, 80, 96, 104, 112, 120, 128, 136, 144, 152, 160, 176, 192, 200, 224, 256}; // possible sum property values
49 #define NUM_PART_SUMS 9 // number of possible partial sum property values
56 static uint32_t num_acquired_nonces
= 0;
57 static uint64_t start_time
= 0;
58 static uint16_t effective_bitflip
[2][0x400];
59 static uint16_t num_effective_bitflips
[2] = {0, 0};
60 static uint16_t all_effective_bitflip
[0x400];
61 static uint16_t num_all_effective_bitflips
= 0;
62 static uint16_t num_1st_byte_effective_bitflips
= 0;
63 #define CHECK_1ST_BYTES 0x01
64 #define CHECK_2ND_BYTES 0x02
65 static uint8_t hardnested_stage
= CHECK_1ST_BYTES
;
66 static uint64_t known_target_key
;
67 static uint32_t test_state
[2] = {0,0};
68 static float brute_force_per_second
;
71 static void get_SIMD_instruction_set(char* instruction_set
) {
72 if (__builtin_cpu_supports("avx512f")) strcpy(instruction_set
, "AVX512F");
73 else if (__builtin_cpu_supports("avx2")) strcpy(instruction_set
, "AVX2");
74 else if (__builtin_cpu_supports("avx")) strcpy(instruction_set
, "AVX");
75 else if (__builtin_cpu_supports("sse2")) strcpy(instruction_set
, "SSE2");
76 else if (__builtin_cpu_supports("mmx")) strcpy(instruction_set
, "MMX");
77 else strcpy(instruction_set
, "unsupported");
81 static void print_progress_header(void) {
82 char progress_text
[80];
83 char instr_set
[12] = "";
84 get_SIMD_instruction_set(instr_set
);
85 sprintf(progress_text
, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set
);
87 PrintAndLog(" time | #nonces | Activity | expected to brute force");
88 PrintAndLog(" | | | #states | time ");
89 PrintAndLog("------------------------------------------------------------------------------------------------------");
90 PrintAndLog(" 0 | 0 | %-55s | |", progress_text
);
94 void hardnested_print_progress(uint32_t nonces
, char *activity
, float brute_force
, uint64_t min_diff_print_time
) {
95 static uint64_t last_print_time
= 0;
96 if (msclock() - last_print_time
> min_diff_print_time
) {
97 last_print_time
= msclock();
98 uint64_t total_time
= msclock() - start_time
;
99 float brute_force_time
= brute_force
/ brute_force_per_second
;
100 char brute_force_time_string
[20];
101 if (brute_force_time
< 90) {
102 sprintf(brute_force_time_string
, "%2.0fs", brute_force_time
);
103 } else if (brute_force_time
< 60 * 90) {
104 sprintf(brute_force_time_string
, "%2.0fmin", brute_force_time
/60);
105 } else if (brute_force_time
< 60 * 60 * 36) {
106 sprintf(brute_force_time_string
, "%2.0fh", brute_force_time
/(60*60));
108 sprintf(brute_force_time_string
, "%2.0fd", brute_force_time
/(60*60*24));
110 PrintAndLog(" %7.0f | %7d | %-55s | %15.0f | %5s", (float)total_time
/1000.0, nonces
, activity
, brute_force
, brute_force_time_string
);
115 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
116 // bitarray functions
118 static inline void clear_bitarray24(uint32_t *bitarray
)
120 memset(bitarray
, 0x00, sizeof(uint32_t) * (1<<19));
124 static inline void set_bitarray24(uint32_t *bitarray
)
126 memset(bitarray
, 0xff, sizeof(uint32_t) * (1<<19));
130 static inline void set_bit24(uint32_t *bitarray
, uint32_t index
)
132 bitarray
[index
>>5] |= 0x80000000>>(index
&0x0000001f);
136 static inline void clear_bit24(uint32_t *bitarray
, uint32_t index
)
138 bitarray
[index
>>5] &= ~(0x80000000>>(index
&0x0000001f));
142 static inline uint32_t test_bit24(uint32_t *bitarray
, uint32_t index
)
144 return bitarray
[index
>>5] & (0x80000000>>(index
&0x0000001f));
148 static inline uint32_t next_state(uint32_t *bitarray
, uint32_t state
)
150 if (++state
== 1<<24) return 1<<24;
151 uint32_t index
= state
>> 5;
152 uint_fast8_t bit
= state
& 0x1f;
153 uint32_t line
= bitarray
[index
] << bit
;
154 while (bit
<= 0x1f) {
155 if (line
& 0x80000000) return state
;
161 while (bitarray
[index
] == 0x00000000 && state
< 1<<24) {
165 if (state
>= 1<<24) return 1<<24;
167 return state
+ __builtin_clz(bitarray
[index
]);
170 line
= bitarray
[index
];
171 while (bit
<= 0x1f) {
172 if (line
& 0x80000000) return state
;
182 static inline uint32_t next_not_state(uint32_t *bitarray
, uint32_t state
)
184 if (++state
== 1<<24) return 1<<24;
185 uint32_t index
= state
>> 5;
186 uint_fast8_t bit
= state
& 0x1f;
187 uint32_t line
= bitarray
[index
] << bit
;
188 while (bit
<= 0x1f) {
189 if ((line
& 0x80000000) == 0) return state
;
195 while (bitarray
[index
] == 0xffffffff && state
< 1<<24) {
199 if (state
>= 1<<24) return 1<<24;
201 return state
+ __builtin_clz(~bitarray
[index
]);
204 line
= bitarray
[index
];
205 while (bit
<= 0x1f) {
206 if ((line
& 0x80000000) == 0) return state
;
218 #define BITFLIP_2ND_BYTE 0x0200
221 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
222 // bitflip property bitarrays
224 static uint32_t *bitflip_bitarrays
[2][0x400];
225 static uint32_t count_bitflip_bitarrays
[2][0x400];
227 static int compare_count_bitflip_bitarrays(const void *b1
, const void *b2
)
229 uint64_t count1
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b1
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b1
];
230 uint64_t count2
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b2
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b2
];
231 return (count1
> count2
) - (count2
> count1
);
235 static void init_bitflip_bitarrays(void)
237 #if defined (DEBUG_REDUCTION)
241 char state_files_path
[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY
) + strlen(STATE_FILE_TEMPLATE
) + 1];
242 char state_file_name
[strlen(STATE_FILE_TEMPLATE
)];
244 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
245 num_effective_bitflips
[odd_even
] = 0;
246 for (uint16_t bitflip
= 0x001; bitflip
< 0x400; bitflip
++) {
247 bitflip_bitarrays
[odd_even
][bitflip
] = NULL
;
248 count_bitflip_bitarrays
[odd_even
][bitflip
] = 1<<24;
249 sprintf(state_file_name
, STATE_FILE_TEMPLATE
, odd_even
, bitflip
);
250 strcpy(state_files_path
, get_my_executable_directory());
251 strcat(state_files_path
, STATE_FILES_DIRECTORY
);
252 strcat(state_files_path
, state_file_name
);
253 FILE *statesfile
= fopen(state_files_path
, "rb");
254 if (statesfile
== NULL
) {
257 uint32_t *bitset
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
258 if (bitset
== NULL
) {
259 printf("Out of memory error in init_bitflip_statelists(). Aborting...\n");
263 size_t bytesread
= fread(bitset
, 1, sizeof(uint32_t) * (1<<19), statesfile
);
264 if (bytesread
!= sizeof(uint32_t) * (1<<19)) {
265 printf("File read error with %s. Aborting...", state_file_name
);
267 free_bitarray(bitset
);
271 uint32_t count
= count_states(bitset
);
272 if ((float)count
/(1<<24) < IGNORE_BITFLIP_THRESHOLD
) {
273 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]++] = bitflip
;
274 bitflip_bitarrays
[odd_even
][bitflip
] = bitset
;
275 count_bitflip_bitarrays
[odd_even
][bitflip
] = count
;
276 #if defined (DEBUG_REDUCTION)
277 printf("(%03" PRIx16
" %s:%5.1f%%) ", bitflip
, odd_even
?"odd ":"even", (float)count
/(1<<24)*100.0);
285 free_bitarray(bitset
);
289 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]] = 0x400; // EndOfList marker
294 num_all_effective_bitflips
= 0;
295 num_1st_byte_effective_bitflips
= 0;
296 while (i
< num_effective_bitflips
[EVEN_STATE
] || j
< num_effective_bitflips
[ODD_STATE
]) {
297 if (effective_bitflip
[EVEN_STATE
][i
] < effective_bitflip
[ODD_STATE
][j
]) {
298 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
];
300 } else if (effective_bitflip
[EVEN_STATE
][i
] > effective_bitflip
[ODD_STATE
][j
]) {
301 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[ODD_STATE
][j
];
304 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
];
307 if (!(all_effective_bitflip
[num_all_effective_bitflips
-1] & BITFLIP_2ND_BYTE
)) {
308 num_1st_byte_effective_bitflips
= num_all_effective_bitflips
;
311 qsort(all_effective_bitflip
, num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
);
312 #if defined (DEBUG_REDUCTION)
313 printf("\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips
);
314 for(uint16_t i
= 0; i
< num_1st_byte_effective_bitflips
; i
++) {
315 printf("%03x ", all_effective_bitflip
[i
]);
318 qsort(all_effective_bitflip
+num_1st_byte_effective_bitflips
, num_all_effective_bitflips
- num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
);
319 #if defined (DEBUG_REDUCTION)
320 printf("\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips
- num_1st_byte_effective_bitflips
);
321 for(uint16_t i
= num_1st_byte_effective_bitflips
; i
< num_all_effective_bitflips
; i
++) {
322 printf("%03x ", all_effective_bitflip
[i
]);
325 char progress_text
[80];
326 sprintf(progress_text
, "Using %d precalculated bitflip state tables", num_all_effective_bitflips
);
327 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
331 static void free_bitflip_bitarrays(void)
333 for (int16_t bitflip
= 0x3ff; bitflip
> 0x000; bitflip
--) {
334 free_bitarray(bitflip_bitarrays
[ODD_STATE
][bitflip
]);
336 for (int16_t bitflip
= 0x3ff; bitflip
> 0x000; bitflip
--) {
337 free_bitarray(bitflip_bitarrays
[EVEN_STATE
][bitflip
]);
342 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
343 // sum property bitarrays
345 static uint32_t *part_sum_a0_bitarrays
[2][NUM_PART_SUMS
];
346 static uint32_t *part_sum_a8_bitarrays
[2][NUM_PART_SUMS
];
347 static uint32_t *sum_a0_bitarrays
[2][NUM_SUMS
];
349 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
352 for (uint16_t j
= 0; j
< 16; j
++) {
354 uint16_t part_sum
= 0;
355 if (odd_even
== ODD_STATE
) {
356 for (uint16_t i
= 0; i
< 5; i
++) {
357 part_sum
^= filter(st
);
358 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
360 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
362 for (uint16_t i
= 0; i
< 4; i
++) {
363 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
364 part_sum
^= filter(st
);
373 static void init_part_sum_bitarrays(void)
375 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
376 for (uint16_t part_sum_a0
= 0; part_sum_a0
< NUM_PART_SUMS
; part_sum_a0
++) {
377 part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
378 if (part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] == NULL
) {
379 printf("Out of memory error in init_part_suma0_statelists(). Aborting...\n");
382 clear_bitarray24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
]);
385 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
386 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a0);
387 for (uint32_t state
= 0; state
< (1<<20); state
++) {
388 uint16_t part_sum_a0
= PartialSumProperty(state
, odd_even
) / 2;
389 for (uint16_t low_bits
= 0; low_bits
< 1<<4; low_bits
++) {
390 set_bit24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], state
<<4 | low_bits
);
395 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
396 for (uint16_t part_sum_a8
= 0; part_sum_a8
< NUM_PART_SUMS
; part_sum_a8
++) {
397 part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
398 if (part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] == NULL
) {
399 printf("Out of memory error in init_part_suma8_statelists(). Aborting...\n");
402 clear_bitarray24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]);
405 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
406 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a8);
407 for (uint32_t state
= 0; state
< (1<<20); state
++) {
408 uint16_t part_sum_a8
= PartialSumProperty(state
, odd_even
) / 2;
409 for (uint16_t high_bits
= 0; high_bits
< 1<<4; high_bits
++) {
410 set_bit24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
], state
| high_bits
<<20);
417 static void free_part_sum_bitarrays(void)
419 for (int16_t part_sum_a8
= (NUM_PART_SUMS
-1); part_sum_a8
>= 0; part_sum_a8
--) {
420 free_bitarray(part_sum_a8_bitarrays
[ODD_STATE
][part_sum_a8
]);
422 for (int16_t part_sum_a8
= (NUM_PART_SUMS
-1); part_sum_a8
>= 0; part_sum_a8
--) {
423 free_bitarray(part_sum_a8_bitarrays
[EVEN_STATE
][part_sum_a8
]);
425 for (int16_t part_sum_a0
= (NUM_PART_SUMS
-1); part_sum_a0
>= 0; part_sum_a0
--) {
426 free_bitarray(part_sum_a0_bitarrays
[ODD_STATE
][part_sum_a0
]);
428 for (int16_t part_sum_a0
= (NUM_PART_SUMS
-1); part_sum_a0
>= 0; part_sum_a0
--) {
429 free_bitarray(part_sum_a0_bitarrays
[EVEN_STATE
][part_sum_a0
]);
434 static void init_sum_bitarrays(void)
436 for (uint16_t sum_a0
= 0; sum_a0
< NUM_SUMS
; sum_a0
++) {
437 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
438 sum_a0_bitarrays
[odd_even
][sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
439 if (sum_a0_bitarrays
[odd_even
][sum_a0
] == NULL
) {
440 printf("Out of memory error in init_sum_bitarrays(). Aborting...\n");
443 clear_bitarray24(sum_a0_bitarrays
[odd_even
][sum_a0
]);
446 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
447 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
448 uint16_t sum_a0
= 2*p
*(16-2*q
) + (16-2*p
)*2*q
;
449 uint16_t sum_a0_idx
= 0;
450 while (sums
[sum_a0_idx
] != sum_a0
) sum_a0_idx
++;
451 bitarray_OR(sum_a0_bitarrays
[EVEN_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[EVEN_STATE
][q
]);
452 bitarray_OR(sum_a0_bitarrays
[ODD_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[ODD_STATE
][p
]);
455 // for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) {
456 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
457 // uint32_t count = count_states(sum_a0_bitarrays[odd_even][sum_a0]);
458 // printf("sum_a0_bitarray[%s][%d] has %d states (%5.2f%%)\n", odd_even==EVEN_STATE?"even":"odd ", sums[sum_a0], count, (float)count/(1<<24)*100.0);
464 static void free_sum_bitarrays(void)
466 for (int8_t sum_a0
= NUM_SUMS
-1; sum_a0
>= 0; sum_a0
--) {
467 free_bitarray(sum_a0_bitarrays
[ODD_STATE
][sum_a0
]);
468 free_bitarray(sum_a0_bitarrays
[EVEN_STATE
][sum_a0
]);
473 #ifdef DEBUG_KEY_ELIMINATION
474 char failstr
[250] = "";
477 static const float p_K0
[NUM_SUMS
] = { // the probability that a random nonce has a Sum Property K
478 0.0290, 0.0083, 0.0006, 0.0339, 0.0048, 0.0934, 0.0119, 0.0489, 0.0602, 0.4180, 0.0602, 0.0489, 0.0119, 0.0934, 0.0048, 0.0339, 0.0006, 0.0083, 0.0290
481 static float my_p_K
[NUM_SUMS
];
483 static const float *p_K
;
485 static uint32_t cuid
;
486 static noncelist_t nonces
[256];
487 static uint8_t best_first_bytes
[256];
488 static uint64_t maximum_states
= 0;
489 static uint8_t best_first_byte_smallest_bitarray
= 0;
490 static uint16_t first_byte_Sum
= 0;
491 static uint16_t first_byte_num
= 0;
492 static bool write_stats
= false;
493 static FILE *fstats
= NULL
;
494 static uint32_t *all_bitflips_bitarray
[2];
495 static uint32_t num_all_bitflips_bitarray
[2];
496 static bool all_bitflips_bitarray_dirty
[2];
497 static uint64_t last_sample_clock
= 0;
498 static uint64_t sample_period
= 0;
499 static uint64_t num_keys_tested
= 0;
500 static statelist_t
*candidates
= NULL
;
503 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
505 uint8_t first_byte
= nonce_enc
>> 24;
506 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
507 noncelistentry_t
*p2
= NULL
;
509 if (p1
== NULL
) { // first nonce with this 1st byte
511 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
514 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
519 if (p1
== NULL
) { // need to add at the end of the list
520 if (p2
== NULL
) { // list is empty yet. Add first entry.
521 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
522 } else { // add new entry at end of existing list.
523 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
525 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
526 if (p2
== NULL
) { // need to insert at start of list
527 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
529 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
531 } else { // we have seen this 2nd byte before. Nothing to add or insert.
535 // add or insert new data
537 p2
->nonce_enc
= nonce_enc
;
538 p2
->par_enc
= par_enc
;
540 nonces
[first_byte
].num
++;
541 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
542 nonces
[first_byte
].sum_a8_guess_dirty
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
543 return (1); // new nonce added
547 static void init_nonce_memory(void)
549 for (uint16_t i
= 0; i
< 256; i
++) {
552 nonces
[i
].first
= NULL
;
553 for (uint16_t j
= 0; j
< NUM_SUMS
; j
++) {
554 nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
= j
;
555 nonces
[i
].sum_a8_guess
[j
].prob
= 0.0;
557 nonces
[i
].sum_a8_guess_dirty
= false;
558 for (uint16_t bitflip
= 0x000; bitflip
< 0x400; bitflip
++) {
559 nonces
[i
].BitFlips
[bitflip
] = 0;
561 nonces
[i
].states_bitarray
[EVEN_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
562 if (nonces
[i
].states_bitarray
[EVEN_STATE
] == NULL
) {
563 printf("Out of memory error in init_nonce_memory(). Aborting...\n");
566 set_bitarray24(nonces
[i
].states_bitarray
[EVEN_STATE
]);
567 nonces
[i
].num_states_bitarray
[EVEN_STATE
] = 1 << 24;
568 nonces
[i
].states_bitarray
[ODD_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
569 if (nonces
[i
].states_bitarray
[ODD_STATE
] == NULL
) {
570 printf("Out of memory error in init_nonce_memory(). Aborting...\n");
573 set_bitarray24(nonces
[i
].states_bitarray
[ODD_STATE
]);
574 nonces
[i
].num_states_bitarray
[ODD_STATE
] = 1 << 24;
575 nonces
[i
].all_bitflips_dirty
[EVEN_STATE
] = false;
576 nonces
[i
].all_bitflips_dirty
[ODD_STATE
] = false;
583 static void free_nonce_list(noncelistentry_t
*p
)
588 free_nonce_list(p
->next
);
594 static void free_nonces_memory(void)
596 for (uint16_t i
= 0; i
< 256; i
++) {
597 free_nonce_list(nonces
[i
].first
);
599 for (int i
= 255; i
>= 0; i
--) {
600 free_bitarray(nonces
[i
].states_bitarray
[ODD_STATE
]);
601 free_bitarray(nonces
[i
].states_bitarray
[EVEN_STATE
]);
606 // static double p_hypergeometric_cache[257][NUM_SUMS][257];
608 // #define CACHE_INVALID -1.0
609 // static void init_p_hypergeometric_cache(void)
611 // for (uint16_t n = 0; n <= 256; n++) {
612 // for (uint16_t i_K = 0; i_K < NUM_SUMS; i_K++) {
613 // for (uint16_t k = 0; k <= 256; k++) {
614 // p_hypergeometric_cache[n][i_K][k] = CACHE_INVALID;
621 static double p_hypergeometric(uint16_t i_K
, uint16_t n
, uint16_t k
)
623 // for efficient computation we are using the recursive definition
625 // P(X=k) = P(X=k-1) * --------------------
628 // (N-K)*(N-K-1)*...*(N-K-n+1)
629 // P(X=0) = -----------------------------
630 // N*(N-1)*...*(N-n+1)
633 uint16_t const N
= 256;
634 uint16_t K
= sums
[i_K
];
636 // if (p_hypergeometric_cache[n][i_K][k] != CACHE_INVALID) {
637 // return p_hypergeometric_cache[n][i_K][k];
640 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
642 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
643 double log_result
= 0.0;
644 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
645 log_result
+= log(i
);
647 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
648 log_result
-= log(i
);
650 // p_hypergeometric_cache[n][i_K][k] = exp(log_result);
651 return exp(log_result
);
653 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
654 double log_result
= 0.0;
655 for (int16_t i
= k
+1; i
<= n
; i
++) {
656 log_result
+= log(i
);
658 for (int16_t i
= K
+1; i
<= N
; i
++) {
659 log_result
-= log(i
);
661 // p_hypergeometric_cache[n][i_K][k] = exp(log_result);
662 return exp(log_result
);
663 } else { // recursion
664 return (p_hypergeometric(i_K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
670 static float sum_probability(uint16_t i_K
, uint16_t n
, uint16_t k
)
672 if (k
> sums
[i_K
]) return 0.0;
674 double p_T_is_k_when_S_is_K
= p_hypergeometric(i_K
, n
, k
);
675 double p_S_is_K
= p_K
[i_K
];
677 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
678 p_T_is_k
+= p_K
[i
] * p_hypergeometric(i
, n
, k
);
680 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
684 static uint32_t part_sum_count
[2][NUM_PART_SUMS
][NUM_PART_SUMS
];
686 static void init_allbitflips_array(void)
688 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
689 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
690 if (bitset
== NULL
) {
691 printf("Out of memory in init_allbitflips_array(). Aborting...");
694 set_bitarray24(bitset
);
695 all_bitflips_bitarray_dirty
[odd_even
] = false;
696 num_all_bitflips_bitarray
[odd_even
] = 1<<24;
701 static void update_allbitflips_array(void)
703 if (hardnested_stage
& CHECK_2ND_BYTES
) {
704 for (uint16_t i
= 0; i
< 256; i
++) {
705 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
706 if (nonces
[i
].all_bitflips_dirty
[odd_even
]) {
707 uint32_t old_count
= num_all_bitflips_bitarray
[odd_even
];
708 num_all_bitflips_bitarray
[odd_even
] = count_bitarray_low20_AND(all_bitflips_bitarray
[odd_even
], nonces
[i
].states_bitarray
[odd_even
]);
709 nonces
[i
].all_bitflips_dirty
[odd_even
] = false;
710 if (num_all_bitflips_bitarray
[odd_even
] != old_count
) {
711 all_bitflips_bitarray_dirty
[odd_even
] = true;
720 static uint32_t estimated_num_states_part_sum_coarse(uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)
722 return part_sum_count
[odd_even
][part_sum_a0_idx
][part_sum_a8_idx
];
726 static uint32_t estimated_num_states_part_sum(uint8_t first_byte
, uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)
728 if (odd_even
== ODD_STATE
) {
729 return count_bitarray_AND3(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],
730 part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],
731 nonces
[first_byte
].states_bitarray
[odd_even
]);
733 return count_bitarray_AND4(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],
734 part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],
735 nonces
[first_byte
].states_bitarray
[odd_even
],
736 nonces
[first_byte
^0x80].states_bitarray
[odd_even
]);
739 // estimate reduction by all_bitflips_match()
741 // float p_bitflip = (float)nonces[first_byte ^ 0x80].num_states_bitarray[ODD_STATE] / num_all_bitflips_bitarray[ODD_STATE];
742 // return (float)count * p_bitflip; //(p_bitflip - 0.25*p_bitflip*p_bitflip);
749 static uint64_t estimated_num_states(uint8_t first_byte
, uint16_t sum_a0
, uint16_t sum_a8
)
751 uint64_t num_states
= 0;
752 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
753 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
754 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
755 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
756 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
757 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
758 num_states
+= (uint64_t)estimated_num_states_part_sum(first_byte
, p
, r
, ODD_STATE
)
759 * estimated_num_states_part_sum(first_byte
, q
, s
, EVEN_STATE
);
770 static uint64_t estimated_num_states_coarse(uint16_t sum_a0
, uint16_t sum_a8
)
772 uint64_t num_states
= 0;
773 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
774 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
775 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
776 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
777 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
778 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
779 num_states
+= (uint64_t)estimated_num_states_part_sum_coarse(p
, r
, ODD_STATE
)
780 * estimated_num_states_part_sum_coarse(q
, s
, EVEN_STATE
);
791 static void update_p_K(void)
793 if (hardnested_stage
& CHECK_2ND_BYTES
) {
794 uint64_t total_count
= 0;
795 uint16_t sum_a0
= sums
[first_byte_Sum
];
796 for (uint8_t sum_a8_idx
= 0; sum_a8_idx
< NUM_SUMS
; sum_a8_idx
++) {
797 uint16_t sum_a8
= sums
[sum_a8_idx
];
798 total_count
+= estimated_num_states_coarse(sum_a0
, sum_a8
);
800 for (uint8_t sum_a8_idx
= 0; sum_a8_idx
< NUM_SUMS
; sum_a8_idx
++) {
801 uint16_t sum_a8
= sums
[sum_a8_idx
];
802 my_p_K
[sum_a8_idx
] = (float)estimated_num_states_coarse(sum_a0
, sum_a8
) / total_count
;
804 // printf("my_p_K = [");
805 // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) {
806 // printf("%7.4f ", my_p_K[sum_a8_idx]);
813 static void update_sum_bitarrays(odd_even_t odd_even
)
815 if (all_bitflips_bitarray_dirty
[odd_even
]) {
816 for (uint8_t part_sum
= 0; part_sum
< NUM_PART_SUMS
; part_sum
++) {
817 bitarray_AND(part_sum_a0_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]);
818 bitarray_AND(part_sum_a8_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]);
820 for (uint16_t i
= 0; i
< 256; i
++) {
821 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], all_bitflips_bitarray
[odd_even
]);
823 for (uint8_t part_sum_a0
= 0; part_sum_a0
< NUM_PART_SUMS
; part_sum_a0
++) {
824 for (uint8_t part_sum_a8
= 0; part_sum_a8
< NUM_PART_SUMS
; part_sum_a8
++) {
825 part_sum_count
[odd_even
][part_sum_a0
][part_sum_a8
]
826 += count_bitarray_AND2(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]);
829 all_bitflips_bitarray_dirty
[odd_even
] = false;
834 static int compare_expected_num_brute_force(const void *b1
, const void *b2
)
836 uint8_t index1
= *(uint8_t *)b1
;
837 uint8_t index2
= *(uint8_t *)b2
;
838 float score1
= nonces
[index1
].expected_num_brute_force
;
839 float score2
= nonces
[index2
].expected_num_brute_force
;
840 return (score1
> score2
) - (score1
< score2
);
844 static int compare_sum_a8_guess(const void *b1
, const void *b2
)
846 float prob1
= ((guess_sum_a8_t
*)b1
)->prob
;
847 float prob2
= ((guess_sum_a8_t
*)b2
)->prob
;
848 return (prob1
< prob2
) - (prob1
> prob2
);
853 static float check_smallest_bitflip_bitarrays(void)
855 uint32_t num_odd
, num_even
;
856 uint64_t smallest
= 1LL << 48;
857 // initialize best_first_bytes, do a rough estimation on remaining states
858 for (uint16_t i
= 0; i
< 256; i
++) {
859 num_odd
= nonces
[i
].num_states_bitarray
[ODD_STATE
];
860 num_even
= nonces
[i
].num_states_bitarray
[EVEN_STATE
]; // * (float)nonces[i^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
861 if ((uint64_t)num_odd
* num_even
< smallest
) {
862 smallest
= (uint64_t)num_odd
* num_even
;
863 best_first_byte_smallest_bitarray
= i
;
867 #if defined (DEBUG_REDUCTION)
868 num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
869 num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
]; // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
870 printf("0x%02x: %8d * %8d = %12" PRIu64
" (2^%1.1f)\n", best_first_byte_smallest_bitarray
, num_odd
, num_even
, (uint64_t)num_odd
* num_even
, log((uint64_t)num_odd
* num_even
)/log(2.0));
872 return (float)smallest
/2.0;
876 static void update_expected_brute_force(uint8_t best_byte
) {
878 float total_prob
= 0.0;
879 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
880 total_prob
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
;
882 // linear adjust probabilities to result in total_prob = 1.0;
883 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
884 nonces
[best_byte
].sum_a8_guess
[i
].prob
/= total_prob
;
886 float prob_all_failed
= 1.0;
887 nonces
[best_byte
].expected_num_brute_force
= 0.0;
888 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
889 nonces
[best_byte
].expected_num_brute_force
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states
/ 2.0;
890 prob_all_failed
-= nonces
[best_byte
].sum_a8_guess
[i
].prob
;
891 nonces
[best_byte
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states
/ 2.0;
897 static float sort_best_first_bytes(void)
900 // initialize best_first_bytes, do a rough estimation on remaining states for each Sum_a8 property
901 // and the expected number of states to brute force
902 for (uint16_t i
= 0; i
< 256; i
++) {
903 best_first_bytes
[i
] = i
;
904 float prob_all_failed
= 1.0;
905 nonces
[i
].expected_num_brute_force
= 0.0;
906 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
907 nonces
[i
].sum_a8_guess
[j
].num_states
= estimated_num_states_coarse(sums
[first_byte_Sum
], sums
[nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
]);
908 nonces
[i
].expected_num_brute_force
+= nonces
[i
].sum_a8_guess
[j
].prob
* (float)nonces
[i
].sum_a8_guess
[j
].num_states
/ 2.0;
909 prob_all_failed
-= nonces
[i
].sum_a8_guess
[j
].prob
;
910 nonces
[i
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[i
].sum_a8_guess
[j
].num_states
/ 2.0;
914 // sort based on expected number of states to brute force
915 qsort(best_first_bytes
, 256, 1, compare_expected_num_brute_force
);
917 // printf("refine estimations: ");
918 #define NUM_REFINES 1
919 // refine scores for the best:
920 for (uint16_t i
= 0; i
< NUM_REFINES
; i
++) {
921 // printf("%d...", i);
922 uint16_t first_byte
= best_first_bytes
[i
];
923 for (uint8_t j
= 0; j
< NUM_SUMS
&& nonces
[first_byte
].sum_a8_guess
[j
].prob
> 0.05; j
++) {
924 nonces
[first_byte
].sum_a8_guess
[j
].num_states
= estimated_num_states(first_byte
, sums
[first_byte_Sum
], sums
[nonces
[first_byte
].sum_a8_guess
[j
].sum_a8_idx
]);
926 // while (nonces[first_byte].sum_a8_guess[0].num_states == 0
927 // || nonces[first_byte].sum_a8_guess[1].num_states == 0
928 // || nonces[first_byte].sum_a8_guess[2].num_states == 0) {
929 // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) {
930 // nonces[first_byte].sum_a8_guess[0].prob = 0.0;
931 // printf("(0x%02x,%d)", first_byte, 0);
933 // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) {
934 // nonces[first_byte].sum_a8_guess[1].prob = 0.0;
935 // printf("(0x%02x,%d)", first_byte, 1);
937 // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) {
938 // nonces[first_byte].sum_a8_guess[2].prob = 0.0;
939 // printf("(0x%02x,%d)", first_byte, 2);
942 // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess);
943 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
944 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
947 // float fix_probs = 0.0;
948 // for (uint8_t j = 0; j < NUM_SUMS; j++) {
949 // fix_probs += nonces[first_byte].sum_a8_guess[j].prob;
951 // for (uint8_t j = 0; j < NUM_SUMS; j++) {
952 // nonces[first_byte].sum_a8_guess[j].prob /= fix_probs;
954 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
955 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
957 float prob_all_failed
= 1.0;
958 nonces
[first_byte
].expected_num_brute_force
= 0.0;
959 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
960 nonces
[first_byte
].expected_num_brute_force
+= nonces
[first_byte
].sum_a8_guess
[j
].prob
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states
/ 2.0;
961 prob_all_failed
-= nonces
[first_byte
].sum_a8_guess
[j
].prob
;
962 nonces
[first_byte
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states
/ 2.0;
966 // copy best byte to front:
967 float least_expected_brute_force
= (1LL << 48);
968 uint8_t best_byte
= 0;
969 for (uint16_t i
= 0; i
< 10; i
++) {
970 uint16_t first_byte
= best_first_bytes
[i
];
971 if (nonces
[first_byte
].expected_num_brute_force
< least_expected_brute_force
) {
972 least_expected_brute_force
= nonces
[first_byte
].expected_num_brute_force
;
976 if (best_byte
!= 0) {
977 // printf("0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]);
978 uint8_t tmp
= best_first_bytes
[0];
979 best_first_bytes
[0] = best_first_bytes
[best_byte
];
980 best_first_bytes
[best_byte
] = tmp
;
983 return nonces
[best_first_bytes
[0]].expected_num_brute_force
;
987 static float update_reduction_rate(float last
, bool init
)
990 static float queue
[QUEUE_LEN
];
992 for (uint16_t i
= 0; i
< QUEUE_LEN
-1; i
++) {
994 queue
[i
] = (float)(1LL << 48);
996 queue
[i
] = queue
[i
+1];
1000 queue
[QUEUE_LEN
-1] = (float)(1LL << 48);
1002 queue
[QUEUE_LEN
-1] = last
;
1005 // linear regression
1008 for (uint16_t i
= 0; i
< QUEUE_LEN
; i
++) {
1017 for (uint16_t i
= 0; i
< QUEUE_LEN
; i
++) {
1018 dev_xy
+= (i
- avg_x
)*(queue
[i
] - avg_y
);
1019 dev_x2
+= (i
- avg_x
)*(i
- avg_x
);
1022 float reduction_rate
= -1.0 * dev_xy
/ dev_x2
; // the negative slope of the linear regression
1024 #if defined (DEBUG_REDUCTION)
1025 printf("update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last
, reduction_rate
, brute_force_per_second
* (float)sample_period
/ 1000.0);
1027 return reduction_rate
;
1031 static bool shrink_key_space(float *brute_forces
)
1033 #if defined(DEBUG_REDUCTION)
1034 printf("shrink_key_space() with stage = 0x%02x\n", hardnested_stage
);
1036 float brute_forces1
= check_smallest_bitflip_bitarrays();
1037 float brute_forces2
= (float)(1LL << 47);
1038 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1039 brute_forces2
= sort_best_first_bytes();
1041 *brute_forces
= MIN(brute_forces1
, brute_forces2
);
1042 float reduction_rate
= update_reduction_rate(*brute_forces
, false);
1043 return ((hardnested_stage
& CHECK_2ND_BYTES
)
1044 && reduction_rate
>= 0.0 && reduction_rate
< brute_force_per_second
* sample_period
/ 1000.0);
1048 static void estimate_sum_a8(void)
1050 if (first_byte_num
== 256) {
1051 for (uint16_t i
= 0; i
< 256; i
++) {
1052 if (nonces
[i
].sum_a8_guess_dirty
) {
1053 for (uint16_t j
= 0; j
< NUM_SUMS
; j
++ ) {
1054 uint16_t sum_a8_idx
= nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
;
1055 nonces
[i
].sum_a8_guess
[j
].prob
= sum_probability(sum_a8_idx
, nonces
[i
].num
, nonces
[i
].Sum
);
1057 qsort(nonces
[i
].sum_a8_guess
, NUM_SUMS
, sizeof(guess_sum_a8_t
), compare_sum_a8_guess
);
1058 nonces
[i
].sum_a8_guess_dirty
= false;
1065 static int read_nonce_file(void)
1067 FILE *fnonces
= NULL
;
1071 uint8_t read_buf
[9];
1072 uint32_t nt_enc1
, nt_enc2
;
1075 num_acquired_nonces
= 0;
1076 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
1077 PrintAndLog("Could not open file nonces.bin");
1081 hardnested_print_progress(0, "Reading nonces from file nonces.bin...", (float)(1LL<<47), 0);
1082 bytes_read
= fread(read_buf
, 1, 6, fnonces
);
1083 if (bytes_read
!= 6) {
1084 PrintAndLog("File reading error.");
1088 cuid
= bytes_to_num(read_buf
, 4);
1089 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
1090 trgKeyType
= bytes_to_num(read_buf
+5, 1);
1092 bytes_read
= fread(read_buf
, 1, 9, fnonces
);
1093 while (bytes_read
== 9) {
1094 nt_enc1
= bytes_to_num(read_buf
, 4);
1095 nt_enc2
= bytes_to_num(read_buf
+4, 4);
1096 par_enc
= bytes_to_num(read_buf
+8, 1);
1097 add_nonce(nt_enc1
, par_enc
>> 4);
1098 add_nonce(nt_enc2
, par_enc
& 0x0f);
1099 num_acquired_nonces
+= 2;
1100 bytes_read
= fread(read_buf
, 1, 9, fnonces
);
1104 char progress_string
[80];
1105 sprintf(progress_string
, "Read %d nonces from file. cuid=%08x", num_acquired_nonces
, cuid
);
1106 hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0);
1107 sprintf(progress_string
, "Target Block=%d, Keytype=%c", trgBlockNo
, trgKeyType
==0?'A':'B');
1108 hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0);
1110 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1111 if (first_byte_Sum
== sums
[i
]) {
1121 noncelistentry_t
*SearchFor2ndByte(uint8_t b1
, uint8_t b2
)
1123 noncelistentry_t
*p
= nonces
[b1
].first
;
1125 if ((p
->nonce_enc
>> 16 & 0xff) == b2
) {
1134 static bool timeout(void)
1136 return (msclock() > last_sample_clock
+ sample_period
);
1140 static void *check_for_BitFlipProperties_thread(void *args
)
1142 uint8_t first_byte
= ((uint8_t *)args
)[0];
1143 uint8_t last_byte
= ((uint8_t *)args
)[1];
1144 uint8_t time_budget
= ((uint8_t *)args
)[2];
1146 if (hardnested_stage
& CHECK_1ST_BYTES
) {
1147 // for (uint16_t bitflip = 0x001; bitflip < 0x200; bitflip++) {
1148 for (uint16_t bitflip_idx
= 0; bitflip_idx
< num_1st_byte_effective_bitflips
; bitflip_idx
++) {
1149 uint16_t bitflip
= all_effective_bitflip
[bitflip_idx
];
1150 if (time_budget
& timeout()) {
1151 #if defined (DEBUG_REDUCTION)
1152 printf("break at bitflip_idx %d...", bitflip_idx
);
1156 for (uint16_t i
= first_byte
; i
<= last_byte
; i
++) {
1157 if (nonces
[i
].BitFlips
[bitflip
] == 0 && nonces
[i
].BitFlips
[bitflip
^ 0x100] == 0
1158 && nonces
[i
].first
!= NULL
&& nonces
[i
^(bitflip
&0xff)].first
!= NULL
) {
1159 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
1160 uint8_t parity2
= (nonces
[i
^(bitflip
&0xff)].first
->par_enc
) >> 3; // parity of nonce with bits flipped
1161 if ((parity1
== parity2
&& !(bitflip
& 0x100)) // bitflip
1162 || (parity1
!= parity2
&& (bitflip
& 0x100))) { // not bitflip
1163 nonces
[i
].BitFlips
[bitflip
] = 1;
1164 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1165 if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) {
1166 uint32_t old_count
= nonces
[i
].num_states_bitarray
[odd_even
];
1167 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]);
1168 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) {
1169 nonces
[i
].all_bitflips_dirty
[odd_even
] = true;
1171 // printf("bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]);
1177 ((uint8_t *)args
)[1] = num_1st_byte_effective_bitflips
- bitflip_idx
- 1; // bitflips still to go in stage 1
1181 ((uint8_t *)args
)[1] = 0; // stage 1 definitely completed
1183 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1184 for (uint16_t bitflip_idx
= num_1st_byte_effective_bitflips
; bitflip_idx
< num_all_effective_bitflips
; bitflip_idx
++) {
1185 uint16_t bitflip
= all_effective_bitflip
[bitflip_idx
];
1186 if (time_budget
& timeout()) {
1187 #if defined (DEBUG_REDUCTION)
1188 printf("break at bitflip_idx %d...", bitflip_idx
);
1192 for (uint16_t i
= first_byte
; i
<= last_byte
; i
++) {
1193 // Check for Bit Flip Property of 2nd bytes
1194 if (nonces
[i
].BitFlips
[bitflip
] == 0) {
1195 for (uint16_t j
= 0; j
< 256; j
++) { // for each 2nd Byte
1196 noncelistentry_t
*byte1
= SearchFor2ndByte(i
, j
);
1197 noncelistentry_t
*byte2
= SearchFor2ndByte(i
, j
^(bitflip
&0xff));
1198 if (byte1
!= NULL
&& byte2
!= NULL
) {
1199 uint8_t parity1
= byte1
->par_enc
>> 2 & 0x01; // parity of 2nd byte
1200 uint8_t parity2
= byte2
->par_enc
>> 2 & 0x01; // parity of 2nd byte with bits flipped
1201 if ((parity1
== parity2
&& !(bitflip
&0x100)) // bitflip
1202 || (parity1
!= parity2
&& (bitflip
&0x100))) { // not bitflip
1203 nonces
[i
].BitFlips
[bitflip
] = 1;
1204 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1205 if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) {
1206 uint32_t old_count
= nonces
[i
].num_states_bitarray
[odd_even
];
1207 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]);
1208 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) {
1209 nonces
[i
].all_bitflips_dirty
[odd_even
] = true;
1218 // printf("states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE]));
1219 // printf("states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE]));
1228 static void check_for_BitFlipProperties(bool time_budget
)
1230 // create and run worker threads
1231 pthread_t thread_id
[NUM_CHECK_BITFLIPS_THREADS
];
1233 uint8_t args
[NUM_CHECK_BITFLIPS_THREADS
][3];
1234 uint16_t bytes_per_thread
= (256 + (NUM_CHECK_BITFLIPS_THREADS
/2)) / NUM_CHECK_BITFLIPS_THREADS
;
1235 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1236 args
[i
][0] = i
* bytes_per_thread
;
1237 args
[i
][1] = MIN(args
[i
][0]+bytes_per_thread
-1, 255);
1238 args
[i
][2] = time_budget
;
1240 args
[NUM_CHECK_BITFLIPS_THREADS
-1][1] = MAX(args
[NUM_CHECK_BITFLIPS_THREADS
-1][1], 255);
1243 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1244 pthread_create(&thread_id
[i
], NULL
, check_for_BitFlipProperties_thread
, args
[i
]);
1247 // wait for threads to terminate:
1248 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1249 pthread_join(thread_id
[i
], NULL
);
1252 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1253 hardnested_stage
&= ~CHECK_1ST_BYTES
; // we are done with 1st stage, except...
1254 for (uint16_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1255 if (args
[i
][1] != 0) {
1256 hardnested_stage
|= CHECK_1ST_BYTES
; // ... when any of the threads didn't complete in time
1261 #if defined (DEBUG_REDUCTION)
1262 if (hardnested_stage
& CHECK_1ST_BYTES
) printf("stage 1 not completed yet\n");
1267 static void update_nonce_data(bool time_budget
)
1269 check_for_BitFlipProperties(time_budget
);
1270 update_allbitflips_array();
1271 update_sum_bitarrays(EVEN_STATE
);
1272 update_sum_bitarrays(ODD_STATE
);
1278 static void apply_sum_a0(void)
1280 uint32_t old_count
= num_all_bitflips_bitarray
[EVEN_STATE
];
1281 num_all_bitflips_bitarray
[EVEN_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[EVEN_STATE
], sum_a0_bitarrays
[EVEN_STATE
][first_byte_Sum
]);
1282 if (num_all_bitflips_bitarray
[EVEN_STATE
] != old_count
) {
1283 all_bitflips_bitarray_dirty
[EVEN_STATE
] = true;
1285 old_count
= num_all_bitflips_bitarray
[ODD_STATE
];
1286 num_all_bitflips_bitarray
[ODD_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[ODD_STATE
], sum_a0_bitarrays
[ODD_STATE
][first_byte_Sum
]);
1287 if (num_all_bitflips_bitarray
[ODD_STATE
] != old_count
) {
1288 all_bitflips_bitarray_dirty
[ODD_STATE
] = true;
1293 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
1295 struct Crypto1State sim_cs
= {0, 0};
1297 // init cryptostate with key:
1298 for(int8_t i
= 47; i
> 0; i
-= 2) {
1299 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
1300 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
1304 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
1305 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
1306 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
1307 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
1308 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
1309 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
1310 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
1311 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
1317 static void simulate_acquire_nonces()
1319 time_t time1
= time(NULL
);
1320 last_sample_clock
= 0;
1321 sample_period
= 1000; // for simulation
1322 hardnested_stage
= CHECK_1ST_BYTES
;
1323 bool acquisition_completed
= false;
1324 uint32_t total_num_nonces
= 0;
1326 bool reported_suma8
= false;
1328 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
1329 if (known_target_key
== -1) {
1330 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
1333 char progress_text
[80];
1334 sprintf(progress_text
, "Simulating key %012" PRIx64
", cuid %08" PRIx32
" ...", known_target_key
, cuid
);
1335 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
1336 fprintf(fstats
, "%012" PRIx64
";%" PRIx32
";", known_target_key
, cuid
);
1338 num_acquired_nonces
= 0;
1341 uint32_t nt_enc
= 0;
1342 uint8_t par_enc
= 0;
1344 for (uint16_t i
= 0; i
< 113; i
++) {
1345 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
1346 num_acquired_nonces
+= add_nonce(nt_enc
, par_enc
);
1350 last_sample_clock
= msclock();
1352 if (first_byte_num
== 256 ) {
1353 if (hardnested_stage
== CHECK_1ST_BYTES
) {
1354 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1355 if (first_byte_Sum
== sums
[i
]) {
1360 hardnested_stage
|= CHECK_2ND_BYTES
;
1363 update_nonce_data(true);
1364 acquisition_completed
= shrink_key_space(&brute_force
);
1365 if (!reported_suma8
) {
1366 char progress_string
[80];
1367 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]);
1368 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0);
1369 reported_suma8
= true;
1371 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1374 update_nonce_data(true);
1375 acquisition_completed
= shrink_key_space(&brute_force
);
1376 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1378 } while (!acquisition_completed
);
1380 time_t end_time
= time(NULL
);
1381 // PrintAndLog("Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)",
1382 // num_acquired_nonces,
1383 // difftime(end_time, time1),
1384 // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY
1387 fprintf(fstats
, "%" PRId32
";%" PRId32
";%1.0f;", total_num_nonces
, num_acquired_nonces
, difftime(end_time
,time1
));
1392 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
1394 last_sample_clock
= msclock();
1395 sample_period
= 2000; // initial rough estimate. Will be refined.
1396 bool initialize
= true;
1397 bool field_off
= false;
1398 hardnested_stage
= CHECK_1ST_BYTES
;
1399 bool acquisition_completed
= false;
1401 uint8_t write_buf
[9];
1402 uint32_t total_num_nonces
= 0;
1404 bool reported_suma8
= false;
1405 FILE *fnonces
= NULL
;
1408 num_acquired_nonces
= 0;
1410 clearCommandBuffer();
1414 flags
|= initialize
? 0x0001 : 0;
1415 flags
|= slow
? 0x0002 : 0;
1416 flags
|= field_off
? 0x0004 : 0;
1417 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
1418 memcpy(c
.d
.asBytes
, key
, 6);
1422 if (field_off
) break;
1425 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
1427 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
1430 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
1431 if (nonce_file_write
&& fnonces
== NULL
) {
1432 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
1433 PrintAndLog("Could not create file nonces.bin");
1436 hardnested_print_progress(0, "Writing acquired nonces to binary file nonces.bin", (float)(1LL<<47), 0);
1437 num_to_bytes(cuid
, 4, write_buf
);
1438 fwrite(write_buf
, 1, 4, fnonces
);
1439 fwrite(&trgBlockNo
, 1, 1, fnonces
);
1440 fwrite(&trgKeyType
, 1, 1, fnonces
);
1445 uint32_t nt_enc1
, nt_enc2
;
1447 uint16_t num_sampled_nonces
= resp
.arg
[2];
1448 uint8_t *bufp
= resp
.d
.asBytes
;
1449 for (uint16_t i
= 0; i
< num_sampled_nonces
; i
+=2) {
1450 nt_enc1
= bytes_to_num(bufp
, 4);
1451 nt_enc2
= bytes_to_num(bufp
+4, 4);
1452 par_enc
= bytes_to_num(bufp
+8, 1);
1454 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
1455 num_acquired_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
1456 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
1457 num_acquired_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
1459 if (nonce_file_write
) {
1460 fwrite(bufp
, 1, 9, fnonces
);
1464 total_num_nonces
+= num_sampled_nonces
;
1466 if (first_byte_num
== 256 ) {
1467 if (hardnested_stage
== CHECK_1ST_BYTES
) {
1468 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1469 if (first_byte_Sum
== sums
[i
]) {
1474 hardnested_stage
|= CHECK_2ND_BYTES
;
1477 update_nonce_data(true);
1478 acquisition_completed
= shrink_key_space(&brute_force
);
1479 if (!reported_suma8
) {
1480 char progress_string
[80];
1481 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]);
1482 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0);
1483 reported_suma8
= true;
1485 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1488 update_nonce_data(true);
1489 acquisition_completed
= shrink_key_space(&brute_force
);
1490 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1494 if (acquisition_completed
) {
1495 field_off
= true; // switch off field with next SendCommand and then finish
1499 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
1500 if (nonce_file_write
) {
1506 if (nonce_file_write
) {
1509 return resp
.arg
[0]; // error during nested_hard
1515 if (msclock() - last_sample_clock
< sample_period
) {
1516 sample_period
= msclock() - last_sample_clock
;
1518 last_sample_clock
= msclock();
1520 } while (!acquisition_completed
|| field_off
);
1522 if (nonce_file_write
) {
1526 // PrintAndLog("Sampled a total of %d nonces in %d seconds (%0.0f nonces/minute)",
1527 // total_num_nonces,
1528 // time(NULL)-time1,
1529 // (float)total_num_nonces*60.0/(time(NULL)-time1));
1535 static inline bool invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1537 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
1538 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
1539 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
1540 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
1541 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
1542 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
1547 static inline bool invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1549 uint_fast8_t j_bit_mask
= 0x01 << bit
;
1550 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
1551 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
1552 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
1553 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1558 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
1562 switch (num_common_bits
) {
1563 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1564 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1565 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1566 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1567 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1568 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1569 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1570 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1574 switch (num_common_bits
) {
1575 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1576 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1577 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1578 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1579 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1580 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1581 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1585 return true; // valid state
1589 static pthread_mutex_t statelist_cache_mutex
;
1590 static pthread_mutex_t book_of_work_mutex
;
1599 static struct sl_cache_entry
{
1602 work_status_t cache_status
;
1603 } sl_cache
[NUM_PART_SUMS
][NUM_PART_SUMS
][2];
1606 static void init_statelist_cache(void)
1608 pthread_mutex_lock(&statelist_cache_mutex
);
1609 for (uint16_t i
= 0; i
< NUM_PART_SUMS
; i
++) {
1610 for (uint16_t j
= 0; j
< NUM_PART_SUMS
; j
++) {
1611 for (uint16_t k
= 0; k
< 2; k
++) {
1612 sl_cache
[i
][j
][k
].sl
= NULL
;
1613 sl_cache
[i
][j
][k
].len
= 0;
1614 sl_cache
[i
][j
][k
].cache_status
= TO_BE_DONE
;
1618 pthread_mutex_unlock(&statelist_cache_mutex
);
1622 static void free_statelist_cache(void)
1624 pthread_mutex_lock(&statelist_cache_mutex
);
1625 for (uint16_t i
= 0; i
< NUM_PART_SUMS
; i
++) {
1626 for (uint16_t j
= 0; j
< NUM_PART_SUMS
; j
++) {
1627 for (uint16_t k
= 0; k
< 2; k
++) {
1628 free(sl_cache
[i
][j
][k
].sl
);
1632 pthread_mutex_unlock(&statelist_cache_mutex
);
1636 #ifdef DEBUG_KEY_ELIMINATION
1637 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
, bool quiet
)
1639 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)
1642 uint32_t *bitset
= nonces
[byte
].states_bitarray
[odd_even
];
1643 bool possible
= test_bit24(bitset
, state
);
1645 #ifdef DEBUG_KEY_ELIMINATION
1646 if (!quiet
&& known_target_key
!= -1 && state
== test_state
[odd_even
]) {
1647 printf("Initial state lists: %s test state eliminated by bitflip property.\n", odd_even
==EVEN_STATE
?"even":"odd");
1648 sprintf(failstr
, "Initial %s Byte Bitflip property", odd_even
==EVEN_STATE
?"even":"odd");
1658 static uint_fast8_t reverse(uint_fast8_t byte
)
1660 uint_fast8_t rev_byte
= 0;
1662 for (uint8_t i
= 0; i
< 8; i
++) {
1664 rev_byte
|= (byte
>> i
) & 0x01;
1671 static bool all_bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)
1673 uint32_t masks
[2][8] = {{0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe, 0x00ffffff},
1674 {0x00fffff0, 0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe} };
1676 for (uint16_t i
= 1; i
< 256; i
++) {
1677 uint_fast8_t bytes_diff
= reverse(i
); // start with most common bits
1678 uint_fast8_t byte2
= byte
^ bytes_diff
;
1679 uint_fast8_t num_common
= trailing_zeros(bytes_diff
);
1680 uint32_t mask
= masks
[odd_even
][num_common
];
1681 bool found_match
= false;
1682 for (uint8_t remaining_bits
= 0; remaining_bits
<= (~mask
& 0xff); remaining_bits
++) {
1683 if (remaining_bits_match(num_common
, bytes_diff
, state
, (state
& mask
) | remaining_bits
, odd_even
)) {
1684 #ifdef DEBUG_KEY_ELIMINATION
1685 if (bitflips_match(byte2
, (state
& mask
) | remaining_bits
, odd_even
, true)) {
1687 if (bitflips_match(byte2
, (state
& mask
) | remaining_bits
, odd_even
)) {
1695 #ifdef DEBUG_KEY_ELIMINATION
1696 if (known_target_key
!= -1 && state
== test_state
[odd_even
]) {
1697 printf("all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n",
1698 odd_even
==ODD_STATE
?"odd":"even",
1699 test_state
[odd_even
],
1700 byte
, byte2
, num_common
);
1701 if (failstr
[0] == '\0') {
1702 sprintf(failstr
, "Other 1st Byte %s, all_bitflips_match(), no match", odd_even
?"odd":"even");
1714 static void bitarray_to_list(uint8_t byte
, uint32_t *bitarray
, uint32_t *state_list
, uint32_t *len
, odd_even_t odd_even
)
1716 uint32_t *p
= state_list
;
1717 for (uint32_t state
= next_state(bitarray
, -1L); state
< (1<<24); state
= next_state(bitarray
, state
)) {
1718 if (all_bitflips_match(byte
, state
, odd_even
)) {
1722 // add End Of List marker
1724 *len
= p
- state_list
;
1728 static void add_cached_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1730 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl
;
1731 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len
;
1736 static void add_matching_states(statelist_t
*candidates
, uint8_t part_sum_a0
, uint8_t part_sum_a8
, odd_even_t odd_even
)
1738 uint32_t worstcase_size
= 1<<20;
1739 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1740 if (candidates
->states
[odd_even
] == NULL
) {
1741 PrintAndLog("Out of memory error in add_matching_states() - statelist.\n");
1744 uint32_t *candidates_bitarray
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
1745 if (candidates_bitarray
== NULL
) {
1746 PrintAndLog("Out of memory error in add_matching_states() - bitarray.\n");
1747 free(candidates
->states
[odd_even
]);
1751 uint32_t *bitarray_a0
= part_sum_a0_bitarrays
[odd_even
][part_sum_a0
/2];
1752 uint32_t *bitarray_a8
= part_sum_a8_bitarrays
[odd_even
][part_sum_a8
/2];
1753 uint32_t *bitarray_bitflips
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
];
1755 // for (uint32_t i = 0; i < (1<<19); i++) {
1756 // candidates_bitarray[i] = bitarray_a0[i] & bitarray_a8[i] & bitarray_bitflips[i];
1758 bitarray_AND4(candidates_bitarray
, bitarray_a0
, bitarray_a8
, bitarray_bitflips
);
1760 bitarray_to_list(best_first_bytes
[0], candidates_bitarray
, candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
);
1761 if (candidates
->len
[odd_even
] == 0) {
1762 free(candidates
->states
[odd_even
]);
1763 candidates
->states
[odd_even
] = NULL
;
1764 } else if (candidates
->len
[odd_even
] + 1 < worstcase_size
) {
1765 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1767 free_bitarray(candidates_bitarray
);
1770 pthread_mutex_lock(&statelist_cache_mutex
);
1771 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl
= candidates
->states
[odd_even
];
1772 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len
= candidates
->len
[odd_even
];
1773 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].cache_status
= COMPLETED
;
1774 pthread_mutex_unlock(&statelist_cache_mutex
);
1780 static statelist_t
*add_more_candidates(void)
1782 statelist_t
*new_candidates
= candidates
;
1783 if (candidates
== NULL
) {
1784 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1785 new_candidates
= candidates
;
1787 new_candidates
= candidates
;
1788 while (new_candidates
->next
!= NULL
) {
1789 new_candidates
= new_candidates
->next
;
1791 new_candidates
= new_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1793 new_candidates
->next
= NULL
;
1794 new_candidates
->len
[ODD_STATE
] = 0;
1795 new_candidates
->len
[EVEN_STATE
] = 0;
1796 new_candidates
->states
[ODD_STATE
] = NULL
;
1797 new_candidates
->states
[EVEN_STATE
] = NULL
;
1798 return new_candidates
;
1802 static void add_bitflip_candidates(uint8_t byte
)
1804 statelist_t
*candidates
= add_more_candidates();
1806 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1807 uint32_t worstcase_size
= nonces
[byte
].num_states_bitarray
[odd_even
] + 1;
1808 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1809 if (candidates
->states
[odd_even
] == NULL
) {
1810 PrintAndLog("Out of memory error in add_bitflip_candidates().\n");
1814 bitarray_to_list(byte
, nonces
[byte
].states_bitarray
[odd_even
], candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
);
1816 if (candidates
->len
[odd_even
] + 1 < worstcase_size
) {
1817 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1824 static bool TestIfKeyExists(uint64_t key
)
1826 struct Crypto1State
*pcs
;
1827 pcs
= crypto1_create(key
);
1828 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1830 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1831 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1834 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1835 bool found_odd
= false;
1836 bool found_even
= false;
1837 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1838 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1839 if (p_odd
!= NULL
&& p_even
!= NULL
) {
1840 while (*p_odd
!= 0xffffffff) {
1841 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1847 while (*p_even
!= 0xffffffff) {
1848 if ((*p_even
& 0x00ffffff) == state_even
) {
1853 count
+= (uint64_t)(p_odd
- p
->states
[ODD_STATE
]) * (uint64_t)(p_even
- p
->states
[EVEN_STATE
]);
1855 if (found_odd
&& found_even
) {
1856 num_keys_tested
+= count
;
1857 hardnested_print_progress(num_acquired_nonces
, "(Test: Key found)", 0.0, 0);
1858 crypto1_destroy(pcs
);
1863 num_keys_tested
+= count
;
1864 hardnested_print_progress(num_acquired_nonces
, "(Test: Key NOT found)", 0.0, 0);
1866 crypto1_destroy(pcs
);
1871 static work_status_t book_of_work
[NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
];
1874 static void init_book_of_work(void)
1876 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
1877 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
1878 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
1879 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
1880 book_of_work
[p
][q
][r
][s
] = TO_BE_DONE
;
1888 static void *generate_candidates_worker_thread(void *args
)
1890 uint16_t *sum_args
= (uint16_t *)args
;
1891 uint16_t sum_a0
= sums
[sum_args
[0]];
1892 uint16_t sum_a8
= sums
[sum_args
[1]];
1893 // uint16_t my_thread_number = sums[2];
1895 bool there_might_be_more_work
= true;
1897 there_might_be_more_work
= false;
1898 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
1899 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
1900 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
1901 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1902 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1903 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
1904 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
1905 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
1906 pthread_mutex_lock(&book_of_work_mutex
);
1907 if (book_of_work
[p
][q
][r
][s
] != TO_BE_DONE
) { // this has been done or is currently been done by another thread. Look for some other work.
1908 pthread_mutex_unlock(&book_of_work_mutex
);
1912 pthread_mutex_lock(&statelist_cache_mutex
);
1913 if (sl_cache
[p
][r
][ODD_STATE
].cache_status
== WORK_IN_PROGRESS
1914 || sl_cache
[q
][s
][EVEN_STATE
].cache_status
== WORK_IN_PROGRESS
) { // defer until not blocked by another thread.
1915 pthread_mutex_unlock(&statelist_cache_mutex
);
1916 pthread_mutex_unlock(&book_of_work_mutex
);
1917 there_might_be_more_work
= true;
1921 // we finally can do some work.
1922 book_of_work
[p
][q
][r
][s
] = WORK_IN_PROGRESS
;
1923 statelist_t
*current_candidates
= add_more_candidates();
1925 // Check for cached results and add them first
1926 bool odd_completed
= false;
1927 if (sl_cache
[p
][r
][ODD_STATE
].cache_status
== COMPLETED
) {
1928 add_cached_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
1929 odd_completed
= true;
1931 bool even_completed
= false;
1932 if (sl_cache
[q
][s
][EVEN_STATE
].cache_status
== COMPLETED
) {
1933 add_cached_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
1934 even_completed
= true;
1937 bool work_required
= true;
1939 // if there had been two cached results, there is no more work to do
1940 if (even_completed
&& odd_completed
) {
1941 work_required
= false;
1944 // if there had been one cached empty result, there is no need to calculate the other part:
1945 if (work_required
) {
1946 if (even_completed
&& !current_candidates
->len
[EVEN_STATE
]) {
1947 current_candidates
->len
[ODD_STATE
] = 0;
1948 current_candidates
->states
[ODD_STATE
] = NULL
;
1949 work_required
= false;
1951 if (odd_completed
&& !current_candidates
->len
[ODD_STATE
]) {
1952 current_candidates
->len
[EVEN_STATE
] = 0;
1953 current_candidates
->states
[EVEN_STATE
] = NULL
;
1954 work_required
= false;
1958 if (!work_required
) {
1959 pthread_mutex_unlock(&statelist_cache_mutex
);
1960 pthread_mutex_unlock(&book_of_work_mutex
);
1962 // we really need to calculate something
1963 if (even_completed
) { // we had one cache hit with non-zero even states
1964 // printf("Thread #%u: start working on odd states p=%2d, r=%2d...\n", my_thread_number, p, r);
1965 sl_cache
[p
][r
][ODD_STATE
].cache_status
= WORK_IN_PROGRESS
;
1966 pthread_mutex_unlock(&statelist_cache_mutex
);
1967 pthread_mutex_unlock(&book_of_work_mutex
);
1968 add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
1969 work_required
= false;
1970 } else if (odd_completed
) { // we had one cache hit with non-zero odd_states
1971 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
1972 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= WORK_IN_PROGRESS
;
1973 pthread_mutex_unlock(&statelist_cache_mutex
);
1974 pthread_mutex_unlock(&book_of_work_mutex
);
1975 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
1976 work_required
= false;
1980 if (work_required
) { // we had no cached result. Need to calculate both odd and even
1981 sl_cache
[p
][r
][ODD_STATE
].cache_status
= WORK_IN_PROGRESS
;
1982 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= WORK_IN_PROGRESS
;
1983 pthread_mutex_unlock(&statelist_cache_mutex
);
1984 pthread_mutex_unlock(&book_of_work_mutex
);
1986 add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
1987 if(current_candidates
->len
[ODD_STATE
]) {
1988 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
1989 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
1990 } else { // no need to calculate even states yet
1991 pthread_mutex_lock(&statelist_cache_mutex
);
1992 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= TO_BE_DONE
;
1993 pthread_mutex_unlock(&statelist_cache_mutex
);
1994 current_candidates
->len
[EVEN_STATE
] = 0;
1995 current_candidates
->states
[EVEN_STATE
] = NULL
;
1999 // update book of work
2000 pthread_mutex_lock(&book_of_work_mutex
);
2001 book_of_work
[p
][q
][r
][s
] = COMPLETED
;
2002 pthread_mutex_unlock(&book_of_work_mutex
);
2004 // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) {
2005 // printf("Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n",
2006 // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE],
2007 // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE],
2008 // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2));
2009 // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE);
2010 // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE);
2011 // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even;
2012 // printf("Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2));
2013 // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) {
2014 // printf("############################################################################ERROR! ESTIMATED < REAL !!!\n");
2024 } while (there_might_be_more_work
);
2030 static void generate_candidates(uint8_t sum_a0_idx
, uint8_t sum_a8_idx
)
2032 // printf("Generating crypto1 state candidates... \n");
2034 // estimate maximum candidate states
2035 // maximum_states = 0;
2036 // for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
2037 // for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
2038 // if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
2039 // maximum_states += (uint64_t)count_states(part_sum_a0_bitarrays[EVEN_STATE][sum_even/2])
2040 // * count_states(part_sum_a0_bitarrays[ODD_STATE][sum_odd/2]);
2044 // printf("Number of possible keys with Sum(a0) = %d: %" PRIu64 " (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
2046 init_statelist_cache();
2047 init_book_of_work();
2049 // create mutexes for accessing the statelist cache and our "book of work"
2050 pthread_mutex_init(&statelist_cache_mutex
, NULL
);
2051 pthread_mutex_init(&book_of_work_mutex
, NULL
);
2053 // create and run worker threads
2054 pthread_t thread_id
[NUM_REDUCTION_WORKING_THREADS
];
2056 uint16_t sums
[NUM_REDUCTION_WORKING_THREADS
][3];
2057 for (uint16_t i
= 0; i
< NUM_REDUCTION_WORKING_THREADS
; i
++) {
2058 sums
[i
][0] = sum_a0_idx
;
2059 sums
[i
][1] = sum_a8_idx
;
2061 pthread_create(thread_id
+ i
, NULL
, generate_candidates_worker_thread
, sums
[i
]);
2064 // wait for threads to terminate:
2065 for (uint16_t i
= 0; i
< NUM_REDUCTION_WORKING_THREADS
; i
++) {
2066 pthread_join(thread_id
[i
], NULL
);
2070 pthread_mutex_destroy(&statelist_cache_mutex
);
2073 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2074 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2077 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
2078 if (nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].sum_a8_idx
== sum_a8_idx
) {
2079 nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].num_states
= maximum_states
;
2083 update_expected_brute_force(best_first_bytes
[0]);
2085 hardnested_print_progress(num_acquired_nonces
, "Apply Sum(a8) and all bytes bitflip properties", nonces
[best_first_bytes
[0]].expected_num_brute_force
, 0);
2089 static void free_candidates_memory(statelist_t
*sl
)
2094 free_candidates_memory(sl
->next
);
2100 static void pre_XOR_nonces(void)
2102 // prepare acquired nonces for faster brute forcing.
2104 // XOR the cryptoUID and its parity
2105 for (uint16_t i
= 0; i
< 256; i
++) {
2106 noncelistentry_t
*test_nonce
= nonces
[i
].first
;
2107 while (test_nonce
!= NULL
) {
2108 test_nonce
->nonce_enc
^= cuid
;
2109 test_nonce
->par_enc
^= oddparity8(cuid
>> 0 & 0xff) << 0;
2110 test_nonce
->par_enc
^= oddparity8(cuid
>> 8 & 0xff) << 1;
2111 test_nonce
->par_enc
^= oddparity8(cuid
>> 16 & 0xff) << 2;
2112 test_nonce
->par_enc
^= oddparity8(cuid
>> 24 & 0xff) << 3;
2113 test_nonce
= test_nonce
->next
;
2119 static bool brute_force(void)
2121 if (known_target_key
!= -1) {
2122 TestIfKeyExists(known_target_key
);
2124 return brute_force_bs(NULL
, candidates
, cuid
, num_acquired_nonces
, maximum_states
, nonces
, best_first_bytes
);
2128 static uint16_t SumProperty(struct Crypto1State
*s
)
2130 uint16_t sum_odd
= PartialSumProperty(s
->odd
, ODD_STATE
);
2131 uint16_t sum_even
= PartialSumProperty(s
->even
, EVEN_STATE
);
2132 return (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
);
2139 /* #define NUM_STATISTICS 100000
2140 uint32_t statistics_odd[17];
2141 uint64_t statistics[257];
2142 uint32_t statistics_even[17];
2143 struct Crypto1State cs;
2144 uint64_t time1 = msclock();
2146 for (uint16_t i = 0; i < 257; i++) {
2149 for (uint16_t i = 0; i < 17; i++) {
2150 statistics_odd[i] = 0;
2151 statistics_even[i] = 0;
2154 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2155 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2156 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2157 uint16_t sum_property = SumProperty(&cs);
2158 statistics[sum_property] += 1;
2159 sum_property = PartialSumProperty(cs.even, EVEN_STATE);
2160 statistics_even[sum_property]++;
2161 sum_property = PartialSumProperty(cs.odd, ODD_STATE);
2162 statistics_odd[sum_property]++;
2163 if (i%(NUM_STATISTICS/100) == 0) printf(".");
2166 printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2167 for (uint16_t i = 0; i < 257; i++) {
2168 if (statistics[i] != 0) {
2169 printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
2172 for (uint16_t i = 0; i <= 16; i++) {
2173 if (statistics_odd[i] != 0) {
2174 printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
2177 for (uint16_t i = 0; i <= 16; i++) {
2178 if (statistics_odd[i] != 0) {
2179 printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
2184 /* #define NUM_STATISTICS 100000000LL
2185 uint64_t statistics_a0[257];
2186 uint64_t statistics_a8[257][257];
2187 struct Crypto1State cs;
2188 uint64_t time1 = msclock();
2190 for (uint16_t i = 0; i < 257; i++) {
2191 statistics_a0[i] = 0;
2192 for (uint16_t j = 0; j < 257; j++) {
2193 statistics_a8[i][j] = 0;
2197 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2198 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2199 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2200 uint16_t sum_property_a0 = SumProperty(&cs);
2201 statistics_a0[sum_property_a0]++;
2202 uint8_t first_byte = rand() & 0xff;
2203 crypto1_byte(&cs, first_byte, true);
2204 uint16_t sum_property_a8 = SumProperty(&cs);
2205 statistics_a8[sum_property_a0][sum_property_a8] += 1;
2206 if (i%(NUM_STATISTICS/100) == 0) printf(".");
2209 printf("\nTests: Probability Distribution of a8 depending on a0:\n");
2211 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2212 printf("%7d ", sums[i]);
2214 printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n");
2216 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2217 printf("%7.5f ", (float)statistics_a0[sums[i]] / NUM_STATISTICS);
2220 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2221 printf("%3d ", sums[i]);
2222 for (uint16_t j = 0; j < NUM_SUMS; j++) {
2223 printf("%7.5f ", (float)statistics_a8[sums[i]][sums[j]] / statistics_a0[sums[i]]);
2227 printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2230 /* #define NUM_STATISTICS 100000LL
2231 uint64_t statistics_a8[257];
2232 struct Crypto1State cs;
2233 uint64_t time1 = msclock();
2235 printf("\nTests: Probability Distribution of a8 depending on first byte:\n");
2237 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2238 printf("%7d ", sums[i]);
2240 printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n");
2241 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
2242 for (uint16_t i = 0; i < 257; i++) {
2243 statistics_a8[i] = 0;
2245 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2246 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2247 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2248 crypto1_byte(&cs, first_byte, true);
2249 uint16_t sum_property_a8 = SumProperty(&cs);
2250 statistics_a8[sum_property_a8] += 1;
2252 printf("%03x ", first_byte);
2253 for (uint16_t j = 0; j < NUM_SUMS; j++) {
2254 printf("%7.5f ", (float)statistics_a8[sums[j]] / NUM_STATISTICS);
2258 printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2261 /* printf("Tests: Sum Probabilities based on Partial Sums\n");
2262 for (uint16_t i = 0; i < 257; i++) {
2265 uint64_t num_states = 0;
2266 for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
2267 for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
2268 uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
2269 statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
2270 num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
2273 printf("num_states = %"lld", expected %"lld"\n", num_states, (1LL<<48));
2274 for (uint16_t i = 0; i < 257; i++) {
2275 if (statistics[i] != 0) {
2276 printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
2281 /* struct Crypto1State *pcs;
2282 pcs = crypto1_create(0xffffffffffff);
2283 printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2284 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2285 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2286 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2287 best_first_bytes[0],
2289 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2290 //test_state_odd = pcs->odd & 0x00ffffff;
2291 //test_state_even = pcs->even & 0x00ffffff;
2292 crypto1_destroy(pcs);
2293 pcs = crypto1_create(0xa0a1a2a3a4a5);
2294 printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2295 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2296 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2297 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2298 best_first_bytes[0],
2300 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2301 //test_state_odd = pcs->odd & 0x00ffffff;
2302 //test_state_even = pcs->even & 0x00ffffff;
2303 crypto1_destroy(pcs);
2304 pcs = crypto1_create(0xa6b9aa97b955);
2305 printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2306 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2307 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2308 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2309 best_first_bytes[0],
2311 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2312 test_state_odd = pcs->odd & 0x00ffffff;
2313 test_state_even = pcs->even & 0x00ffffff;
2314 crypto1_destroy(pcs);
2317 // printf("\nTests: Sorted First Bytes:\n");
2318 // for (uint16_t i = 0; i < 20; i++) {
2319 // uint8_t best_byte = best_first_bytes[i];
2320 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%\n",
2321 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8) = ", i, best_byte, nonces[best_byte].num, nonces[best_byte].Sum);
2322 // for (uint16_t j = 0; j < 3; j++) {
2323 // printf("%3d @ %4.1f%%, ", sums[nonces[best_byte].sum_a8_guess[j].sum_a8_idx], nonces[best_byte].sum_a8_guess[j].prob * 100.0);
2325 // printf(" %12" PRIu64 ", %12" PRIu64 ", %12" PRIu64 ", exp_brute: %12.0f\n",
2326 // nonces[best_byte].sum_a8_guess[0].num_states,
2327 // nonces[best_byte].sum_a8_guess[1].num_states,
2328 // nonces[best_byte].sum_a8_guess[2].num_states,
2329 // nonces[best_byte].expected_num_brute_force);
2332 // printf("\nTests: Actual BitFlipProperties of best byte:\n");
2333 // printf("[%02x]:", best_first_bytes[0]);
2334 // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
2335 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx];
2336 // if (nonces[best_first_bytes[0]].BitFlips[bitflip_prop]) {
2337 // printf(" %03" PRIx16 , bitflip_prop);
2342 // printf("\nTests2: Actual BitFlipProperties of first_byte_smallest_bitarray:\n");
2343 // printf("[%02x]:", best_first_byte_smallest_bitarray);
2344 // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
2345 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx];
2346 // if (nonces[best_first_byte_smallest_bitarray].BitFlips[bitflip_prop]) {
2347 // printf(" %03" PRIx16 , bitflip_prop);
2352 if (known_target_key
!= -1) {
2353 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2354 uint32_t *bitset
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
];
2355 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2356 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
2357 odd_even
==EVEN_STATE
?"even":"odd ",
2358 best_first_bytes
[0]);
2363 if (known_target_key
!= -1) {
2364 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2365 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
];
2366 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2367 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",
2368 odd_even
==EVEN_STATE
?"even":"odd ");
2373 // if (known_target_key != -1) {
2374 // int16_t p = -1, q = -1, r = -1, s = -1;
2376 // printf("\nTests: known target key is member of these partial sum_a0 bitsets:\n");
2377 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
2378 // printf("%s", odd_even==EVEN_STATE?"even:":"odd: ");
2379 // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
2380 // uint32_t *bitset = part_sum_a0_bitarrays[odd_even][i];
2381 // if (test_bit24(bitset, test_state[odd_even])) {
2382 // printf("%d ", i);
2383 // if (odd_even == ODD_STATE) {
2393 // printf("\nTests: known target key is member of these partial sum_a8 bitsets:\n");
2394 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
2395 // printf("%s", odd_even==EVEN_STATE?"even:":"odd: ");
2396 // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
2397 // uint32_t *bitset = part_sum_a8_bitarrays[odd_even][i];
2398 // if (test_bit24(bitset, test_state[odd_even])) {
2399 // printf("%d ", i);
2400 // if (odd_even == ODD_STATE) {
2410 // printf("Sum(a0) = p*(16-q) + (16-p)*q = %d*(16-%d) + (16-%d)*%d = %d\n", p, q, p, q, p*(16-q)+(16-p)*q);
2411 // printf("Sum(a8) = r*(16-s) + (16-r)*s = %d*(16-%d) + (16-%d)*%d = %d\n", r, s, r, s, r*(16-s)+(16-r)*s);
2414 /* printf("\nTests: parity performance\n");
2415 uint64_t time1p = msclock();
2416 uint32_t par_sum = 0;
2417 for (uint32_t i = 0; i < 100000000; i++) {
2418 par_sum += parity(i);
2420 printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0);
2424 for (uint32_t i = 0; i < 100000000; i++) {
2425 par_sum += evenparity32(i);
2427 printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0);
2433 static void Tests2(void)
2435 if (known_target_key
!= -1) {
2436 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2437 uint32_t *bitset
= nonces
[best_first_byte_smallest_bitarray
].states_bitarray
[odd_even
];
2438 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2439 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
2440 odd_even
==EVEN_STATE
?"even":"odd ",
2441 best_first_byte_smallest_bitarray
);
2446 if (known_target_key
!= -1) {
2447 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2448 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
];
2449 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2450 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",
2451 odd_even
==EVEN_STATE
?"even":"odd ");
2459 static uint16_t real_sum_a8
= 0;
2461 static void set_test_state(uint8_t byte
)
2463 struct Crypto1State
*pcs
;
2464 pcs
= crypto1_create(known_target_key
);
2465 crypto1_byte(pcs
, (cuid
>> 24) ^ byte
, true);
2466 test_state
[ODD_STATE
] = pcs
->odd
& 0x00ffffff;
2467 test_state
[EVEN_STATE
] = pcs
->even
& 0x00ffffff;
2468 real_sum_a8
= SumProperty(pcs
);
2469 crypto1_destroy(pcs
);
2473 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
2475 char progress_text
[80];
2477 srand((unsigned) time(NULL
));
2478 brute_force_per_second
= brute_force_benchmark();
2479 write_stats
= false;
2482 // set the correct locale for the stats printing
2484 setlocale(LC_NUMERIC
, "");
2485 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
2486 PrintAndLog("Could not create/open file hardnested_stats.txt");
2489 for (uint32_t i
= 0; i
< tests
; i
++) {
2490 start_time
= msclock();
2491 print_progress_header();
2492 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0));
2493 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2494 sprintf(progress_text
, "Starting Test #%" PRIu32
" ...", i
+1);
2495 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2496 if (trgkey
!= NULL
) {
2497 known_target_key
= bytes_to_num(trgkey
, 6);
2499 known_target_key
= -1;
2502 init_bitflip_bitarrays();
2503 init_part_sum_bitarrays();
2504 init_sum_bitarrays();
2505 init_allbitflips_array();
2506 init_nonce_memory();
2507 update_reduction_rate(0.0, true);
2509 simulate_acquire_nonces();
2511 set_test_state(best_first_bytes
[0]);
2514 free_bitflip_bitarrays();
2516 fprintf(fstats
, "%" PRIu16
";%1.1f;", sums
[first_byte_Sum
], log(p_K0
[first_byte_Sum
])/log(2.0));
2517 fprintf(fstats
, "%" PRIu16
";%1.1f;", sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
], log(p_K
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
])/log(2.0));
2518 fprintf(fstats
, "%" PRIu16
";", real_sum_a8
);
2520 #ifdef DEBUG_KEY_ELIMINATION
2523 bool key_found
= false;
2524 num_keys_tested
= 0;
2525 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
2526 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];
2527 float expected_brute_force1
= (float)num_odd
* num_even
/ 2.0;
2528 float expected_brute_force2
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2529 fprintf(fstats
, "%1.1f;%1.1f;", log(expected_brute_force1
)/log(2.0), log(expected_brute_force2
)/log(2.0));
2530 if (expected_brute_force1
< expected_brute_force2
) {
2531 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0);
2532 set_test_state(best_first_byte_smallest_bitarray
);
2533 add_bitflip_candidates(best_first_byte_smallest_bitarray
);
2536 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2537 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2539 //printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
2540 // fprintf("fstats, "%" PRIu64 ";", maximum_states);
2541 best_first_bytes
[0] = best_first_byte_smallest_bitarray
;
2543 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2544 key_found
= brute_force();
2545 free(candidates
->states
[ODD_STATE
]);
2546 free(candidates
->states
[EVEN_STATE
]);
2547 free_candidates_memory(candidates
);
2551 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2552 for (uint8_t j
= 0; j
< NUM_SUMS
&& !key_found
; j
++) {
2553 float expected_brute_force
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2554 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]);
2555 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2556 if (sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) {
2557 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16
")", real_sum_a8
);
2558 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2560 // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
2561 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
);
2562 // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
2563 key_found
= brute_force();
2564 free_statelist_cache();
2565 free_candidates_memory(candidates
);
2568 // update the statistics
2569 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob
= 0;
2570 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states
= 0;
2571 // and calculate new expected number of brute forces
2572 update_expected_brute_force(best_first_bytes
[0]);
2576 #ifdef DEBUG_KEY_ELIMINATION
2577 fprintf(fstats
, "%1.1f;%1.0f;%d;%s\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
, failstr
);
2579 fprintf(fstats
, "%1.0f;%d\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
);
2582 free_nonces_memory();
2583 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2584 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2585 free_sum_bitarrays();
2586 free_part_sum_bitarrays();
2590 start_time
= msclock();
2591 print_progress_header();
2592 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0));
2593 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2594 init_bitflip_bitarrays();
2595 init_part_sum_bitarrays();
2596 init_sum_bitarrays();
2597 init_allbitflips_array();
2598 init_nonce_memory();
2599 update_reduction_rate(0.0, true);
2601 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
2602 if (read_nonce_file() != 0) {
2605 hardnested_stage
= CHECK_1ST_BYTES
| CHECK_2ND_BYTES
;
2606 update_nonce_data(false);
2608 shrink_key_space(&brute_force
);
2609 } else { // acquire nonces.
2610 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
2616 if (trgkey
!= NULL
) {
2617 known_target_key
= bytes_to_num(trgkey
, 6);
2618 set_test_state(best_first_bytes
[0]);
2620 known_target_key
= -1;
2625 free_bitflip_bitarrays();
2626 bool key_found
= false;
2627 num_keys_tested
= 0;
2628 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
2629 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];
2630 float expected_brute_force1
= (float)num_odd
* num_even
/ 2.0;
2631 float expected_brute_force2
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2632 if (expected_brute_force1
< expected_brute_force2
) {
2633 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0);
2634 set_test_state(best_first_byte_smallest_bitarray
);
2635 add_bitflip_candidates(best_first_byte_smallest_bitarray
);
2638 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2639 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2641 printf("Number of remaining possible keys: %" PRIu64
" (2^%1.1f)\n", maximum_states
, log(maximum_states
)/log(2.0));
2642 best_first_bytes
[0] = best_first_byte_smallest_bitarray
;
2644 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2645 key_found
= brute_force();
2646 free(candidates
->states
[ODD_STATE
]);
2647 free(candidates
->states
[EVEN_STATE
]);
2648 free_candidates_memory(candidates
);
2652 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2653 for (uint8_t j
= 0; j
< NUM_SUMS
&& !key_found
; j
++) {
2654 float expected_brute_force
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2655 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]);
2656 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2657 if (trgkey
!= NULL
&& sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) {
2658 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16
")", real_sum_a8
);
2659 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2661 // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
2662 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
);
2663 // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
2664 key_found
= brute_force();
2665 free_statelist_cache();
2666 free_candidates_memory(candidates
);
2669 // update the statistics
2670 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob
= 0;
2671 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states
= 0;
2672 // and calculate new expected number of brute forces
2673 update_expected_brute_force(best_first_bytes
[0]);
2679 free_nonces_memory();
2680 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2681 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2682 free_sum_bitarrays();
2683 free_part_sum_bitarrays();