]>
git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
5b0bc29d28dfb61fd8daf75e07ceb64603c930be
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
16 uint8_t justNoise(uint8_t *BitStream
, size_t size
)
18 static const uint8_t THRESHOLD
= 123;
19 //test samples are not just noise
20 uint8_t justNoise1
= 1;
21 for(size_t idx
=0; idx
< size
&& justNoise1
;idx
++){
22 justNoise1
= BitStream
[idx
] < THRESHOLD
;
28 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
29 int getHiLo(uint8_t *BitStream
, size_t size
, int *high
, int *low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
33 // get high and low thresholds
34 for (int i
=0; i
< size
; i
++){
35 if (BitStream
[i
] > *high
) *high
= BitStream
[i
];
36 if (BitStream
[i
] < *low
) *low
= BitStream
[i
];
38 if (*high
< 123) return -1; // just noise
39 *high
= (int)(((*high
-128)*(((float)fuzzHi
)/100))+128);
40 *low
= (int)(((*low
-128)*(((float)fuzzLo
)/100))+128);
45 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
46 // returns 1 if passed
47 uint8_t parityTest(uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
50 for (uint8_t i
= 0; i
< bitLen
; i
++){
51 ans
^= ((bits
>> i
) & 1);
53 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
54 return (ans
== pType
);
58 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
59 uint8_t preambleSearch(uint8_t *BitStream
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
)
62 for (int idx
=0; idx
< *size
- pLen
; idx
++){
63 if (memcmp(BitStream
+idx
, preamble
, pLen
) == 0){
70 *size
= idx
- *startIdx
;
79 //takes 1s and 0s and searches for EM410x format - output EM ID
80 uint8_t Em410xDecode(uint8_t *BitStream
, size_t *size
, size_t *startIdx
, uint32_t *hi
, uint64_t *lo
)
82 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
83 // otherwise could be a void with no arguments
86 if (BitStream
[1]>1){ //allow only 1s and 0s
87 // PrintAndLog("no data found");
90 // 111111111 bit pattern represent start of frame
91 uint8_t preamble
[] = {1,1,1,1,1,1,1,1,1};
93 uint32_t parityBits
= 0;
97 for (uint8_t extraBitChk
=0; extraBitChk
<5; extraBitChk
++){
98 errChk
= preambleSearch(BitStream
+extraBitChk
+*startIdx
, preamble
, sizeof(preamble
), size
, startIdx
);
99 if (errChk
== 0) return 0;
100 if (*size
>64) FmtLen
= 22;
101 if (*size
<64) return 0;
103 for (i
=0; i
<FmtLen
; i
++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
104 parityBits
= bytebits_to_byte(BitStream
+(i
*5)+idx
,5);
106 if (parityTest(parityBits
, 5, 0) == 0){
107 //parity failed try next bit (in the case of 1111111111) but last 9 = preamble
112 //set uint64 with ID from BitStream
113 for (uint8_t ii
=0; ii
<4; ii
++){
114 *hi
= (*hi
<< 1) | (*lo
>> 63);
115 *lo
= (*lo
<< 1) | (BitStream
[(i
*5)+ii
+idx
]);
118 if (errChk
!= 0) return 1;
119 //skip last 5 bit parity test for simplicity.
126 //takes 3 arguments - clock, invert, maxErr as integers
127 //attempts to demodulate ask while decoding manchester
128 //prints binary found and saves in graphbuffer for further commands
129 int askmandemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
)
133 int start
= DetectASKClock(BinStream
, *size
, clk
, 20); //clock default
134 if (*clk
==0) return -3;
135 if (start
< 0) return -3;
136 // if autodetected too low then adjust //MAY NEED ADJUSTMENT
137 //if (clk2==0 && *clk<8) *clk =64;
138 //if (clk2==0 && *clk<32) *clk=32;
139 if (*invert
!= 0 && *invert
!= 1) *invert
=0;
140 uint32_t initLoopMax
= 200;
141 if (initLoopMax
> *size
) initLoopMax
=*size
;
142 // Detect high and lows
143 // 25% fuzz in case highs and lows aren't clipped [marshmellow]
145 ans
= getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75);
146 if (ans
<1) return -2; //just noise
148 // PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
149 int lastBit
= 0; //set first clock check
150 uint32_t bitnum
= 0; //output counter
151 int tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
152 if (*clk
<=32) tol
=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
154 uint32_t gLen
= *size
;
155 if (gLen
> 3000) gLen
=3000;
156 //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance
157 if (!maxErr
) gLen
=*clk
*2;
159 uint16_t MaxBits
= 500;
160 uint32_t bestStart
= *size
;
161 int bestErrCnt
= maxErr
+1;
162 // PrintAndLog("DEBUG - lastbit - %d",lastBit);
163 // loop to find first wave that works
164 for (iii
=0; iii
< gLen
; ++iii
){
165 if ((BinStream
[iii
] >= high
) || (BinStream
[iii
] <= low
)){
168 // loop through to see if this start location works
169 for (i
= iii
; i
< *size
; ++i
) {
170 if ((BinStream
[i
] >= high
) && ((i
-lastBit
) > (*clk
-tol
))){
172 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
) > (*clk
-tol
))){
173 //low found and we are expecting a bar
176 //mid value found or no bar supposed to be here
177 if ((i
-lastBit
)>(*clk
+tol
)){
178 //should have hit a high or low based on clock!!
181 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
184 lastBit
+=*clk
;//skip over until hit too many errors
185 if (errCnt
>(maxErr
)) break; //allow 1 error for every 1000 samples else start over
188 if ((i
-iii
) >(MaxBits
* *clk
)) break; //got plenty of bits
190 //we got more than 64 good bits and not all errors
191 if ((((i
-iii
)/ *clk
) > (64)) && (errCnt
<=maxErr
)) {
196 break; //great read - finish
198 if (errCnt
<bestErrCnt
){ //set this as new best run
205 if (bestErrCnt
<=maxErr
){
206 //best run is good enough set to best run and set overwrite BinStream
208 lastBit
= bestStart
- *clk
;
210 for (i
= iii
; i
< *size
; ++i
) {
211 if ((BinStream
[i
] >= high
) && ((i
-lastBit
) > (*clk
-tol
))){
213 BinStream
[bitnum
] = *invert
;
215 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
) > (*clk
-tol
))){
216 //low found and we are expecting a bar
218 BinStream
[bitnum
] = 1-*invert
;
221 //mid value found or no bar supposed to be here
222 if ((i
-lastBit
)>(*clk
+tol
)){
223 //should have hit a high or low based on clock!!
226 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
228 BinStream
[bitnum
]=77;
232 lastBit
+=*clk
;//skip over error
235 if (bitnum
>=MaxBits
) break;
247 //encode binary data into binary manchester
248 int ManchesterEncode(uint8_t *BitStream
, size_t size
)
250 size_t modIdx
=20000, i
=0;
251 if (size
>modIdx
) return -1;
252 for (size_t idx
=0; idx
< size
; idx
++){
253 BitStream
[idx
+modIdx
++] = BitStream
[idx
];
254 BitStream
[idx
+modIdx
++] = BitStream
[idx
]^1;
256 for (; i
<(size
*2); i
++){
257 BitStream
[i
] = BitStream
[i
+20000];
263 //take 10 and 01 and manchester decode
264 //run through 2 times and take least errCnt
265 int manrawdecode(uint8_t * BitStream
, size_t *size
)
267 uint16_t bitnum
=0, MaxBits
= 512, errCnt
= 0;
269 uint16_t bestErr
= 1000, bestRun
= 0;
270 if (size
== 0) return -1;
271 for (ii
=0;ii
<2;++ii
){
273 for (i
=i
+ii
;i
<*size
-2;i
+=2){
274 if(BitStream
[i
]==1 && (BitStream
[i
+1]==0)){
275 } else if((BitStream
[i
]==0)&& BitStream
[i
+1]==1){
279 if(bitnum
>MaxBits
) break;
291 for (i
=i
+ii
; i
< *size
-2; i
+=2){
292 if(BitStream
[i
] == 1 && (BitStream
[i
+1] == 0)){
293 BitStream
[bitnum
++]=0;
294 } else if((BitStream
[i
] == 0) && BitStream
[i
+1] == 1){
295 BitStream
[bitnum
++]=1;
297 BitStream
[bitnum
++]=77;
300 if(bitnum
>MaxBits
) break;
308 //take 01 or 10 = 1 and 11 or 00 = 0
309 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
310 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
311 int BiphaseRawDecode(uint8_t *BitStream
, size_t *size
, int offset
, int invert
)
316 uint16_t MaxBits
=512;
317 //if not enough samples - error
318 if (*size
< 51) return -1;
319 //check for phase change faults - skip one sample if faulty
320 uint8_t offsetA
= 1, offsetB
= 1;
322 if (BitStream
[i
+1]==BitStream
[i
+2]) offsetA
=0;
323 if (BitStream
[i
+2]==BitStream
[i
+3]) offsetB
=0;
325 if (!offsetA
&& offsetB
) offset
++;
326 for (i
=offset
; i
<*size
-3; i
+=2){
327 //check for phase error
328 if (BitStream
[i
+1]==BitStream
[i
+2]) {
329 BitStream
[bitnum
++]=77;
332 if((BitStream
[i
]==1 && BitStream
[i
+1]==0) || (BitStream
[i
]==0 && BitStream
[i
+1]==1)){
333 BitStream
[bitnum
++]=1^invert
;
334 } else if((BitStream
[i
]==0 && BitStream
[i
+1]==0) || (BitStream
[i
]==1 && BitStream
[i
+1]==1)){
335 BitStream
[bitnum
++]=invert
;
337 BitStream
[bitnum
++]=77;
340 if(bitnum
>MaxBits
) break;
347 void askAmp(uint8_t *BitStream
, size_t size
)
351 for(int i
= 1; i
<size
; i
++){
352 if (BitStream
[i
]-BitStream
[i
-1]>=30) //large jump up
354 else if(BitStream
[i
]-BitStream
[i
-1]<=-20) //large jump down
357 shiftedVal
=BitStream
[i
]+shift
;
361 else if (shiftedVal
<0)
363 BitStream
[i
-1] = shiftedVal
;
368 int cleanAskRawDemod(uint8_t *BinStream
, size_t *size
, int clk
, int invert
, int high
, int low
)
370 size_t bitCnt
=0, smplCnt
=0, errCnt
=0;
371 uint8_t waveHigh
= 0;
372 //PrintAndLog("clk: %d", clk);
373 for (size_t i
=0; i
< *size
; i
++){
374 if (BinStream
[i
] >= high
&& waveHigh
){
376 } else if (BinStream
[i
] <= low
&& !waveHigh
){
378 } else { //not high or low or a transition
379 if (smplCnt
> clk
-(clk
/4)) { //full clock
380 if (smplCnt
> clk
+ (clk
/4)) { //too many samples
382 BinStream
[bitCnt
++]=77;
383 } else if (waveHigh
) {
384 BinStream
[bitCnt
++] = invert
;
385 BinStream
[bitCnt
++] = invert
;
386 } else if (!waveHigh
) {
387 BinStream
[bitCnt
++] = invert
^ 1;
388 BinStream
[bitCnt
++] = invert
^ 1;
392 } else if (smplCnt
> (clk
/2) - (clk
/5)) {
394 BinStream
[bitCnt
++] = invert
;
395 } else if (!waveHigh
) {
396 BinStream
[bitCnt
++] = invert
^ 1;
400 } else if (!bitCnt
) {
402 waveHigh
= (BinStream
[i
] >= high
);
405 //transition bit? ignore
414 //takes 3 arguments - clock, invert and maxErr as integers
415 //attempts to demodulate ask only
416 int askrawdemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
, uint8_t amp
)
419 if (*size
==0) return -1;
420 int start
= DetectASKClock(BinStream
, *size
, clk
, 20); //clock default
421 if (*clk
==0) return -1;
422 if (start
<0) return -1;
423 if (*invert
!= 0 && *invert
!= 1) *invert
=0;
424 if (amp
==1) askAmp(BinStream
, *size
);
426 uint32_t initLoopMax
= 200;
427 if (initLoopMax
> *size
) initLoopMax
=*size
;
428 // Detect high and lows
429 //25% clip in case highs and lows aren't clipped [marshmellow]
432 ans
= getHiLo(BinStream
, initLoopMax
, &high
, &low
, clip
, clip
);
433 if (ans
<1) return -1; //just noise
435 if (DetectCleanAskWave(BinStream
, *size
, high
, low
)) {
436 //PrintAndLog("Clean");
437 return cleanAskRawDemod(BinStream
, size
, *clk
, *invert
, high
, low
);
440 //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
441 int lastBit
= 0; //set first clock check
442 uint32_t bitnum
= 0; //output counter
443 uint8_t tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock
444 // if they fall + or - this value + clock from last valid wave
445 if (*clk
== 32) tol
=0; //clock tolerance may not be needed anymore currently set to
446 // + or - 1 but could be increased for poor waves or removed entirely
448 uint32_t gLen
= *size
;
449 if (gLen
> 500) gLen
=500;
450 //if 0 errors allowed then only try first 2 clock cycles as we want a low tolerance
451 if (!maxErr
) gLen
= *clk
* 2;
453 uint32_t bestStart
= *size
;
454 uint32_t bestErrCnt
= maxErr
; //(*size/1000);
456 uint16_t MaxBits
=1000;
458 //PrintAndLog("DEBUG - lastbit - %d",lastBit);
459 //loop to find first wave that works
460 for (iii
=start
; iii
< gLen
; ++iii
){
461 if ((BinStream
[iii
]>=high
) || (BinStream
[iii
]<=low
)){
464 //loop through to see if this start location works
465 for (i
= iii
; i
< *size
; ++i
) {
466 if ((BinStream
[i
] >= high
) && ((i
-lastBit
)>(*clk
-tol
))){
469 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
)>(*clk
-tol
))){
470 //low found and we are expecting a bar
473 } else if ((BinStream
[i
]<=low
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
476 } else if ((BinStream
[i
]>=high
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
479 } else if ((i
-lastBit
)>((*clk
/2)+tol
) && (midBit
==0)){
483 //mid value found or no bar supposed to be here
485 if ((i
-lastBit
)>(*clk
+tol
)){
486 //should have hit a high or low based on clock!!
488 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
491 lastBit
+=*clk
;//skip over until hit too many errors
492 if (errCnt
> maxErr
){
498 if ((i
-iii
)>(MaxBits
* *clk
)) break; //got enough bits
500 //we got more than 64 good bits and not all errors
501 if ((((i
-iii
)/ *clk
) > (64)) && (errCnt
<=maxErr
)) {
506 break; //great read - finish
508 if (errCnt
<bestErrCnt
){ //set this as new best run
515 if (bestErrCnt
<=maxErr
){
516 //best run is good enough - set to best run and overwrite BinStream
518 lastBit
= bestStart
- *clk
;
520 for (i
= iii
; i
< *size
; ++i
) {
521 if ((BinStream
[i
] >= high
) && ((i
-lastBit
) > (*clk
-tol
))){
523 BinStream
[bitnum
] = *invert
;
526 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
) > (*clk
-tol
))){
527 //low found and we are expecting a bar
529 BinStream
[bitnum
] = 1 - *invert
;
532 } else if ((BinStream
[i
]<=low
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
535 BinStream
[bitnum
] = 1 - *invert
;
537 } else if ((BinStream
[i
]>=high
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
540 BinStream
[bitnum
] = *invert
;
542 } else if ((i
-lastBit
)>((*clk
/2)+tol
) && (midBit
==0)){
545 if (bitnum
!=0) BinStream
[bitnum
] = BinStream
[bitnum
-1];
549 //mid value found or no bar supposed to be here
550 if ((i
-lastBit
)>(*clk
+tol
)){
551 //should have hit a high or low based on clock!!
554 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
556 BinStream
[bitnum
]=77;
559 lastBit
+=*clk
;//skip over error
562 if (bitnum
>= MaxBits
) break;
573 // demod gProxIIDemod
574 // error returns as -x
575 // success returns start position in BitStream
576 // BitStream must contain previously askrawdemod and biphasedemoded data
577 int gProxII_Demod(uint8_t BitStream
[], size_t *size
)
580 uint8_t preamble
[] = {1,1,1,1,1,0};
582 uint8_t errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, &startIdx
);
583 if (errChk
== 0) return -3; //preamble not found
584 if (*size
!= 96) return -2; //should have found 96 bits
585 //check first 6 spacer bits to verify format
586 if (!BitStream
[startIdx
+5] && !BitStream
[startIdx
+10] && !BitStream
[startIdx
+15] && !BitStream
[startIdx
+20] && !BitStream
[startIdx
+25] && !BitStream
[startIdx
+30]){
587 //confirmed proper separator bits found
588 //return start position
589 return (int) startIdx
;
594 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
595 size_t fsk_wave_demod(uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
597 uint32_t last_transition
= 0;
600 if (fchigh
==0) fchigh
=10;
601 if (fclow
==0) fclow
=8;
602 //set the threshold close to 0 (graph) or 128 std to avoid static
603 uint8_t threshold_value
= 123;
605 // sync to first lo-hi transition, and threshold
607 // Need to threshold first sample
609 if(dest
[0] < threshold_value
) dest
[0] = 0;
613 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
614 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
615 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
616 for(idx
= 1; idx
< size
; idx
++) {
617 // threshold current value
619 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
622 // Check for 0->1 transition
623 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
624 if ((idx
-last_transition
)<(fclow
-2)){ //0-5 = garbage noise
625 //do nothing with extra garbage
626 } else if ((idx
-last_transition
) < (fchigh
-1)) { //6-8 = 8 waves
628 } else if ((idx
-last_transition
) > (fchigh
+1) && !numBits
) { //12 + and first bit = garbage
629 //do nothing with beginning garbage
630 } else { //9+ = 10 waves
633 last_transition
= idx
;
637 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
640 uint32_t myround2(float f
)
642 if (f
>= 2000) return 2000;//something bad happened
643 return (uint32_t) (f
+ (float)0.5);
646 //translate 11111100000 to 10
647 size_t aggregate_bits(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t maxConsequtiveBits
,
648 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
650 uint8_t lastval
=dest
[0];
654 float lowWaves
= (((float)(rfLen
))/((float)fclow
));
655 float highWaves
= (((float)(rfLen
))/((float)fchigh
));
656 for( idx
=1; idx
< size
; idx
++) {
658 if (dest
[idx
]==lastval
) {
663 //if lastval was 1, we have a 1->0 crossing
664 if (dest
[idx
-1]==1) {
665 if (!numBits
&& n
< (uint8_t)lowWaves
) {
670 n
=myround2(((float)n
)/lowWaves
);
671 } else {// 0->1 crossing
672 //test first bitsample too small
673 if (!numBits
&& n
< (uint8_t)highWaves
) {
678 n
= myround2(((float)n
)/highWaves
); //-1 for fudge factor
682 if(n
< maxConsequtiveBits
) //Consecutive
684 if(invert
==0){ //invert bits
685 memset(dest
+numBits
, dest
[idx
-1] , n
);
687 memset(dest
+numBits
, dest
[idx
-1]^1 , n
);
695 // if valid extra bits at the end were all the same frequency - add them in
696 if (n
> lowWaves
&& n
> highWaves
) {
697 if (dest
[idx
-2]==1) {
698 n
=myround2((float)(n
+1)/((float)(rfLen
)/(float)fclow
));
700 n
=myround2((float)(n
+1)/((float)(rfLen
-1)/(float)fchigh
)); //-1 for fudge factor
702 memset(dest
, dest
[idx
-1]^invert
, n
);
707 //by marshmellow (from holiman's base)
708 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
709 int fskdemod(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
712 size
= fsk_wave_demod(dest
, size
, fchigh
, fclow
);
713 size
= aggregate_bits(dest
, size
, rfLen
, 192, invert
, fchigh
, fclow
);
717 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
718 int HIDdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
720 if (justNoise(dest
, *size
)) return -1;
722 size_t numStart
=0, size2
=*size
, startIdx
=0;
724 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
725 if (*size
< 96) return -2;
726 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
727 uint8_t preamble
[] = {0,0,0,1,1,1,0,1};
728 // find bitstring in array
729 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
730 if (errChk
== 0) return -3; //preamble not found
732 numStart
= startIdx
+ sizeof(preamble
);
733 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
734 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
735 if (dest
[idx
] == dest
[idx
+1]){
736 return -4; //not manchester data
738 *hi2
= (*hi2
<<1)|(*hi
>>31);
739 *hi
= (*hi
<<1)|(*lo
>>31);
740 //Then, shift in a 0 or one into low
741 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
746 return (int)startIdx
;
749 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
750 int ParadoxdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
752 if (justNoise(dest
, *size
)) return -1;
754 size_t numStart
=0, size2
=*size
, startIdx
=0;
756 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
757 if (*size
< 96) return -2;
759 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
760 uint8_t preamble
[] = {0,0,0,0,1,1,1,1};
762 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
763 if (errChk
== 0) return -3; //preamble not found
765 numStart
= startIdx
+ sizeof(preamble
);
766 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
767 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
768 if (dest
[idx
] == dest
[idx
+1])
769 return -4; //not manchester data
770 *hi2
= (*hi2
<<1)|(*hi
>>31);
771 *hi
= (*hi
<<1)|(*lo
>>31);
772 //Then, shift in a 0 or one into low
773 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
778 return (int)startIdx
;
781 uint32_t bytebits_to_byte(uint8_t* src
, size_t numbits
)
784 for(int i
= 0 ; i
< numbits
; i
++)
786 num
= (num
<< 1) | (*src
);
792 int IOdemodFSK(uint8_t *dest
, size_t size
)
794 if (justNoise(dest
, size
)) return -1;
795 //make sure buffer has data
796 if (size
< 66*64) return -2;
798 size
= fskdemod(dest
, size
, 64, 1, 10, 8); // FSK2a RF/64
799 if (size
< 65) return -3; //did we get a good demod?
801 //0 10 20 30 40 50 60
803 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
804 //-----------------------------------------------------------------------------
805 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
807 //XSF(version)facility:codeone+codetwo
810 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,1};
811 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), &size
, &startIdx
);
812 if (errChk
== 0) return -4; //preamble not found
814 if (!dest
[startIdx
+8] && dest
[startIdx
+17]==1 && dest
[startIdx
+26]==1 && dest
[startIdx
+35]==1 && dest
[startIdx
+44]==1 && dest
[startIdx
+53]==1){
815 //confirmed proper separator bits found
816 //return start position
817 return (int) startIdx
;
823 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
824 // Parity Type (1 for odd 0 for even), and binary Length (length to run)
825 size_t removeParity(uint8_t *BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
827 uint32_t parityWd
= 0;
828 size_t j
= 0, bitCnt
= 0;
829 for (int word
= 0; word
< (bLen
); word
+=pLen
){
830 for (int bit
=0; bit
< pLen
; bit
++){
831 parityWd
= (parityWd
<< 1) | BitStream
[startIdx
+word
+bit
];
832 BitStream
[j
++] = (BitStream
[startIdx
+word
+bit
]);
835 // if parity fails then return 0
836 if (parityTest(parityWd
, pLen
, pType
) == 0) return -1;
840 // if we got here then all the parities passed
841 //return ID start index and size
846 // FSK Demod then try to locate an AWID ID
847 int AWIDdemodFSK(uint8_t *dest
, size_t *size
)
849 //make sure buffer has enough data
850 if (*size
< 96*50) return -1;
852 if (justNoise(dest
, *size
)) return -2;
855 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
856 if (*size
< 96) return -3; //did we get a good demod?
858 uint8_t preamble
[] = {0,0,0,0,0,0,0,1};
860 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
861 if (errChk
== 0) return -4; //preamble not found
862 if (*size
!= 96) return -5;
863 return (int)startIdx
;
867 // FSK Demod then try to locate an Farpointe Data (pyramid) ID
868 int PyramiddemodFSK(uint8_t *dest
, size_t *size
)
870 //make sure buffer has data
871 if (*size
< 128*50) return -5;
873 //test samples are not just noise
874 if (justNoise(dest
, *size
)) return -1;
877 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
878 if (*size
< 128) return -2; //did we get a good demod?
880 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
882 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
883 if (errChk
== 0) return -4; //preamble not found
884 if (*size
!= 128) return -3;
885 return (int)startIdx
;
889 uint8_t DetectCleanAskWave(uint8_t dest
[], size_t size
, int high
, int low
)
893 for (size_t i
=30; i
<255; i
++){
894 if (dest
[i
]>low
&& dest
[i
]<high
)
900 if (cntPeaks
>210) return 1;
905 int DetectStrongAskClock(uint8_t dest
[], size_t size
)
907 int clk
[]={0,8,16,32,40,50,64,100,128,256};
913 for (;idx
< size
; idx
++){
918 if (highCnt
!= 0) highCnt2
= highCnt
;
920 } else if (cnt
> highCnt2
) {
927 } else if (dest
[idx
] <= 128){
931 if (highCnt
!= 0) highCnt2
= highCnt
;
933 } else if (cnt
> highCnt2
) {
942 for (idx
=8; idx
>0; idx
--){
943 if (clk
[idx
] >= highCnt
&& clk
[idx
] <= highCnt
+2)
945 if (clk
[idx
] >= highCnt2
&& clk
[idx
] <= highCnt2
+2)
952 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
953 // maybe somehow adjust peak trimming value based on samples to fix?
954 // return start index of best starting position for that clock and return clock (by reference)
955 int DetectASKClock(uint8_t dest
[], size_t size
, int *clock
, int maxErr
)
958 int clk
[]={8,16,32,40,50,64,100,128,256};
959 int loopCnt
= 256; //don't need to loop through entire array...
960 if (size
== 0) return -1;
961 if (size
<loopCnt
) loopCnt
= size
;
962 //if we already have a valid clock quit
965 if (clk
[i
] == *clock
) return 0;
967 //get high and low peak
969 getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75);
971 //test for large clean peaks
972 if (DetectCleanAskWave(dest
, size
, peak
, low
)==1){
973 int ans
= DetectStrongAskClock(dest
, size
);
984 int bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
985 int bestStart
[]={0,0,0,0,0,0,0,0,0};
987 //test each valid clock from smallest to greatest to see which lines up
988 for(clkCnt
=0; clkCnt
< 8; clkCnt
++){
989 if (clk
[clkCnt
] == 32){
994 if (!maxErr
) loopCnt
=clk
[clkCnt
]*2;
995 bestErr
[clkCnt
]=1000;
996 //try lining up the peaks by moving starting point (try first 256)
997 for (ii
=0; ii
< loopCnt
; ii
++){
998 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)){
1000 // now that we have the first one lined up test rest of wave array
1001 for (i
=0; i
<((int)((size
-ii
-tol
)/clk
[clkCnt
])-1); ++i
){
1002 if (dest
[ii
+(i
*clk
[clkCnt
])]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])]<=low
){
1003 }else if(dest
[ii
+(i
*clk
[clkCnt
])-tol
]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])-tol
]<=low
){
1004 }else if(dest
[ii
+(i
*clk
[clkCnt
])+tol
]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])+tol
]<=low
){
1005 }else{ //error no peak detected
1009 //if we found no errors then we can stop here
1010 // this is correct one - return this clock
1011 //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
1012 if(errCnt
==0 && clkCnt
<6) {
1013 *clock
= clk
[clkCnt
];
1016 //if we found errors see if it is lowest so far and save it as best run
1017 if(errCnt
<bestErr
[clkCnt
]){
1018 bestErr
[clkCnt
]=errCnt
;
1019 bestStart
[clkCnt
]=ii
;
1026 for (iii
=0; iii
<8; ++iii
){
1027 if (bestErr
[iii
]<bestErr
[best
]){
1028 if (bestErr
[iii
]==0) bestErr
[iii
]=1;
1029 // current best bit to error ratio vs new bit to error ratio
1030 if (((size
/clk
[best
])/bestErr
[best
] < (size
/clk
[iii
])/bestErr
[iii
]) ){
1035 if (bestErr
[best
]>maxErr
) return -1;
1037 return bestStart
[best
];
1041 //detect psk clock by reading each phase shift
1042 // a phase shift is determined by measuring the sample length of each wave
1043 int DetectPSKClock(uint8_t dest
[], size_t size
, int clock
)
1045 uint8_t clk
[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
1046 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
1047 if (size
== 0) return 0;
1048 if (size
<loopCnt
) loopCnt
= size
;
1050 //if we already have a valid clock quit
1053 if (clk
[i
] == clock
) return clock
;
1055 size_t waveStart
=0, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
1056 uint8_t clkCnt
, fc
=0, fullWaveLen
=0, tol
=1;
1057 uint16_t peakcnt
=0, errCnt
=0, waveLenCnt
=0;
1058 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
1059 uint16_t peaksdet
[]={0,0,0,0,0,0,0,0,0};
1060 countFC(dest
, size
, &fc
);
1061 //PrintAndLog("DEBUG: FC: %d",fc);
1063 //find first full wave
1064 for (i
=0; i
<loopCnt
; i
++){
1065 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1066 if (waveStart
== 0) {
1068 //PrintAndLog("DEBUG: waveStart: %d",waveStart);
1071 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1072 waveLenCnt
= waveEnd
-waveStart
;
1073 if (waveLenCnt
> fc
){
1074 firstFullWave
= waveStart
;
1075 fullWaveLen
=waveLenCnt
;
1082 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1084 //test each valid clock from greatest to smallest to see which lines up
1085 for(clkCnt
=7; clkCnt
>= 1 ; clkCnt
--){
1086 lastClkBit
= firstFullWave
; //set end of wave as clock align
1090 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
1092 for (i
= firstFullWave
+fullWaveLen
-1; i
< loopCnt
-2; i
++){
1093 //top edge of wave = start of new wave
1094 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1095 if (waveStart
== 0) {
1100 waveLenCnt
= waveEnd
-waveStart
;
1101 if (waveLenCnt
> fc
){
1102 //if this wave is a phase shift
1103 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
1104 if (i
+1 >= lastClkBit
+ clk
[clkCnt
] - tol
){ //should be a clock bit
1106 lastClkBit
+=clk
[clkCnt
];
1107 } else if (i
<lastClkBit
+8){
1108 //noise after a phase shift - ignore
1109 } else { //phase shift before supposed to based on clock
1112 } else if (i
+1 > lastClkBit
+ clk
[clkCnt
] + tol
+ fc
){
1113 lastClkBit
+=clk
[clkCnt
]; //no phase shift but clock bit
1122 if (errCnt
<= bestErr
[clkCnt
]) bestErr
[clkCnt
]=errCnt
;
1123 if (peakcnt
> peaksdet
[clkCnt
]) peaksdet
[clkCnt
]=peakcnt
;
1125 //all tested with errors
1126 //return the highest clk with the most peaks found
1128 for (i
=7; i
>=1; i
--){
1129 if (peaksdet
[i
] > peaksdet
[best
]) {
1132 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
1138 //detect nrz clock by reading #peaks vs no peaks(or errors)
1139 int DetectNRZClock(uint8_t dest
[], size_t size
, int clock
)
1142 int clk
[]={8,16,32,40,50,64,100,128,256};
1143 int loopCnt
= 4096; //don't need to loop through entire array...
1144 if (size
== 0) return 0;
1145 if (size
<loopCnt
) loopCnt
= size
;
1147 //if we already have a valid clock quit
1149 if (clk
[i
] == clock
) return clock
;
1151 //get high and low peak
1153 getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75);
1155 //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
1160 int peaksdet
[]={0,0,0,0,0,0,0,0};
1162 //test for large clipped waves
1163 for (i
=0; i
<loopCnt
; i
++){
1164 if (dest
[i
] >= peak
|| dest
[i
] <= low
){
1167 if (peakcnt
>0 && maxPeak
< peakcnt
){
1174 //test each valid clock from smallest to greatest to see which lines up
1175 for(clkCnt
=0; clkCnt
< 8; ++clkCnt
){
1176 //ignore clocks smaller than largest peak
1177 if (clk
[clkCnt
]<maxPeak
) continue;
1179 //try lining up the peaks by moving starting point (try first 256)
1180 for (ii
=0; ii
< loopCnt
; ++ii
){
1181 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)){
1183 // now that we have the first one lined up test rest of wave array
1184 for (i
=0; i
< ((int)((size
-ii
-tol
)/clk
[clkCnt
])-1); ++i
){
1185 if (dest
[ii
+(i
*clk
[clkCnt
])]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])]<=low
){
1189 if(peakcnt
>peaksdet
[clkCnt
]) {
1190 peaksdet
[clkCnt
]=peakcnt
;
1197 for (iii
=7; iii
> 0; iii
--){
1198 if (peaksdet
[iii
] > peaksdet
[best
]){
1201 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
1207 // convert psk1 demod to psk2 demod
1208 // only transition waves are 1s
1209 void psk1TOpsk2(uint8_t *BitStream
, size_t size
)
1212 uint8_t lastBit
=BitStream
[0];
1213 for (; i
<size
; i
++){
1214 if (BitStream
[i
]==77){
1216 } else if (lastBit
!=BitStream
[i
]){
1217 lastBit
=BitStream
[i
];
1227 // convert psk2 demod to psk1 demod
1228 // from only transition waves are 1s to phase shifts change bit
1229 void psk2TOpsk1(uint8_t *BitStream
, size_t size
)
1232 for (size_t i
=0; i
<size
; i
++){
1233 if (BitStream
[i
]==1){
1241 // redesigned by marshmellow adjusted from existing decode functions
1242 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1243 int indala26decode(uint8_t *bitStream
, size_t *size
, uint8_t *invert
)
1245 //26 bit 40134 format (don't know other formats)
1247 int long_wait
=29;//29 leading zeros in format
1253 // Finding the start of a UID
1254 for (start
= 0; start
<= *size
- 250; start
++) {
1255 first
= bitStream
[start
];
1256 for (i
= start
; i
< start
+ long_wait
; i
++) {
1257 if (bitStream
[i
] != first
) {
1261 if (i
== (start
+ long_wait
)) {
1265 if (start
== *size
- 250 + 1) {
1266 // did not find start sequence
1269 // Inverting signal if needed
1271 for (i
= start
; i
< *size
; i
++) {
1272 bitStream
[i
] = !bitStream
[i
];
1278 //found start once now test length by finding next one
1279 for (ii
=start
+29; ii
<= *size
- 250; ii
++) {
1280 first2
= bitStream
[ii
];
1281 for (iii
= ii
; iii
< ii
+ long_wait
; iii
++) {
1282 if (bitStream
[iii
] != first2
) {
1286 if (iii
== (ii
+ long_wait
)) {
1290 if (ii
== *size
- 250 + 1){
1291 // did not find second start sequence
1298 for (ii
= 0; ii
< bitCnt
; ii
++) {
1299 bitStream
[ii
] = bitStream
[i
++];
1305 // by marshmellow - demodulate NRZ wave (both similar enough)
1306 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1307 // there probably is a much simpler way to do this....
1308 int nrzRawDemod(uint8_t *dest
, size_t *size
, int *clk
, int *invert
, int maxErr
)
1310 if (justNoise(dest
, *size
)) return -1;
1311 *clk
= DetectNRZClock(dest
, *size
, *clk
);
1312 if (*clk
==0) return -2;
1314 uint32_t gLen
= 4096;
1315 if (gLen
>*size
) gLen
= *size
;
1317 if (getHiLo(dest
, gLen
, &high
, &low
, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1318 int lastBit
= 0; //set first clock check
1319 uint32_t bitnum
= 0; //output counter
1320 uint8_t tol
= 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
1323 uint16_t MaxBits
= 1000;
1324 uint32_t bestErrCnt
= maxErr
+1;
1325 uint32_t bestPeakCnt
= 0;
1326 uint32_t bestPeakStart
=0;
1327 uint8_t bestFirstPeakHigh
=0;
1328 uint8_t firstPeakHigh
=0;
1331 uint8_t errBitHigh
=0;
1333 uint8_t ignoreWindow
=4;
1334 uint8_t ignoreCnt
=ignoreWindow
; //in case of noice near peak
1335 //loop to find first wave that works - align to clock
1336 for (iii
=0; iii
< gLen
; ++iii
){
1337 if ((dest
[iii
]>=high
) || (dest
[iii
]<=low
)){
1338 if (dest
[iii
]>=high
) firstPeakHigh
=1;
1339 else firstPeakHigh
=0;
1344 //loop through to see if this start location works
1345 for (i
= iii
; i
< *size
; ++i
) {
1346 //if we found a high bar and we are at a clock bit
1347 if ((dest
[i
]>=high
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1353 ignoreCnt
=ignoreWindow
;
1354 //else if low bar found and we are at a clock point
1355 }else if ((dest
[i
]<=low
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1361 ignoreCnt
=ignoreWindow
;
1362 //else if no bars found
1363 }else if(dest
[i
] < high
&& dest
[i
] > low
) {
1373 //if we are past a clock point
1374 if (i
>= lastBit
+*clk
+tol
){ //clock val
1378 //else if bar found but we are not at a clock bit and we did not just have a clock bit
1379 }else if ((dest
[i
]>=high
|| dest
[i
]<=low
) && (i
<lastBit
+*clk
-tol
|| i
>lastBit
+*clk
+tol
) && (bitHigh
==0)){
1380 //error bar found no clock...
1383 if (bitnum
>=MaxBits
) break;
1385 //we got more than 64 good bits and not all errors
1386 if (bitnum
> (64) && (errCnt
<= (maxErr
))) {
1387 //possible good read
1390 bestFirstPeakHigh
=firstPeakHigh
;
1391 bestErrCnt
= errCnt
;
1392 bestPeakCnt
= peakCnt
;
1393 bestPeakStart
= iii
;
1394 break; //great read - finish
1396 if (errCnt
< bestErrCnt
){ //set this as new best run
1397 bestErrCnt
= errCnt
;
1400 if (peakCnt
> bestPeakCnt
){
1401 bestFirstPeakHigh
=firstPeakHigh
;
1402 bestPeakCnt
=peakCnt
;
1408 //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
1409 if (bestErrCnt
<= maxErr
){
1410 //best run is good enough set to best run and set overwrite BinStream
1412 lastBit
=bestPeakStart
-*clk
;
1414 memset(dest
, bestFirstPeakHigh
^1, bestPeakStart
/ *clk
);
1415 bitnum
+= (bestPeakStart
/ *clk
);
1416 for (i
= iii
; i
< *size
; ++i
) {
1417 //if we found a high bar and we are at a clock bit
1418 if ((dest
[i
] >= high
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1422 dest
[bitnum
]=curBit
;
1425 ignoreCnt
=ignoreWindow
;
1426 //else if low bar found and we are at a clock point
1427 }else if ((dest
[i
]<=low
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1431 dest
[bitnum
]=curBit
;
1434 ignoreCnt
=ignoreWindow
;
1435 //else if no bars found
1436 }else if(dest
[i
]<high
&& dest
[i
]>low
) {
1439 //if peak is done was it an error peak?
1449 //if we are past a clock point
1450 if (i
>=lastBit
+*clk
+tol
){ //clock val
1452 dest
[bitnum
]=curBit
;
1455 //else if bar found but we are not at a clock bit and we did not just have a clock bit
1456 }else if ((dest
[i
]>=high
|| dest
[i
]<=low
) && ((i
<lastBit
+*clk
-tol
) || (i
>lastBit
+*clk
+tol
)) && (bitHigh
==0)){
1457 //error bar found no clock...
1460 if (bitnum
>= MaxBits
) break;
1475 //detects the bit clock for FSK given the high and low Field Clocks
1476 uint8_t detectFSKClk(uint8_t *BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1478 uint8_t clk
[] = {8,16,32,40,50,64,100,128,0};
1479 uint16_t rfLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1480 uint8_t rfCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1481 uint8_t rfLensFnd
= 0;
1482 uint8_t lastFCcnt
=0;
1483 uint32_t fcCounter
= 0;
1484 uint16_t rfCounter
= 0;
1485 uint8_t firstBitFnd
= 0;
1487 if (size
== 0) return 0;
1489 uint8_t fcTol
= (uint8_t)(0.5+(float)(fcHigh
-fcLow
)/2);
1494 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1495 // prime i to first up transition
1496 for (i
= 1; i
< size
-1; i
++)
1497 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1])
1500 for (; i
< size
-1; i
++){
1501 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1]){
1505 // if we got less than the small fc + tolerance then set it to the small fc
1506 if (fcCounter
< fcLow
+fcTol
)
1508 else //set it to the large fc
1511 //look for bit clock (rf/xx)
1512 if ((fcCounter
<lastFCcnt
|| fcCounter
>lastFCcnt
)){
1513 //not the same size as the last wave - start of new bit sequence
1515 if (firstBitFnd
>1){ //skip first wave change - probably not a complete bit
1516 for (int ii
=0; ii
<15; ii
++){
1517 if (rfLens
[ii
]==rfCounter
){
1523 if (rfCounter
>0 && rfLensFnd
<15){
1524 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1525 rfCnts
[rfLensFnd
]++;
1526 rfLens
[rfLensFnd
++]=rfCounter
;
1532 lastFCcnt
=fcCounter
;
1541 uint8_t rfHighest
=15, rfHighest2
=15, rfHighest3
=15;
1543 for (i
=0; i
<15; i
++){
1544 //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1545 //get highest 2 RF values (might need to get more values to compare or compare all?)
1546 if (rfCnts
[i
]>rfCnts
[rfHighest
]){
1547 rfHighest3
=rfHighest2
;
1548 rfHighest2
=rfHighest
;
1550 } else if(rfCnts
[i
]>rfCnts
[rfHighest2
]){
1551 rfHighest3
=rfHighest2
;
1553 } else if(rfCnts
[i
]>rfCnts
[rfHighest3
]){
1557 // set allowed clock remainder tolerance to be 1 large field clock length+1
1558 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1559 uint8_t tol1
= fcHigh
+1;
1561 //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1563 // loop to find the highest clock that has a remainder less than the tolerance
1564 // compare samples counted divided by
1566 for (; ii
>=0; ii
--){
1567 if (rfLens
[rfHighest
] % clk
[ii
] < tol1
|| rfLens
[rfHighest
] % clk
[ii
] > clk
[ii
]-tol1
){
1568 if (rfLens
[rfHighest2
] % clk
[ii
] < tol1
|| rfLens
[rfHighest2
] % clk
[ii
] > clk
[ii
]-tol1
){
1569 if (rfLens
[rfHighest3
] % clk
[ii
] < tol1
|| rfLens
[rfHighest3
] % clk
[ii
] > clk
[ii
]-tol1
){
1576 if (ii
<0) return 0; // oops we went too far
1582 //countFC is to detect the field clock lengths.
1583 //counts and returns the 2 most common wave lengths
1584 //mainly used for FSK field clock detection
1585 uint16_t countFC(uint8_t *BitStream
, size_t size
, uint8_t *mostFC
)
1587 uint8_t fcLens
[] = {0,0,0,0,0,0,0,0,0,0};
1588 uint16_t fcCnts
[] = {0,0,0,0,0,0,0,0,0,0};
1589 uint8_t fcLensFnd
= 0;
1590 uint8_t lastFCcnt
=0;
1591 uint32_t fcCounter
= 0;
1593 if (size
== 0) return 0;
1595 // prime i to first up transition
1596 for (i
= 1; i
< size
-1; i
++)
1597 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1])
1600 for (; i
< size
-1; i
++){
1601 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1]){
1602 // new up transition
1605 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1606 if (lastFCcnt
==5 && fcCounter
==9) fcCounter
--;
1607 //if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
1608 if ((fcCounter
==9 && fcCounter
& 1) || fcCounter
==4) fcCounter
++;
1610 // save last field clock count (fc/xx)
1611 // find which fcLens to save it to:
1612 for (int ii
=0; ii
<10; ii
++){
1613 if (fcLens
[ii
]==fcCounter
){
1619 if (fcCounter
>0 && fcLensFnd
<10){
1621 fcCnts
[fcLensFnd
]++;
1622 fcLens
[fcLensFnd
++]=fcCounter
;
1631 uint8_t best1
=9, best2
=9, best3
=9;
1633 // go through fclens and find which ones are bigest 2
1634 for (i
=0; i
<10; i
++){
1635 // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);
1636 // get the 3 best FC values
1637 if (fcCnts
[i
]>maxCnt1
) {
1642 } else if(fcCnts
[i
]>fcCnts
[best2
]){
1645 } else if(fcCnts
[i
]>fcCnts
[best3
]){
1649 uint8_t fcH
=0, fcL
=0;
1650 if (fcLens
[best1
]>fcLens
[best2
]){
1658 *mostFC
=fcLens
[best1
];
1659 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1661 uint16_t fcs
= (((uint16_t)fcH
)<<8) | fcL
;
1662 // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
1668 //countPSK_FC is to detect the psk carrier clock length.
1669 //counts and returns the 1 most common wave length
1670 uint8_t countPSK_FC(uint8_t *BitStream
, size_t size
)
1672 uint8_t fcLens
[] = {0,0,0,0,0,0,0,0,0,0};
1673 uint16_t fcCnts
[] = {0,0,0,0,0,0,0,0,0,0};
1674 uint8_t fcLensFnd
= 0;
1675 uint32_t fcCounter
= 0;
1677 if (size
== 0) return 0;
1679 // prime i to first up transition
1680 for (i
= 1; i
< size
-1; i
++)
1681 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1])
1684 for (; i
< size
-1; i
++){
1685 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1]){
1686 // new up transition
1689 // save last field clock count (fc/xx)
1690 // find which fcLens to save it to:
1691 for (int ii
=0; ii
<10; ii
++){
1692 if (fcLens
[ii
]==fcCounter
){
1698 if (fcCounter
>0 && fcLensFnd
<10){
1700 fcCnts
[fcLensFnd
]++;
1701 fcLens
[fcLensFnd
++]=fcCounter
;
1712 // go through fclens and find which ones are bigest
1713 for (i
=0; i
<10; i
++){
1714 //PrintAndLog("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]);
1715 // get the best FC value
1716 if (fcCnts
[i
]>maxCnt1
) {
1721 return fcLens
[best1
];
1724 //by marshmellow - demodulate PSK1 wave
1725 //uses wave lengths (# Samples)
1726 int pskRawDemod(uint8_t dest
[], size_t *size
, int *clock
, int *invert
)
1728 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
1729 if (size
== 0) return -1;
1730 if (*size
<loopCnt
) loopCnt
= *size
;
1732 uint8_t curPhase
= *invert
;
1733 size_t i
, waveStart
=1, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
1734 uint8_t fc
=0, fullWaveLen
=0, tol
=1;
1735 uint16_t errCnt
=0, waveLenCnt
=0;
1736 fc
= countPSK_FC(dest
, *size
);
1737 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
1738 //PrintAndLog("DEBUG: FC: %d",fc);
1739 *clock
= DetectPSKClock(dest
, *size
, *clock
);
1740 if (*clock
==0) return -1;
1741 int avgWaveVal
=0, lastAvgWaveVal
=0;
1742 //find first phase shift
1743 for (i
=0; i
<loopCnt
; i
++){
1744 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1746 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1747 waveLenCnt
= waveEnd
-waveStart
;
1748 if (waveLenCnt
> fc
&& waveStart
> fc
){ //not first peak and is a large wave
1749 lastAvgWaveVal
= avgWaveVal
/(waveLenCnt
);
1750 firstFullWave
= waveStart
;
1751 fullWaveLen
=waveLenCnt
;
1752 //if average wave value is > graph 0 then it is an up wave or a 1
1753 if (lastAvgWaveVal
> 123) curPhase
^=1; //fudge graph 0 a little 123 vs 128
1759 avgWaveVal
+=dest
[i
+2];
1761 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1762 lastClkBit
= firstFullWave
; //set start of wave as clock align
1763 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
1768 memset(dest
,curPhase
^1,firstFullWave
/ *clock
);
1769 numBits
+= (firstFullWave
/ *clock
);
1770 dest
[numBits
++] = curPhase
; //set first read bit
1771 for (i
= firstFullWave
+fullWaveLen
-1; i
< *size
-3; i
++){
1772 //top edge of wave = start of new wave
1773 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1774 if (waveStart
== 0) {
1777 avgWaveVal
= dest
[i
+1];
1780 waveLenCnt
= waveEnd
-waveStart
;
1781 lastAvgWaveVal
= avgWaveVal
/waveLenCnt
;
1782 if (waveLenCnt
> fc
){
1783 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1784 //if this wave is a phase shift
1785 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1786 if (i
+1 >= lastClkBit
+ *clock
- tol
){ //should be a clock bit
1788 dest
[numBits
++] = curPhase
;
1789 lastClkBit
+= *clock
;
1790 } else if (i
<lastClkBit
+10+fc
){
1791 //noise after a phase shift - ignore
1792 } else { //phase shift before supposed to based on clock
1794 dest
[numBits
++] = 77;
1796 } else if (i
+1 > lastClkBit
+ *clock
+ tol
+ fc
){
1797 lastClkBit
+= *clock
; //no phase shift but clock bit
1798 dest
[numBits
++] = curPhase
;
1804 avgWaveVal
+=dest
[i
+1];