]>
git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
5bbf8a669969ff24b5a46f2ce57c4a0c5930b89a
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
14 uint8_t justNoise(uint8_t *BitStream
, size_t size
)
16 static const uint8_t THRESHOLD
= 123;
17 //test samples are not just noise
18 uint8_t justNoise1
= 1;
19 for(size_t idx
=0; idx
< size
&& justNoise1
;idx
++){
20 justNoise1
= BitStream
[idx
] < THRESHOLD
;
26 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
27 int getHiLo(uint8_t *BitStream
, size_t size
, int *high
, int *low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
31 // get high and low thresholds
32 for (size_t i
=0; i
< size
; i
++){
33 if (BitStream
[i
] > *high
) *high
= BitStream
[i
];
34 if (BitStream
[i
] < *low
) *low
= BitStream
[i
];
36 if (*high
< 123) return -1; // just noise
37 *high
= ((*high
-128)*fuzzHi
+ 12800)/100;
38 *low
= ((*low
-128)*fuzzLo
+ 12800)/100;
43 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
44 // returns 1 if passed
45 uint8_t parityTest(uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
48 for (uint8_t i
= 0; i
< bitLen
; i
++){
49 ans
^= ((bits
>> i
) & 1);
51 //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
52 return (ans
== pType
);
56 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
57 uint8_t preambleSearch(uint8_t *BitStream
, uint8_t *preamble
, size_t pLen
, size_t *size
, size_t *startIdx
)
60 for (int idx
=0; idx
< *size
- pLen
; idx
++){
61 if (memcmp(BitStream
+idx
, preamble
, pLen
) == 0){
68 *size
= idx
- *startIdx
;
77 //takes 1s and 0s and searches for EM410x format - output EM ID
78 uint8_t Em410xDecode(uint8_t *BitStream
, size_t *size
, size_t *startIdx
, uint32_t *hi
, uint64_t *lo
)
80 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
81 // otherwise could be a void with no arguments
84 if (BitStream
[1]>1) return 0; //allow only 1s and 0s
86 // 111111111 bit pattern represent start of frame
87 // include 0 in front to help get start pos
88 uint8_t preamble
[] = {0,1,1,1,1,1,1,1,1,1};
90 uint32_t parityBits
= 0;
94 errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, startIdx
);
95 if (errChk
== 0 || *size
< 64) return 0;
96 if (*size
> 64) FmtLen
= 22;
97 *startIdx
+= 1; //get rid of 0 from preamble
99 for (i
=0; i
<FmtLen
; i
++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
100 parityBits
= bytebits_to_byte(BitStream
+(i
*5)+idx
,5);
101 //check even parity - quit if failed
102 if (parityTest(parityBits
, 5, 0) == 0) return 0;
103 //set uint64 with ID from BitStream
104 for (uint8_t ii
=0; ii
<4; ii
++){
105 *hi
= (*hi
<< 1) | (*lo
>> 63);
106 *lo
= (*lo
<< 1) | (BitStream
[(i
*5)+ii
+idx
]);
109 if (errChk
!= 0) return 1;
110 //skip last 5 bit parity test for simplicity.
115 // demodulates strong heavily clipped samples
116 int cleanAskRawDemod(uint8_t *BinStream
, size_t *size
, int clk
, int invert
, int high
, int low
)
118 size_t bitCnt
=0, smplCnt
=0, errCnt
=0;
119 uint8_t waveHigh
= 0;
120 for (size_t i
=0; i
< *size
; i
++){
121 if (BinStream
[i
] >= high
&& waveHigh
){
123 } else if (BinStream
[i
] <= low
&& !waveHigh
){
125 } else { //transition
126 if ((BinStream
[i
] >= high
&& !waveHigh
) || (BinStream
[i
] <= low
&& waveHigh
)){
127 if (smplCnt
> clk
-(clk
/4)-1) { //full clock
128 if (smplCnt
> clk
+ (clk
/4)+1) { //too many samples
130 BinStream
[bitCnt
++]=7;
131 } else if (waveHigh
) {
132 BinStream
[bitCnt
++] = invert
;
133 BinStream
[bitCnt
++] = invert
;
134 } else if (!waveHigh
) {
135 BinStream
[bitCnt
++] = invert
^ 1;
136 BinStream
[bitCnt
++] = invert
^ 1;
140 } else if (smplCnt
> (clk
/2) - (clk
/4)-1) {
142 BinStream
[bitCnt
++] = invert
;
143 } else if (!waveHigh
) {
144 BinStream
[bitCnt
++] = invert
^ 1;
148 } else if (!bitCnt
) {
150 waveHigh
= (BinStream
[i
] >= high
);
154 //transition bit oops
156 } else { //haven't hit new high or new low yet
166 //takes 3 arguments - clock, invert, maxErr as integers
167 //attempts to demodulate ask while decoding manchester
168 //prints binary found and saves in graphbuffer for further commands
169 int askmandemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
)
172 int start
= DetectASKClock(BinStream
, *size
, clk
, maxErr
); //clock default
173 if (*clk
==0 || start
< 0) return -3;
174 if (*invert
!= 1) *invert
=0;
175 uint8_t initLoopMax
= 255;
176 if (initLoopMax
> *size
) initLoopMax
= *size
;
177 // Detect high and lows
178 // 25% fuzz in case highs and lows aren't clipped [marshmellow]
180 if (getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75) < 1) return -2; //just noise
182 // if clean clipped waves detected run alternate demod
183 if (DetectCleanAskWave(BinStream
, *size
, high
, low
)) {
184 cleanAskRawDemod(BinStream
, size
, *clk
, *invert
, high
, low
);
185 return manrawdecode(BinStream
, size
);
188 // PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
189 int lastBit
; //set first clock check
190 uint16_t bitnum
= 0; //output counter
191 uint8_t tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
192 if (*clk
<= 32) tol
=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
193 uint16_t errCnt
= 0, MaxBits
= 512;
194 lastBit
= start
- *clk
;
195 for (i
= start
; i
< *size
; ++i
) {
196 if ((BinStream
[i
] >= high
) && ((i
-lastBit
) > (*clk
-tol
))){
197 //high found and we are expecting a bar
199 BinStream
[bitnum
++] = *invert
;
200 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
) > (*clk
-tol
))){
201 //low found and we are expecting a bar
203 BinStream
[bitnum
++] = *invert
^ 1;
204 } else if ((i
-lastBit
)>(*clk
+tol
)){
205 //should have hit a high or low based on clock!!
206 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
208 BinStream
[bitnum
++] = 7;
211 lastBit
+= *clk
;//skip over error
213 if (bitnum
>= MaxBits
) break;
220 //encode binary data into binary manchester
221 int ManchesterEncode(uint8_t *BitStream
, size_t size
)
223 size_t modIdx
=20000, i
=0;
224 if (size
>modIdx
) return -1;
225 for (size_t idx
=0; idx
< size
; idx
++){
226 BitStream
[idx
+modIdx
++] = BitStream
[idx
];
227 BitStream
[idx
+modIdx
++] = BitStream
[idx
]^1;
229 for (; i
<(size
*2); i
++){
230 BitStream
[i
] = BitStream
[i
+20000];
236 //take 10 and 01 and manchester decode
237 //run through 2 times and take least errCnt
238 int manrawdecode(uint8_t * BitStream
, size_t *size
)
240 uint16_t bitnum
=0, MaxBits
= 512, errCnt
= 0;
242 uint16_t bestErr
= 1000, bestRun
= 0;
243 if (size
== 0) return -1;
244 //find correct start position [alignment]
245 for (ii
=0;ii
<2;++ii
){
246 for (i
=ii
; i
<*size
-2; i
+=2)
247 if (BitStream
[i
]==BitStream
[i
+1])
257 for (i
=bestRun
; i
< *size
-2; i
+=2){
258 if(BitStream
[i
] == 1 && (BitStream
[i
+1] == 0)){
259 BitStream
[bitnum
++]=0;
260 } else if((BitStream
[i
] == 0) && BitStream
[i
+1] == 1){
261 BitStream
[bitnum
++]=1;
263 BitStream
[bitnum
++]=7;
265 if(bitnum
>MaxBits
) break;
272 //take 01 or 10 = 1 and 11 or 00 = 0
273 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
274 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
275 int BiphaseRawDecode(uint8_t *BitStream
, size_t *size
, int offset
, int invert
)
280 uint16_t MaxBits
=512;
281 //if not enough samples - error
282 if (*size
< 51) return -1;
283 //check for phase change faults - skip one sample if faulty
284 uint8_t offsetA
= 1, offsetB
= 1;
286 if (BitStream
[i
+1]==BitStream
[i
+2]) offsetA
=0;
287 if (BitStream
[i
+2]==BitStream
[i
+3]) offsetB
=0;
289 if (!offsetA
&& offsetB
) offset
++;
290 for (i
=offset
; i
<*size
-3; i
+=2){
291 //check for phase error
292 if (BitStream
[i
+1]==BitStream
[i
+2]) {
293 BitStream
[bitnum
++]=7;
296 if((BitStream
[i
]==1 && BitStream
[i
+1]==0) || (BitStream
[i
]==0 && BitStream
[i
+1]==1)){
297 BitStream
[bitnum
++]=1^invert
;
298 } else if((BitStream
[i
]==0 && BitStream
[i
+1]==0) || (BitStream
[i
]==1 && BitStream
[i
+1]==1)){
299 BitStream
[bitnum
++]=invert
;
301 BitStream
[bitnum
++]=7;
304 if(bitnum
>MaxBits
) break;
311 void askAmp(uint8_t *BitStream
, size_t size
)
315 for(size_t i
= 1; i
<size
; i
++){
316 if (BitStream
[i
]-BitStream
[i
-1]>=30) //large jump up
318 else if(BitStream
[i
]-BitStream
[i
-1]<=-20) //large jump down
321 shiftedVal
=BitStream
[i
]+shift
;
325 else if (shiftedVal
<0)
327 BitStream
[i
-1] = shiftedVal
;
333 //takes 3 arguments - clock, invert and maxErr as integers
334 //attempts to demodulate ask only
335 int askrawdemod(uint8_t *BinStream
, size_t *size
, int *clk
, int *invert
, int maxErr
, uint8_t amp
)
337 if (*size
==0) return -1;
338 int start
= DetectASKClock(BinStream
, *size
, clk
, maxErr
); //clock default
339 if (*clk
==0 || start
< 0) return -1;
340 if (*invert
!= 1) *invert
= 0;
341 if (amp
==1) askAmp(BinStream
, *size
);
343 uint8_t initLoopMax
= 255;
344 if (initLoopMax
> *size
) initLoopMax
= *size
;
345 // Detect high and lows
346 //25% clip in case highs and lows aren't clipped [marshmellow]
348 if (getHiLo(BinStream
, initLoopMax
, &high
, &low
, 75, 75) < 1)
349 return -1; //just noise
351 // if clean clipped waves detected run alternate demod
352 if (DetectCleanAskWave(BinStream
, *size
, high
, low
))
353 return cleanAskRawDemod(BinStream
, size
, *clk
, *invert
, high
, low
);
355 int lastBit
; //set first clock check - can go negative
356 size_t i
, errCnt
= 0, bitnum
= 0; //output counter
358 size_t MaxBits
= 1024;
359 lastBit
= start
- *clk
;
361 for (i
= start
; i
< *size
; ++i
) {
362 if (i
- lastBit
== *clk
){
363 if (BinStream
[i
] >= high
) {
364 BinStream
[bitnum
++] = *invert
;
365 } else if (BinStream
[i
] <= low
) {
366 BinStream
[bitnum
++] = *invert
^ 1;
369 BinStream
[bitnum
++]=7;
375 } else if (i
-lastBit
== (*clk
/2) && midBit
== 0){
376 if (BinStream
[i
] >= high
) {
377 BinStream
[bitnum
++] = *invert
;
378 } else if (BinStream
[i
] <= low
) {
379 BinStream
[bitnum
++] = *invert
^ 1;
381 BinStream
[bitnum
] = BinStream
[bitnum
-1];
386 if (bitnum
>= MaxBits
) break;
392 // demod gProxIIDemod
393 // error returns as -x
394 // success returns start position in BitStream
395 // BitStream must contain previously askrawdemod and biphasedemoded data
396 int gProxII_Demod(uint8_t BitStream
[], size_t *size
)
399 uint8_t preamble
[] = {1,1,1,1,1,0};
401 uint8_t errChk
= preambleSearch(BitStream
, preamble
, sizeof(preamble
), size
, &startIdx
);
402 if (errChk
== 0) return -3; //preamble not found
403 if (*size
!= 96) return -2; //should have found 96 bits
404 //check first 6 spacer bits to verify format
405 if (!BitStream
[startIdx
+5] && !BitStream
[startIdx
+10] && !BitStream
[startIdx
+15] && !BitStream
[startIdx
+20] && !BitStream
[startIdx
+25] && !BitStream
[startIdx
+30]){
406 //confirmed proper separator bits found
407 //return start position
408 return (int) startIdx
;
413 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
414 size_t fsk_wave_demod(uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
416 size_t last_transition
= 0;
419 if (fchigh
==0) fchigh
=10;
420 if (fclow
==0) fclow
=8;
421 //set the threshold close to 0 (graph) or 128 std to avoid static
422 uint8_t threshold_value
= 123;
424 // sync to first lo-hi transition, and threshold
426 // Need to threshold first sample
428 if(dest
[0] < threshold_value
) dest
[0] = 0;
432 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
433 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
434 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
435 for(idx
= 1; idx
< size
; idx
++) {
436 // threshold current value
438 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
441 // Check for 0->1 transition
442 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
443 if ((idx
-last_transition
)<(fclow
-2)){ //0-5 = garbage noise
444 //do nothing with extra garbage
445 } else if ((idx
-last_transition
) < (fchigh
-1)) { //6-8 = 8 waves
447 } else if ((idx
-last_transition
) > (fchigh
+1) && !numBits
) { //12 + and first bit = garbage
448 //do nothing with beginning garbage
449 } else { //9+ = 10 waves
452 last_transition
= idx
;
455 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
458 //translate 11111100000 to 10
459 size_t aggregate_bits(uint8_t *dest
, size_t size
, uint8_t rfLen
,
460 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
462 uint8_t lastval
=dest
[0];
466 for( idx
=1; idx
< size
; idx
++) {
468 if (dest
[idx
]==lastval
) continue;
470 //if lastval was 1, we have a 1->0 crossing
471 if (dest
[idx
-1]==1) {
472 if (!numBits
&& n
< rfLen
/fclow
) {
477 n
= (n
* fclow
+ rfLen
/2) / rfLen
;
478 } else {// 0->1 crossing
479 //test first bitsample too small
480 if (!numBits
&& n
< rfLen
/fchigh
) {
485 n
= (n
* fchigh
+ rfLen
/2) / rfLen
;
489 memset(dest
+numBits
, dest
[idx
-1]^invert
, n
);
494 // if valid extra bits at the end were all the same frequency - add them in
495 if (n
> rfLen
/fchigh
) {
496 if (dest
[idx
-2]==1) {
497 n
= (n
* fclow
+ rfLen
/2) / rfLen
;
499 n
= (n
* fchigh
+ rfLen
/2) / rfLen
;
501 memset(dest
+numBits
, dest
[idx
-1]^invert
, n
);
506 //by marshmellow (from holiman's base)
507 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
508 int fskdemod(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
511 size
= fsk_wave_demod(dest
, size
, fchigh
, fclow
);
512 size
= aggregate_bits(dest
, size
, rfLen
, invert
, fchigh
, fclow
);
516 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
517 int HIDdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
519 if (justNoise(dest
, *size
)) return -1;
521 size_t numStart
=0, size2
=*size
, startIdx
=0;
523 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
524 if (*size
< 96*2) return -2;
525 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
526 uint8_t preamble
[] = {0,0,0,1,1,1,0,1};
527 // find bitstring in array
528 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
529 if (errChk
== 0) return -3; //preamble not found
531 numStart
= startIdx
+ sizeof(preamble
);
532 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
533 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
534 if (dest
[idx
] == dest
[idx
+1]){
535 return -4; //not manchester data
537 *hi2
= (*hi2
<<1)|(*hi
>>31);
538 *hi
= (*hi
<<1)|(*lo
>>31);
539 //Then, shift in a 0 or one into low
540 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
545 return (int)startIdx
;
548 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
549 int ParadoxdemodFSK(uint8_t *dest
, size_t *size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
551 if (justNoise(dest
, *size
)) return -1;
553 size_t numStart
=0, size2
=*size
, startIdx
=0;
555 *size
= fskdemod(dest
, size2
,50,1,10,8); //fsk2a
556 if (*size
< 96) return -2;
558 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
559 uint8_t preamble
[] = {0,0,0,0,1,1,1,1};
561 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
562 if (errChk
== 0) return -3; //preamble not found
564 numStart
= startIdx
+ sizeof(preamble
);
565 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
566 for (size_t idx
= numStart
; (idx
-numStart
) < *size
- sizeof(preamble
); idx
+=2){
567 if (dest
[idx
] == dest
[idx
+1])
568 return -4; //not manchester data
569 *hi2
= (*hi2
<<1)|(*hi
>>31);
570 *hi
= (*hi
<<1)|(*lo
>>31);
571 //Then, shift in a 0 or one into low
572 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
577 return (int)startIdx
;
580 uint32_t bytebits_to_byte(uint8_t* src
, size_t numbits
)
583 for(int i
= 0 ; i
< numbits
; i
++)
585 num
= (num
<< 1) | (*src
);
591 int IOdemodFSK(uint8_t *dest
, size_t size
)
593 if (justNoise(dest
, size
)) return -1;
594 //make sure buffer has data
595 if (size
< 66*64) return -2;
597 size
= fskdemod(dest
, size
, 64, 1, 10, 8); // FSK2a RF/64
598 if (size
< 65) return -3; //did we get a good demod?
600 //0 10 20 30 40 50 60
602 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
603 //-----------------------------------------------------------------------------
604 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
606 //XSF(version)facility:codeone+codetwo
609 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,1};
610 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), &size
, &startIdx
);
611 if (errChk
== 0) return -4; //preamble not found
613 if (!dest
[startIdx
+8] && dest
[startIdx
+17]==1 && dest
[startIdx
+26]==1 && dest
[startIdx
+35]==1 && dest
[startIdx
+44]==1 && dest
[startIdx
+53]==1){
614 //confirmed proper separator bits found
615 //return start position
616 return (int) startIdx
;
622 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
623 // Parity Type (1 for odd 0 for even), and binary Length (length to run)
624 size_t removeParity(uint8_t *BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
626 uint32_t parityWd
= 0;
627 size_t j
= 0, bitCnt
= 0;
628 for (int word
= 0; word
< (bLen
); word
+=pLen
){
629 for (int bit
=0; bit
< pLen
; bit
++){
630 parityWd
= (parityWd
<< 1) | BitStream
[startIdx
+word
+bit
];
631 BitStream
[j
++] = (BitStream
[startIdx
+word
+bit
]);
634 // if parity fails then return 0
635 if (parityTest(parityWd
, pLen
, pType
) == 0) return -1;
639 // if we got here then all the parities passed
640 //return ID start index and size
645 // FSK Demod then try to locate an AWID ID
646 int AWIDdemodFSK(uint8_t *dest
, size_t *size
)
648 //make sure buffer has enough data
649 if (*size
< 96*50) return -1;
651 if (justNoise(dest
, *size
)) return -2;
654 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
655 if (*size
< 96) return -3; //did we get a good demod?
657 uint8_t preamble
[] = {0,0,0,0,0,0,0,1};
659 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
660 if (errChk
== 0) return -4; //preamble not found
661 if (*size
!= 96) return -5;
662 return (int)startIdx
;
666 // FSK Demod then try to locate an Farpointe Data (pyramid) ID
667 int PyramiddemodFSK(uint8_t *dest
, size_t *size
)
669 //make sure buffer has data
670 if (*size
< 128*50) return -5;
672 //test samples are not just noise
673 if (justNoise(dest
, *size
)) return -1;
676 *size
= fskdemod(dest
, *size
, 50, 1, 10, 8); // fsk2a RF/50
677 if (*size
< 128) return -2; //did we get a good demod?
679 uint8_t preamble
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
681 uint8_t errChk
= preambleSearch(dest
, preamble
, sizeof(preamble
), size
, &startIdx
);
682 if (errChk
== 0) return -4; //preamble not found
683 if (*size
!= 128) return -3;
684 return (int)startIdx
;
688 uint8_t DetectCleanAskWave(uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
692 size_t loopEnd
= 512+60;
693 if (loopEnd
> size
) loopEnd
= size
;
694 for (size_t i
=60; i
<loopEnd
; i
++){
695 if (dest
[i
]>low
&& dest
[i
]<high
)
701 if (cntPeaks
> 300) return 1;
707 // to help detect clocks on heavily clipped samples
708 // based on count of low to low
709 int DetectStrongAskClock(uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
711 uint8_t fndClk
[] = {8,16,32,40,50,64,128};
715 // get to first full low to prime loop and skip incomplete first pulse
716 while ((dest
[i
] < high
) && (i
< size
))
718 while ((dest
[i
] > low
) && (i
< size
))
721 // loop through all samples
723 // measure from low to low
724 while ((dest
[i
] > low
) && (i
< size
))
727 while ((dest
[i
] < high
) && (i
< size
))
729 while ((dest
[i
] > low
) && (i
< size
))
731 //get minimum measured distance
732 if (i
-startwave
< minClk
&& i
< size
)
733 minClk
= i
- startwave
;
736 for (uint8_t clkCnt
= 0; clkCnt
<7; clkCnt
++) {
737 if (minClk
>= fndClk
[clkCnt
]-(fndClk
[clkCnt
]/8) && minClk
<= fndClk
[clkCnt
]+1)
738 return fndClk
[clkCnt
];
744 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
745 // maybe somehow adjust peak trimming value based on samples to fix?
746 // return start index of best starting position for that clock and return clock (by reference)
747 int DetectASKClock(uint8_t dest
[], size_t size
, int *clock
, int maxErr
)
750 uint8_t clk
[] = {255,8,16,32,40,50,64,100,128,255};
752 uint8_t loopCnt
= 255; //don't need to loop through entire array...
753 if (size
<= loopCnt
) return -1; //not enough samples
755 //if we already have a valid clock
758 if (clk
[i
] == *clock
) clockFnd
= i
;
759 //clock found but continue to find best startpos
761 //get high and low peak
763 if (getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75) < 1) return -1;
765 //test for large clean peaks
767 if (DetectCleanAskWave(dest
, size
, peak
, low
)==1){
768 int ans
= DetectStrongAskClock(dest
, size
, peak
, low
);
769 for (i
=clkEnd
-1; i
>0; i
--){
773 return 0; // for strong waves i don't use the 'best start position' yet...
774 //break; //clock found but continue to find best startpos [not yet]
781 uint8_t clkCnt
, tol
= 0;
782 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
783 uint8_t bestStart
[]={0,0,0,0,0,0,0,0,0};
785 size_t arrLoc
, loopEnd
;
793 //test each valid clock from smallest to greatest to see which lines up
794 for(; clkCnt
< clkEnd
; clkCnt
++){
795 if (clk
[clkCnt
] == 32){
800 //if no errors allowed - keep start within the first clock
801 if (!maxErr
&& size
> clk
[clkCnt
]*2 + tol
&& clk
[clkCnt
]<128) loopCnt
=clk
[clkCnt
]*2;
802 bestErr
[clkCnt
]=1000;
803 //try lining up the peaks by moving starting point (try first few clocks)
804 for (ii
=0; ii
< loopCnt
; ii
++){
805 if (dest
[ii
] < peak
&& dest
[ii
] > low
) continue;
808 // now that we have the first one lined up test rest of wave array
809 loopEnd
= ((size
-ii
-tol
) / clk
[clkCnt
]) - 1;
810 for (i
=0; i
< loopEnd
; ++i
){
811 arrLoc
= ii
+ (i
* clk
[clkCnt
]);
812 if (dest
[arrLoc
] >= peak
|| dest
[arrLoc
] <= low
){
813 }else if (dest
[arrLoc
-tol
] >= peak
|| dest
[arrLoc
-tol
] <= low
){
814 }else if (dest
[arrLoc
+tol
] >= peak
|| dest
[arrLoc
+tol
] <= low
){
815 }else{ //error no peak detected
819 //if we found no errors then we can stop here and a low clock (common clocks)
820 // this is correct one - return this clock
821 //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
822 if(errCnt
==0 && clkCnt
<7) {
823 if (!clockFnd
) *clock
= clk
[clkCnt
];
826 //if we found errors see if it is lowest so far and save it as best run
827 if(errCnt
<bestErr
[clkCnt
]){
828 bestErr
[clkCnt
]=errCnt
;
829 bestStart
[clkCnt
]=ii
;
835 for (iii
=1; iii
<clkEnd
; ++iii
){
836 if (bestErr
[iii
] < bestErr
[best
]){
837 if (bestErr
[iii
] == 0) bestErr
[iii
]=1;
838 // current best bit to error ratio vs new bit to error ratio
839 if ( (size
/clk
[best
])/bestErr
[best
] < (size
/clk
[iii
])/bestErr
[iii
] ){
844 //if (bestErr[best] > maxErr) return -1;
845 if (!clockFnd
) *clock
= clk
[best
];
846 return bestStart
[best
];
850 //detect psk clock by reading each phase shift
851 // a phase shift is determined by measuring the sample length of each wave
852 int DetectPSKClock(uint8_t dest
[], size_t size
, int clock
)
854 uint8_t clk
[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
855 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
856 if (size
== 0) return 0;
857 if (size
<loopCnt
) loopCnt
= size
;
859 //if we already have a valid clock quit
862 if (clk
[i
] == clock
) return clock
;
864 size_t waveStart
=0, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
865 uint8_t clkCnt
, fc
=0, fullWaveLen
=0, tol
=1;
866 uint16_t peakcnt
=0, errCnt
=0, waveLenCnt
=0;
867 uint16_t bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
868 uint16_t peaksdet
[]={0,0,0,0,0,0,0,0,0};
869 fc
= countFC(dest
, size
, 0);
870 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
871 //PrintAndLog("DEBUG: FC: %d",fc);
873 //find first full wave
874 for (i
=0; i
<loopCnt
; i
++){
875 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
876 if (waveStart
== 0) {
878 //PrintAndLog("DEBUG: waveStart: %d",waveStart);
881 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
882 waveLenCnt
= waveEnd
-waveStart
;
883 if (waveLenCnt
> fc
){
884 firstFullWave
= waveStart
;
885 fullWaveLen
=waveLenCnt
;
892 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
894 //test each valid clock from greatest to smallest to see which lines up
895 for(clkCnt
=7; clkCnt
>= 1 ; clkCnt
--){
896 lastClkBit
= firstFullWave
; //set end of wave as clock align
900 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
902 for (i
= firstFullWave
+fullWaveLen
-1; i
< loopCnt
-2; i
++){
903 //top edge of wave = start of new wave
904 if (dest
[i
] < dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
905 if (waveStart
== 0) {
910 waveLenCnt
= waveEnd
-waveStart
;
911 if (waveLenCnt
> fc
){
912 //if this wave is a phase shift
913 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
914 if (i
+1 >= lastClkBit
+ clk
[clkCnt
] - tol
){ //should be a clock bit
916 lastClkBit
+=clk
[clkCnt
];
917 } else if (i
<lastClkBit
+8){
918 //noise after a phase shift - ignore
919 } else { //phase shift before supposed to based on clock
922 } else if (i
+1 > lastClkBit
+ clk
[clkCnt
] + tol
+ fc
){
923 lastClkBit
+=clk
[clkCnt
]; //no phase shift but clock bit
932 if (errCnt
<= bestErr
[clkCnt
]) bestErr
[clkCnt
]=errCnt
;
933 if (peakcnt
> peaksdet
[clkCnt
]) peaksdet
[clkCnt
]=peakcnt
;
935 //all tested with errors
936 //return the highest clk with the most peaks found
938 for (i
=7; i
>=1; i
--){
939 if (peaksdet
[i
] > peaksdet
[best
]) {
942 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
948 //detect nrz clock by reading #peaks vs no peaks(or errors)
949 int DetectNRZClock(uint8_t dest
[], size_t size
, int clock
)
952 uint8_t clk
[]={8,16,32,40,50,64,100,128,255};
953 size_t loopCnt
= 4096; //don't need to loop through entire array...
954 if (size
== 0) return 0;
955 if (size
<loopCnt
) loopCnt
= size
;
957 //if we already have a valid clock quit
959 if (clk
[i
] == clock
) return clock
;
961 //get high and low peak
963 if (getHiLo(dest
, loopCnt
, &peak
, &low
, 75, 75) < 1) return 0;
965 //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
970 uint16_t peaksdet
[]={0,0,0,0,0,0,0,0};
972 //test for large clipped waves
973 for (i
=0; i
<loopCnt
; i
++){
974 if (dest
[i
] >= peak
|| dest
[i
] <= low
){
977 if (peakcnt
>0 && maxPeak
< peakcnt
){
984 //test each valid clock from smallest to greatest to see which lines up
985 for(clkCnt
=0; clkCnt
< 8; ++clkCnt
){
986 //ignore clocks smaller than largest peak
987 if (clk
[clkCnt
]<maxPeak
) continue;
989 //try lining up the peaks by moving starting point (try first 256)
990 for (ii
=0; ii
< loopCnt
; ++ii
){
991 if ((dest
[ii
] >= peak
) || (dest
[ii
] <= low
)){
993 // now that we have the first one lined up test rest of wave array
994 for (i
=0; i
< ((int)((size
-ii
-tol
)/clk
[clkCnt
])-1); ++i
){
995 if (dest
[ii
+(i
*clk
[clkCnt
])]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])]<=low
){
999 if(peakcnt
>peaksdet
[clkCnt
]) {
1000 peaksdet
[clkCnt
]=peakcnt
;
1007 for (iii
=7; iii
> 0; iii
--){
1008 if (peaksdet
[iii
] > peaksdet
[best
]){
1011 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
1017 // convert psk1 demod to psk2 demod
1018 // only transition waves are 1s
1019 void psk1TOpsk2(uint8_t *BitStream
, size_t size
)
1022 uint8_t lastBit
=BitStream
[0];
1023 for (; i
<size
; i
++){
1024 if (BitStream
[i
]==7){
1026 } else if (lastBit
!=BitStream
[i
]){
1027 lastBit
=BitStream
[i
];
1037 // convert psk2 demod to psk1 demod
1038 // from only transition waves are 1s to phase shifts change bit
1039 void psk2TOpsk1(uint8_t *BitStream
, size_t size
)
1042 for (size_t i
=0; i
<size
; i
++){
1043 if (BitStream
[i
]==1){
1051 // redesigned by marshmellow adjusted from existing decode functions
1052 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1053 int indala26decode(uint8_t *bitStream
, size_t *size
, uint8_t *invert
)
1055 //26 bit 40134 format (don't know other formats)
1057 int long_wait
=29;//29 leading zeros in format
1063 // Finding the start of a UID
1064 for (start
= 0; start
<= *size
- 250; start
++) {
1065 first
= bitStream
[start
];
1066 for (i
= start
; i
< start
+ long_wait
; i
++) {
1067 if (bitStream
[i
] != first
) {
1071 if (i
== (start
+ long_wait
)) {
1075 if (start
== *size
- 250 + 1) {
1076 // did not find start sequence
1079 // Inverting signal if needed
1081 for (i
= start
; i
< *size
; i
++) {
1082 bitStream
[i
] = !bitStream
[i
];
1088 //found start once now test length by finding next one
1089 for (ii
=start
+29; ii
<= *size
- 250; ii
++) {
1090 first2
= bitStream
[ii
];
1091 for (iii
= ii
; iii
< ii
+ long_wait
; iii
++) {
1092 if (bitStream
[iii
] != first2
) {
1096 if (iii
== (ii
+ long_wait
)) {
1100 if (ii
== *size
- 250 + 1){
1101 // did not find second start sequence
1108 for (ii
= 0; ii
< bitCnt
; ii
++) {
1109 bitStream
[ii
] = bitStream
[i
++];
1115 // by marshmellow - demodulate NRZ wave (both similar enough)
1116 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1117 // there probably is a much simpler way to do this....
1118 int nrzRawDemod(uint8_t *dest
, size_t *size
, int *clk
, int *invert
, int maxErr
)
1120 if (justNoise(dest
, *size
)) return -1;
1121 *clk
= DetectNRZClock(dest
, *size
, *clk
);
1122 if (*clk
==0) return -2;
1123 size_t i
, gLen
= 4096;
1124 if (gLen
>*size
) gLen
= *size
;
1126 if (getHiLo(dest
, gLen
, &high
, &low
, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
1127 int lastBit
= 0; //set first clock check
1128 size_t iii
= 0, bitnum
= 0; //bitnum counter
1129 uint16_t errCnt
= 0, MaxBits
= 1000;
1130 size_t bestErrCnt
= maxErr
+1;
1131 size_t bestPeakCnt
= 0, bestPeakStart
= 0;
1132 uint8_t bestFirstPeakHigh
=0, firstPeakHigh
=0, curBit
=0, bitHigh
=0, errBitHigh
=0;
1133 uint8_t tol
= 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
1135 uint8_t ignoreWindow
=4;
1136 uint8_t ignoreCnt
=ignoreWindow
; //in case of noise near peak
1137 //loop to find first wave that works - align to clock
1138 for (iii
=0; iii
< gLen
; ++iii
){
1139 if ((dest
[iii
]>=high
) || (dest
[iii
]<=low
)){
1140 if (dest
[iii
]>=high
) firstPeakHigh
=1;
1141 else firstPeakHigh
=0;
1145 //loop through to see if this start location works
1146 for (i
= iii
; i
< *size
; ++i
) {
1147 // if we are at a clock bit
1148 if ((i
>= lastBit
+ *clk
- tol
) && (i
<= lastBit
+ *clk
+ tol
)) {
1150 if (dest
[i
] >= high
|| dest
[i
] <= low
) {
1154 ignoreCnt
= ignoreWindow
;
1156 } else if (i
== lastBit
+ *clk
+ tol
) {
1159 //else if no bars found
1160 } else if (dest
[i
] < high
&& dest
[i
] > low
){
1163 if (errBitHigh
==1) errCnt
++;
1168 } else if ((dest
[i
]>=high
|| dest
[i
]<=low
) && (bitHigh
==0)) {
1169 //error bar found no clock...
1172 if (((i
-iii
) / *clk
)>=MaxBits
) break;
1174 //we got more than 64 good bits and not all errors
1175 if (((i
-iii
) / *clk
) > 64 && (errCnt
<= (maxErr
))) {
1176 //possible good read
1177 if (!errCnt
|| peakCnt
> bestPeakCnt
){
1178 bestFirstPeakHigh
=firstPeakHigh
;
1179 bestErrCnt
= errCnt
;
1180 bestPeakCnt
= peakCnt
;
1181 bestPeakStart
= iii
;
1182 if (!errCnt
) break; //great read - finish
1187 //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
1188 if (bestErrCnt
> maxErr
) return bestErrCnt
;
1190 //best run is good enough set to best run and set overwrite BinStream
1191 lastBit
= bestPeakStart
- *clk
;
1192 memset(dest
, bestFirstPeakHigh
^1, bestPeakStart
/ *clk
);
1193 bitnum
+= (bestPeakStart
/ *clk
);
1194 for (i
= bestPeakStart
; i
< *size
; ++i
) {
1195 // if expecting a clock bit
1196 if ((i
>= lastBit
+ *clk
- tol
) && (i
<= lastBit
+ *clk
+ tol
)) {
1198 if (dest
[i
] >= high
|| dest
[i
] <= low
) {
1202 ignoreCnt
= ignoreWindow
;
1204 if (dest
[i
] >= high
) curBit
^= 1;
1205 dest
[bitnum
++] = curBit
;
1207 //else no bars found in clock area
1208 } else if (i
== lastBit
+ *clk
+ tol
) {
1209 dest
[bitnum
++] = curBit
;
1212 //else if no bars found
1213 } else if (dest
[i
] < high
&& dest
[i
] > low
){
1214 if (ignoreCnt
== 0){
1216 if (errBitHigh
== 1){
1224 } else if ((dest
[i
] >= high
|| dest
[i
] <= low
) && (bitHigh
== 0)) {
1225 //error bar found no clock...
1228 if (bitnum
>= MaxBits
) break;
1235 //detects the bit clock for FSK given the high and low Field Clocks
1236 uint8_t detectFSKClk(uint8_t *BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1238 uint8_t clk
[] = {8,16,32,40,50,64,100,128,0};
1239 uint16_t rfLens
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1240 uint8_t rfCnts
[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
1241 uint8_t rfLensFnd
= 0;
1242 uint8_t lastFCcnt
= 0;
1243 uint16_t fcCounter
= 0;
1244 uint16_t rfCounter
= 0;
1245 uint8_t firstBitFnd
= 0;
1247 if (size
== 0) return 0;
1249 uint8_t fcTol
= (uint8_t)(0.5+(float)(fcHigh
-fcLow
)/2);
1254 //PrintAndLog("DEBUG: fcTol: %d",fcTol);
1255 // prime i to first up transition
1256 for (i
= 1; i
< size
-1; i
++)
1257 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
]>=BitStream
[i
+1])
1260 for (; i
< size
-1; i
++){
1264 if (BitStream
[i
] <= BitStream
[i
-1] || BitStream
[i
] < BitStream
[i
+1])
1267 // if we got less than the small fc + tolerance then set it to the small fc
1268 if (fcCounter
< fcLow
+fcTol
)
1270 else //set it to the large fc
1273 //look for bit clock (rf/xx)
1274 if ((fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1275 //not the same size as the last wave - start of new bit sequence
1276 if (firstBitFnd
> 1){ //skip first wave change - probably not a complete bit
1277 for (int ii
=0; ii
<15; ii
++){
1278 if (rfLens
[ii
] == rfCounter
){
1284 if (rfCounter
> 0 && rfLensFnd
< 15){
1285 //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1286 rfCnts
[rfLensFnd
]++;
1287 rfLens
[rfLensFnd
++] = rfCounter
;
1293 lastFCcnt
=fcCounter
;
1297 uint8_t rfHighest
=15, rfHighest2
=15, rfHighest3
=15;
1299 for (i
=0; i
<15; i
++){
1300 //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
1301 //get highest 2 RF values (might need to get more values to compare or compare all?)
1302 if (rfCnts
[i
]>rfCnts
[rfHighest
]){
1303 rfHighest3
=rfHighest2
;
1304 rfHighest2
=rfHighest
;
1306 } else if(rfCnts
[i
]>rfCnts
[rfHighest2
]){
1307 rfHighest3
=rfHighest2
;
1309 } else if(rfCnts
[i
]>rfCnts
[rfHighest3
]){
1313 // set allowed clock remainder tolerance to be 1 large field clock length+1
1314 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1315 uint8_t tol1
= fcHigh
+1;
1317 //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
1319 // loop to find the highest clock that has a remainder less than the tolerance
1320 // compare samples counted divided by
1322 for (; ii
>=0; ii
--){
1323 if (rfLens
[rfHighest
] % clk
[ii
] < tol1
|| rfLens
[rfHighest
] % clk
[ii
] > clk
[ii
]-tol1
){
1324 if (rfLens
[rfHighest2
] % clk
[ii
] < tol1
|| rfLens
[rfHighest2
] % clk
[ii
] > clk
[ii
]-tol1
){
1325 if (rfLens
[rfHighest3
] % clk
[ii
] < tol1
|| rfLens
[rfHighest3
] % clk
[ii
] > clk
[ii
]-tol1
){
1332 if (ii
<0) return 0; // oops we went too far
1338 //countFC is to detect the field clock lengths.
1339 //counts and returns the 2 most common wave lengths
1340 //mainly used for FSK field clock detection
1341 uint16_t countFC(uint8_t *BitStream
, size_t size
, uint8_t fskAdj
)
1343 uint8_t fcLens
[] = {0,0,0,0,0,0,0,0,0,0};
1344 uint16_t fcCnts
[] = {0,0,0,0,0,0,0,0,0,0};
1345 uint8_t fcLensFnd
= 0;
1346 uint8_t lastFCcnt
=0;
1347 uint8_t fcCounter
= 0;
1349 if (size
== 0) return 0;
1351 // prime i to first up transition
1352 for (i
= 1; i
< size
-1; i
++)
1353 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1])
1356 for (; i
< size
-1; i
++){
1357 if (BitStream
[i
] > BitStream
[i
-1] && BitStream
[i
] >= BitStream
[i
+1]){
1358 // new up transition
1361 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1362 if (lastFCcnt
==5 && fcCounter
==9) fcCounter
--;
1363 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1364 if ((fcCounter
==9) || fcCounter
==4) fcCounter
++;
1365 // save last field clock count (fc/xx)
1366 lastFCcnt
= fcCounter
;
1368 // find which fcLens to save it to:
1369 for (int ii
=0; ii
<10; ii
++){
1370 if (fcLens
[ii
]==fcCounter
){
1376 if (fcCounter
>0 && fcLensFnd
<10){
1378 fcCnts
[fcLensFnd
]++;
1379 fcLens
[fcLensFnd
++]=fcCounter
;
1388 uint8_t best1
=9, best2
=9, best3
=9;
1390 // go through fclens and find which ones are bigest 2
1391 for (i
=0; i
<10; i
++){
1392 // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);
1393 // get the 3 best FC values
1394 if (fcCnts
[i
]>maxCnt1
) {
1399 } else if(fcCnts
[i
]>fcCnts
[best2
]){
1402 } else if(fcCnts
[i
]>fcCnts
[best3
]){
1406 uint8_t fcH
=0, fcL
=0;
1407 if (fcLens
[best1
]>fcLens
[best2
]){
1415 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1417 uint16_t fcs
= (((uint16_t)fcH
)<<8) | fcL
;
1418 // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
1419 if (fskAdj
) return fcs
;
1420 return fcLens
[best1
];
1423 //by marshmellow - demodulate PSK1 wave
1424 //uses wave lengths (# Samples)
1425 int pskRawDemod(uint8_t dest
[], size_t *size
, int *clock
, int *invert
)
1427 if (size
== 0) return -1;
1428 uint16_t loopCnt
= 4096; //don't need to loop through entire array...
1429 if (*size
<loopCnt
) loopCnt
= *size
;
1431 uint8_t curPhase
= *invert
;
1432 size_t i
, waveStart
=1, waveEnd
=0, firstFullWave
=0, lastClkBit
=0;
1433 uint8_t fc
=0, fullWaveLen
=0, tol
=1;
1434 uint16_t errCnt
=0, waveLenCnt
=0;
1435 fc
= countFC(dest
, *size
, 0);
1436 if (fc
!=2 && fc
!=4 && fc
!=8) return -1;
1437 //PrintAndLog("DEBUG: FC: %d",fc);
1438 *clock
= DetectPSKClock(dest
, *size
, *clock
);
1439 if (*clock
== 0) return -1;
1440 int avgWaveVal
=0, lastAvgWaveVal
=0;
1441 //find first phase shift
1442 for (i
=0; i
<loopCnt
; i
++){
1443 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1445 //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
1446 waveLenCnt
= waveEnd
-waveStart
;
1447 if (waveLenCnt
> fc
&& waveStart
> fc
){ //not first peak and is a large wave
1448 lastAvgWaveVal
= avgWaveVal
/(waveLenCnt
);
1449 firstFullWave
= waveStart
;
1450 fullWaveLen
=waveLenCnt
;
1451 //if average wave value is > graph 0 then it is an up wave or a 1
1452 if (lastAvgWaveVal
> 123) curPhase
^= 1; //fudge graph 0 a little 123 vs 128
1458 avgWaveVal
+= dest
[i
+2];
1460 //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
1461 lastClkBit
= firstFullWave
; //set start of wave as clock align
1462 //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
1466 memset(dest
, curPhase
^1, firstFullWave
/ *clock
);
1467 numBits
+= (firstFullWave
/ *clock
);
1468 dest
[numBits
++] = curPhase
; //set first read bit
1469 for (i
= firstFullWave
+ fullWaveLen
- 1; i
< *size
-3; i
++){
1470 //top edge of wave = start of new wave
1471 if (dest
[i
]+fc
< dest
[i
+1] && dest
[i
+1] >= dest
[i
+2]){
1472 if (waveStart
== 0) {
1475 avgWaveVal
= dest
[i
+1];
1478 waveLenCnt
= waveEnd
-waveStart
;
1479 lastAvgWaveVal
= avgWaveVal
/waveLenCnt
;
1480 if (waveLenCnt
> fc
){
1481 //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1482 //this wave is a phase shift
1483 //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1484 if (i
+1 >= lastClkBit
+ *clock
- tol
){ //should be a clock bit
1486 dest
[numBits
++] = curPhase
;
1487 lastClkBit
+= *clock
;
1488 } else if (i
< lastClkBit
+10+fc
){
1489 //noise after a phase shift - ignore
1490 } else { //phase shift before supposed to based on clock
1492 dest
[numBits
++] = 7;
1494 } else if (i
+1 > lastClkBit
+ *clock
+ tol
+ fc
){
1495 lastClkBit
+= *clock
; //no phase shift but clock bit
1496 dest
[numBits
++] = curPhase
;
1502 avgWaveVal
+= dest
[i
+1];