]>
git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
61d01c27588f93bdeab20ef70a5e1b77d6b91dec
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency demod/decode commands
9 //-----------------------------------------------------------------------------
12 //un_comment to allow debug print calls when used not on device
13 void dummy ( char * fmt
, ...){}
18 # include "cmdparser.h"
20 # define prnt PrintAndLog
22 uint8_t g_debugMode
= 0 ;
26 //test samples are not just noise
27 uint8_t justNoise ( uint8_t * bits
, size_t size
) {
30 for ( size_t idx
= 0 ; idx
< size
&& val
; idx
++)
31 val
= bits
[ idx
] < THRESHOLD
;
36 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
37 int getHiLo ( uint8_t * BitStream
, size_t size
, int * high
, int * low
, uint8_t fuzzHi
, uint8_t fuzzLo
)
41 // get high and low thresholds
42 for ( size_t i
= 0 ; i
< size
; i
++){
43 if ( BitStream
[ i
] > * high
) * high
= BitStream
[ i
];
44 if ( BitStream
[ i
] < * low
) * low
= BitStream
[ i
];
46 if (* high
< 123 ) return - 1 ; // just noise
47 * high
= ((* high
- 128 )* fuzzHi
+ 12800 )/ 100 ;
48 * low
= ((* low
- 128 )* fuzzLo
+ 12800 )/ 100 ;
53 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
54 // returns 1 if passed
55 uint8_t parityTest ( uint32_t bits
, uint8_t bitLen
, uint8_t pType
)
58 for ( uint8_t i
= 0 ; i
< bitLen
; i
++){
59 ans
^= (( bits
>> i
) & 1 );
61 if ( g_debugMode
) prnt ( "DEBUG: ans: %d, ptype: %d, bits: %08X" , ans
, pType
, bits
);
62 return ( ans
== pType
);
66 // takes a array of binary values, start position, length of bits per parity (includes parity bit),
67 // Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
68 size_t removeParity ( uint8_t * BitStream
, size_t startIdx
, uint8_t pLen
, uint8_t pType
, size_t bLen
)
70 uint32_t parityWd
= 0 ;
71 size_t j
= 0 , bitCnt
= 0 ;
72 for ( int word
= 0 ; word
< ( bLen
); word
+= pLen
){
73 for ( int bit
= 0 ; bit
< pLen
; bit
++){
74 parityWd
= ( parityWd
<< 1 ) | BitStream
[ startIdx
+ word
+ bit
];
75 BitStream
[ j
++] = ( BitStream
[ startIdx
+ word
+ bit
]);
77 if ( word
+ pLen
> bLen
) break ;
79 j
--; // overwrite parity with next data
80 // if parity fails then return 0
82 case 3 : if ( BitStream
[ j
]== 1 ) { return 0 ; } break ; //should be 0 spacer bit
83 case 2 : if ( BitStream
[ j
]== 0 ) { return 0 ; } break ; //should be 1 spacer bit
84 default : if ( parityTest ( parityWd
, pLen
, pType
) == 0 ) { return 0 ; } break ; //test parity
89 // if we got here then all the parities passed
90 //return ID start index and size
95 // takes a array of binary values, length of bits per parity (includes parity bit),
96 // Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
97 // Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
98 size_t addParity ( uint8_t * BitSource
, uint8_t * dest
, uint8_t sourceLen
, uint8_t pLen
, uint8_t pType
)
100 uint32_t parityWd
= 0 ;
101 size_t j
= 0 , bitCnt
= 0 ;
102 for ( int word
= 0 ; word
< sourceLen
; word
+= pLen
- 1 ) {
103 for ( int bit
= 0 ; bit
< pLen
- 1 ; bit
++){
104 parityWd
= ( parityWd
<< 1 ) | BitSource
[ word
+ bit
];
105 dest
[ j
++] = ( BitSource
[ word
+ bit
]);
108 // if parity fails then return 0
110 case 3 : dest
[ j
++]= 0 ; break ; // marker bit which should be a 0
111 case 2 : dest
[ j
++]= 1 ; break ; // marker bit which should be a 1
113 dest
[ j
++] = parityTest ( parityWd
, pLen
- 1 , pType
) ^ 1 ;
119 // if we got here then all the parities passed
120 //return ID start index and size
124 uint32_t bytebits_to_byte ( uint8_t * src
, size_t numbits
)
127 for ( int i
= 0 ; i
< numbits
; i
++) {
128 num
= ( num
<< 1 ) | (* src
);
134 //least significant bit first
135 uint32_t bytebits_to_byteLSBF ( uint8_t * src
, size_t numbits
)
138 for ( int i
= 0 ; i
< numbits
; i
++) {
139 num
= ( num
<< 1 ) | *( src
+ ( numbits
-( i
+ 1 )));
145 // search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found)
146 bool preambleSearch ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
){
147 return preambleSearchEx ( BitStream
, preamble
, pLen
, size
, startIdx
, false );
150 //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
151 // param @findone: look for a repeating preamble or only the first.
152 // em4x05/4x69 only sends preamble once, so look for it once in the first pLen bits
153 bool preambleSearchEx ( uint8_t * BitStream
, uint8_t * preamble
, size_t pLen
, size_t * size
, size_t * startIdx
, bool findone
)
155 // Sanity check. If preamble length is bigger than bitstream length.
156 if ( * size
<= pLen
) return false ;
158 uint8_t foundCnt
= 0 ;
159 for ( int idx
= 0 ; idx
< * size
- pLen
; idx
++){
160 if ( memcmp ( BitStream
+ idx
, preamble
, pLen
) == 0 ){
161 if ( g_debugMode
) prnt ( "DEBUG: preamble found at %i" , idx
);
166 if ( findone
) return true ;
169 * size
= idx
- * startIdx
;
177 // find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup.
178 size_t findModStart ( uint8_t dest
[], size_t size
, uint8_t threshold_value
, uint8_t expWaveSize
) {
180 size_t waveSizeCnt
= 0 ;
181 uint8_t thresholdCnt
= 0 ;
182 bool isAboveThreshold
= dest
[ i
++] >= threshold_value
;
183 for (; i
< size
- 20 ; i
++ ) {
184 if ( dest
[ i
] < threshold_value
&& isAboveThreshold
) {
186 if ( thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+ 1 ) break ;
187 isAboveThreshold
= false ;
189 } else if ( dest
[ i
] >= threshold_value
&& ! isAboveThreshold
) {
191 if ( thresholdCnt
> 2 && waveSizeCnt
< expWaveSize
+ 1 ) break ;
192 isAboveThreshold
= true ;
197 if ( thresholdCnt
> 10 ) break ;
199 if ( g_debugMode
== 2 ) prnt ( "DEBUG: threshold Count reached at %u, count: %u" , i
, thresholdCnt
);
204 //takes 1s and 0s and searches for EM410x format - output EM ID
205 // actually, no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
206 int Em410xDecode ( uint8_t * BitStream
, size_t * size
, size_t * startIdx
, uint32_t * hi
, uint64_t * lo
)
209 if (* size
< 64 ) return - 3 ;
210 if ( BitStream
[ 1 ] > 1 ) return - 1 ;
215 // preamble 0111111111
216 // include 0 in front to help get start pos
217 uint8_t preamble
[] = { 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 };
218 if (! preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, startIdx
))
221 //XL and normal size.
222 if (* size
!= 64 && * size
!= 128 ) return - 3 ;
224 fmtlen
= (* size
== 128 ) ? 22 : 10 ;
226 //skip last 4bit parity row for simplicity
227 * size
= removeParity ( BitStream
, * startIdx
+ sizeof ( preamble
), 5 , 0 , fmtlen
* 5 );
233 * lo
= (( uint64_t )( bytebits_to_byte ( BitStream
, 8 )) << 32 ) | ( bytebits_to_byte ( BitStream
+ 8 , 32 ));
238 * hi
= ( bytebits_to_byte ( BitStream
, 24 ));
239 * lo
= (( uint64_t )( bytebits_to_byte ( BitStream
+ 24 , 32 )) << 32 ) | ( bytebits_to_byte ( BitStream
+ 24 + 32 , 32 ));
248 //demodulates strong heavily clipped samples
249 //RETURN: num of errors. if 0, is ok.
250 int cleanAskRawDemod ( uint8_t * BinStream
, size_t * size
, int clk
, int invert
, int high
, int low
)
252 size_t bitCnt
= 0 , smplCnt
= 0 , errCnt
= 0 ;
253 uint8_t waveHigh
= 0 ;
254 for ( size_t i
= 0 ; i
< * size
; i
++){
255 if ( BinStream
[ i
] >= high
&& waveHigh
){
257 } else if ( BinStream
[ i
] <= low
&& ! waveHigh
){
259 } else { //transition
260 if (( BinStream
[ i
] >= high
&& ! waveHigh
) || ( BinStream
[ i
] <= low
&& waveHigh
)){
262 if ( smplCnt
> clk
-( clk
/ 4 )- 1 ) { //full clock
263 if ( smplCnt
> clk
+ ( clk
/ 4 )+ 1 ) { //too many samples
265 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
266 BinStream
[ bitCnt
++] = 7 ;
267 } else if ( waveHigh
) {
268 BinStream
[ bitCnt
++] = invert
;
269 BinStream
[ bitCnt
++] = invert
;
270 } else if (! waveHigh
) {
271 BinStream
[ bitCnt
++] = invert
^ 1 ;
272 BinStream
[ bitCnt
++] = invert
^ 1 ;
276 } else if ( smplCnt
> ( clk
/ 2 ) - ( clk
/ 4 )- 1 ) {
278 BinStream
[ bitCnt
++] = invert
;
279 } else if (! waveHigh
) {
280 BinStream
[ bitCnt
++] = invert
^ 1 ;
284 } else if (! bitCnt
) {
286 waveHigh
= ( BinStream
[ i
] >= high
);
290 //transition bit oops
292 } else { //haven't hit new high or new low yet
302 void askAmp ( uint8_t * BitStream
, size_t size
)
305 for ( size_t i
= 1 ; i
< size
; ++ i
){
306 if ( BitStream
[ i
]- BitStream
[ i
- 1 ] >= 30 ) //large jump up
308 else if ( BitStream
[ i
- 1 ] - BitStream
[ i
] >= 20 ) //large jump down
316 //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
317 int askdemod ( uint8_t * BinStream
, size_t * size
, int * clk
, int * invert
, int maxErr
, uint8_t amp
, uint8_t askType
)
319 if (* size
== 0 ) return - 1 ;
320 int start
= DetectASKClock ( BinStream
, * size
, clk
, maxErr
); //clock default
322 if (* clk
== 0 || start
< 0 ) return - 3 ;
323 if (* invert
!= 1 ) * invert
= 0 ;
324 if ( amp
== 1 ) askAmp ( BinStream
, * size
);
325 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, beststart %d, amp %d" , * clk
, start
, amp
);
327 uint8_t initLoopMax
= 255 ;
328 if ( initLoopMax
> * size
) initLoopMax
= * size
;
329 // Detect high and lows
330 //25% clip in case highs and lows aren't clipped [marshmellow]
332 if ( getHiLo ( BinStream
, initLoopMax
, & high
, & low
, 75 , 75 ) < 1 )
333 return - 2 ; //just noise
336 // if clean clipped waves detected run alternate demod
337 if ( DetectCleanAskWave ( BinStream
, * size
, high
, low
)) {
338 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Clean Wave Detected - using clean wave demod" );
339 errCnt
= cleanAskRawDemod ( BinStream
, size
, * clk
, * invert
, high
, low
);
340 if ( askType
) //askman
341 return manrawdecode ( BinStream
, size
, 0 );
345 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Weak Wave Detected - using weak wave demod" );
347 int lastBit
; //set first clock check - can go negative
348 size_t i
, bitnum
= 0 ; //output counter
350 uint8_t tol
= 0 ; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
351 if (* clk
<= 32 ) tol
= 1 ; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
352 size_t MaxBits
= 3072 ; //max bits to collect
353 lastBit
= start
- * clk
;
355 for ( i
= start
; i
< * size
; ++ i
) {
356 if ( i
- lastBit
>= * clk
- tol
){
357 if ( BinStream
[ i
] >= high
) {
358 BinStream
[ bitnum
++] = * invert
;
359 } else if ( BinStream
[ i
] <= low
) {
360 BinStream
[ bitnum
++] = * invert
^ 1 ;
361 } else if ( i
- lastBit
>= * clk
+ tol
) {
363 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: Modulation Error at: %u" , i
);
364 BinStream
[ bitnum
++]= 7 ;
367 } else { //in tolerance - looking for peak
372 } else if ( i
- lastBit
>= (* clk
/ 2 - tol
) && ! midBit
&& ! askType
){
373 if ( BinStream
[ i
] >= high
) {
374 BinStream
[ bitnum
++] = * invert
;
375 } else if ( BinStream
[ i
] <= low
) {
376 BinStream
[ bitnum
++] = * invert
^ 1 ;
377 } else if ( i
- lastBit
>= * clk
/ 2 + tol
) {
378 BinStream
[ bitnum
] = BinStream
[ bitnum
- 1 ];
380 } else { //in tolerance - looking for peak
385 if ( bitnum
>= MaxBits
) break ;
391 //take 10 and 01 and manchester decode
392 //run through 2 times and take least errCnt
393 int manrawdecode ( uint8_t * BitStream
, size_t * size
, uint8_t invert
){
396 if (* size
< 16 ) return - 1 ;
398 int errCnt
= 0 , bestErr
= 1000 ;
399 uint16_t bitnum
= 0 , MaxBits
= 512 , bestRun
= 0 ;
402 //find correct start position [alignment]
403 for ( k
= 0 ; k
< 2 ; ++ k
){
404 for ( i
= k
; i
< * size
- 3 ; i
+= 2 ) {
405 if ( BitStream
[ i
] == BitStream
[ i
+ 1 ])
408 if ( bestErr
> errCnt
){
416 for ( i
= bestRun
; i
< * size
- 3 ; i
+= 2 ){
417 if ( BitStream
[ i
] == 1 && ( BitStream
[ i
+ 1 ] == 0 )){
418 BitStream
[ bitnum
++] = invert
;
419 } else if (( BitStream
[ i
] == 0 ) && BitStream
[ i
+ 1 ] == 1 ){
420 BitStream
[ bitnum
++] = invert
^ 1 ;
422 BitStream
[ bitnum
++] = 7 ;
424 if ( bitnum
> MaxBits
) break ;
430 uint32_t manchesterEncode2Bytes ( uint16_t datain
) {
433 for ( uint8_t i
= 0 ; i
< 16 ; i
++) {
434 curBit
= ( datain
>> ( 15 - i
) & 1 );
435 output
|= ( 1 <<((( 15 - i
)* 2 )+ curBit
));
441 //encode binary data into binary manchester
442 int ManchesterEncode ( uint8_t * BitStream
, size_t size
)
444 size_t modIdx
= 20000 , i
= 0 ;
445 if ( size
> modIdx
) return - 1 ;
446 for ( size_t idx
= 0 ; idx
< size
; idx
++){
447 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
];
448 BitStream
[ idx
+ modIdx
++] = BitStream
[ idx
]^ 1 ;
450 for (; i
<( size
* 2 ); i
++){
451 BitStream
[ i
] = BitStream
[ i
+ 20000 ];
457 //take 01 or 10 = 1 and 11 or 00 = 0
458 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
459 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
460 int BiphaseRawDecode ( uint8_t * BitStream
, size_t * size
, int offset
, int invert
)
465 uint16_t MaxBits
= 512 ;
466 //if not enough samples - error
467 if (* size
< 51 ) return - 1 ;
468 //check for phase change faults - skip one sample if faulty
469 uint8_t offsetA
= 1 , offsetB
= 1 ;
471 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) offsetA
= 0 ;
472 if ( BitStream
[ i
+ 2 ]== BitStream
[ i
+ 3 ]) offsetB
= 0 ;
474 if (! offsetA
&& offsetB
) offset
++;
475 for ( i
= offset
; i
<* size
- 3 ; i
+= 2 ){
476 //check for phase error
477 if ( BitStream
[ i
+ 1 ]== BitStream
[ i
+ 2 ]) {
478 BitStream
[ bitnum
++]= 7 ;
481 if (( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 1 )){
482 BitStream
[ bitnum
++]= 1 ^ invert
;
483 } else if (( BitStream
[ i
]== 0 && BitStream
[ i
+ 1 ]== 0 ) || ( BitStream
[ i
]== 1 && BitStream
[ i
+ 1 ]== 1 )){
484 BitStream
[ bitnum
++]= invert
;
486 BitStream
[ bitnum
++]= 7 ;
489 if ( bitnum
> MaxBits
) break ;
496 // demod gProxIIDemod
497 // error returns as -x
498 // success returns start position in BitStream
499 // BitStream must contain previously askrawdemod and biphasedemoded data
500 int gProxII_Demod ( uint8_t BitStream
[], size_t * size
)
503 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 0 };
505 if (! preambleSearch ( BitStream
, preamble
, sizeof ( preamble
), size
, & startIdx
))
506 return - 3 ; //preamble not found
508 if (* size
!= 96 ) return - 2 ; //should have found 96 bits
510 //check first 6 spacer bits to verify format
511 if (! BitStream
[ startIdx
+ 5 ] && ! BitStream
[ startIdx
+ 10 ] && ! BitStream
[ startIdx
+ 15 ] && ! BitStream
[ startIdx
+ 20 ] && ! BitStream
[ startIdx
+ 25 ] && ! BitStream
[ startIdx
+ 30 ]){
512 //confirmed proper separator bits found
513 //return start position
514 return ( int ) startIdx
;
516 return - 5 ; //spacer bits not found - not a valid gproxII
519 //translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
520 size_t fsk_wave_demod ( uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
522 size_t last_transition
= 0 ;
524 if ( fchigh
== 0 ) fchigh
= 10 ;
525 if ( fclow
== 0 ) fclow
= 8 ;
526 //set the threshold close to 0 (graph) or 128 std to avoid static
527 uint8_t threshold_value
= 123 ;
528 size_t preLastSample
= 0 ;
529 size_t LastSample
= 0 ;
530 size_t currSample
= 0 ;
531 if ( size
< 1024 ) return 0 ; // not enough samples
533 //find start of modulating data in trace
534 idx
= findModStart ( dest
, size
, threshold_value
, fchigh
);
536 // Need to threshold first sample
537 if ( dest
[ idx
] < threshold_value
) dest
[ 0 ] = 0 ;
542 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
543 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
544 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
545 // (could also be fc/5 && fc/7 for fsk1 = 4-9)
546 for (; idx
< size
- 20 ; idx
++) {
547 // threshold current value
549 if ( dest
[ idx
] < threshold_value
) dest
[ idx
] = 0 ;
552 // Check for 0->1 transition
553 if ( dest
[ idx
- 1 ] < dest
[ idx
]) {
554 preLastSample
= LastSample
;
555 LastSample
= currSample
;
556 currSample
= idx
- last_transition
;
557 if ( currSample
< ( fclow
- 2 )){ //0-5 = garbage noise (or 0-3)
558 //do nothing with extra garbage
559 } else if ( currSample
< ( fchigh
- 1 )) { //6-8 = 8 sample waves (or 3-6 = 5)
560 //correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
561 if ( LastSample
> ( fchigh
- 2 ) && ( preLastSample
< ( fchigh
- 1 ))){
566 } else if ( currSample
> ( fchigh
+ 1 ) && numBits
< 3 ) { //12 + and first two bit = unusable garbage
567 //do nothing with beginning garbage and reset.. should be rare..
569 } else if ( currSample
== ( fclow
+ 1 ) && LastSample
== ( fclow
- 1 )) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
571 } else { //9+ = 10 sample waves (or 6+ = 7)
574 last_transition
= idx
;
577 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
580 //translate 11111100000 to 10
581 //rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
582 size_t aggregate_bits ( uint8_t * dest
, size_t size
, uint8_t rfLen
,
583 uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
585 uint8_t lastval
= dest
[ 0 ];
589 for ( idx
= 1 ; idx
< size
; idx
++) {
591 if ( dest
[ idx
]== lastval
) continue ; //skip until we hit a transition
593 //find out how many bits (n) we collected
594 //if lastval was 1, we have a 1->0 crossing
595 if ( dest
[ idx
- 1 ]== 1 ) {
596 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
597 } else { // 0->1 crossing
598 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
602 //add to our destination the bits we collected
603 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
608 // if valid extra bits at the end were all the same frequency - add them in
609 if ( n
> rfLen
/ fchigh
) {
610 if ( dest
[ idx
- 2 ]== 1 ) {
611 n
= ( n
* fclow
+ rfLen
/ 2 ) / rfLen
;
613 n
= ( n
* fchigh
+ rfLen
/ 2 ) / rfLen
;
615 memset ( dest
+ numBits
, dest
[ idx
- 1 ]^ invert
, n
);
621 //by marshmellow (from holiman's base)
622 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
623 int fskdemod ( uint8_t * dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
626 size
= fsk_wave_demod ( dest
, size
, fchigh
, fclow
);
627 size
= aggregate_bits ( dest
, size
, rfLen
, invert
, fchigh
, fclow
);
631 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
632 int HIDdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
634 if ( justNoise ( dest
, * size
)) return - 1 ;
636 size_t numStart
= 0 , size2
= * size
, startIdx
= 0 ;
638 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
639 if (* size
< 96 * 2 ) return - 2 ;
640 // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
641 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 1 , 1 , 0 , 1 };
642 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
643 return - 3 ; //preamble not found
645 numStart
= startIdx
+ sizeof ( preamble
);
646 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
647 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
648 if ( dest
[ idx
] == dest
[ idx
+ 1 ]){
649 return - 4 ; //not manchester data
651 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
652 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
653 //Then, shift in a 0 or one into low
655 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
660 return ( int ) startIdx
;
663 // loop to get raw paradox waveform then FSK demodulate the TAG ID from it
664 int ParadoxdemodFSK ( uint8_t * dest
, size_t * size
, uint32_t * hi2
, uint32_t * hi
, uint32_t * lo
)
666 if ( justNoise ( dest
, * size
)) return - 1 ;
668 size_t numStart
= 0 , size2
= * size
, startIdx
= 0 ;
670 * size
= fskdemod ( dest
, size2
, 50 , 1 , 10 , 8 ); //fsk2a
671 if (* size
< 96 ) return - 2 ;
673 // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
674 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 };
675 if ( preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
676 return - 3 ; //preamble not found
678 numStart
= startIdx
+ sizeof ( preamble
);
679 // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
680 for ( size_t idx
= numStart
; ( idx
- numStart
) < * size
- sizeof ( preamble
); idx
+= 2 ){
681 if ( dest
[ idx
] == dest
[ idx
+ 1 ])
682 return - 4 ; //not manchester data
683 * hi2
= (* hi2
<< 1 )|(* hi
>> 31 );
684 * hi
= (* hi
<< 1 )|(* lo
>> 31 );
685 //Then, shift in a 0 or one into low
686 if ( dest
[ idx
] && ! dest
[ idx
+ 1 ]) // 1 0
691 return ( int ) startIdx
;
694 int IOdemodFSK ( uint8_t * dest
, size_t size
)
696 if ( justNoise ( dest
, size
)) return - 1 ;
697 //make sure buffer has data
698 if ( size
< 66 * 64 ) return - 2 ;
700 size
= fskdemod ( dest
, size
, 64 , 1 , 10 , 8 ); // FSK2a RF/64
701 if ( size
< 65 ) return - 3 ; //did we get a good demod?
703 //0 10 20 30 40 50 60
705 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
706 //-----------------------------------------------------------------------------
707 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
709 //XSF(version)facility:codeone+codetwo
712 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
713 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), & size
, & startIdx
))
714 return - 4 ; //preamble not found
716 if (! dest
[ startIdx
+ 8 ] && dest
[ startIdx
+ 17 ]== 1 && dest
[ startIdx
+ 26 ]== 1 && dest
[ startIdx
+ 35 ]== 1 && dest
[ startIdx
+ 44 ]== 1 && dest
[ startIdx
+ 53 ]== 1 ){
717 //confirmed proper separator bits found
718 //return start position
719 return ( int ) startIdx
;
725 // find viking preamble 0xF200 in already demoded data
726 int VikingDemod_AM ( uint8_t * dest
, size_t * size
) {
727 //make sure buffer has data
728 if (* size
< 64 * 2 ) return - 2 ;
730 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
731 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
732 return - 4 ; //preamble not found
734 uint32_t checkCalc
= bytebits_to_byte ( dest
+ startIdx
, 8 ) ^
735 bytebits_to_byte ( dest
+ startIdx
+ 8 , 8 ) ^
736 bytebits_to_byte ( dest
+ startIdx
+ 16 , 8 ) ^
737 bytebits_to_byte ( dest
+ startIdx
+ 24 , 8 ) ^
738 bytebits_to_byte ( dest
+ startIdx
+ 32 , 8 ) ^
739 bytebits_to_byte ( dest
+ startIdx
+ 40 , 8 ) ^
740 bytebits_to_byte ( dest
+ startIdx
+ 48 , 8 ) ^
741 bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
742 if ( checkCalc
!= 0xA8 ) return - 5 ;
743 if (* size
!= 64 ) return - 6 ;
744 //return start position
745 return ( int ) startIdx
;
749 // find Visa2000 preamble in already demoded data
750 int Visa2kDemod_AM ( uint8_t * dest
, size_t * size
) {
751 if (* size
< 96 ) return - 1 ; //make sure buffer has data
753 uint8_t preamble
[] = { 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 1 , 0 , 0 , 1 , 0 };
754 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
755 return - 2 ; //preamble not found
756 if (* size
!= 96 ) return - 3 ; //wrong demoded size
757 //return start position
758 return ( int ) startIdx
;
761 // find Noralsy preamble in already demoded data
762 int NoralsyDemod_AM ( uint8_t * dest
, size_t * size
) {
763 if (* size
< 96 ) return - 1 ; //make sure buffer has data
765 uint8_t preamble
[] = { 1 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 0 };
766 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
767 return - 2 ; //preamble not found
768 if (* size
!= 96 ) return - 3 ; //wrong demoded size
769 //return start position
770 return ( int ) startIdx
;
772 // find presco preamble 0x10D in already demoded data
773 int PrescoDemod ( uint8_t * dest
, size_t * size
) {
774 if (* size
< 128 * 2 ) return - 1 ; //make sure buffer has data
776 uint8_t preamble
[] = { 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
777 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
778 return - 2 ; //preamble not found
779 if (* size
!= 128 ) return - 3 ; //wrong demoded size
780 //return start position
781 return ( int ) startIdx
;
784 // Ask/Biphase Demod then try to locate an ISO 11784/85 ID
785 // BitStream must contain previously askrawdemod and biphasedemoded data
786 int FDXBdemodBI ( uint8_t * dest
, size_t * size
) {
787 if (* size
< 128 * 2 ) return - 1 ; //make sure buffer has enough data
789 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
790 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
791 return - 2 ; //preamble not found
792 if (* size
!= 128 ) return - 3 ; //wrong demoded size
793 //return start position
794 return ( int ) startIdx
;
797 // ASK/Diphase fc/64 (inverted Biphase)
798 // Note: this i s not a demod, this is only a detection
799 // the parameter *dest needs to be demoded before call
800 // 0xFFFF preamble, 64bits
801 int JablotronDemod ( uint8_t * dest
, size_t * size
){
802 if (* size
< 64 * 2 ) return - 1 ; //make sure buffer has enough data
804 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
805 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
806 return - 2 ; //preamble not found
807 if (* size
!= 64 ) return - 3 ; // wrong demoded size
809 uint8_t checkchksum
= 0 ;
810 for ( int i
= 16 ; i
< 56 ; i
+= 8 ) {
811 checkchksum
+= bytebits_to_byte ( dest
+ startIdx
+ i
, 8 );
814 uint8_t crc
= bytebits_to_byte ( dest
+ startIdx
+ 56 , 8 );
815 if ( checkchksum
!= crc
) return - 5 ;
816 return ( int ) startIdx
;
820 // FSK Demod then try to locate an AWID ID
821 int AWIDdemodFSK ( uint8_t * dest
, size_t * size
)
823 //make sure buffer has enough data
824 if (* size
< 96 * 50 ) return - 1 ;
826 if ( justNoise ( dest
, * size
)) return - 2 ;
829 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
830 if (* size
< 96 ) return - 3 ; //did we get a good demod?
832 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
834 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
835 return - 4 ; //preamble not found
836 if (* size
!= 96 ) return - 5 ;
837 return ( int ) startIdx
;
841 // FSK Demod then try to locate a Farpointe Data (pyramid) ID
842 int PyramiddemodFSK ( uint8_t * dest
, size_t * size
)
844 //make sure buffer has data
845 if (* size
< 128 * 50 ) return - 5 ;
847 //test samples are not just noise
848 if ( justNoise ( dest
, * size
)) return - 1 ;
851 * size
= fskdemod ( dest
, * size
, 50 , 1 , 10 , 8 ); // fsk2a RF/50
852 if (* size
< 128 ) return - 2 ; //did we get a good demod?
854 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
855 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
856 return - 4 ; //preamble not found
857 if (* size
!= 128 ) return - 3 ;
858 return ( int ) startIdx
;
861 // find nedap preamble in already demoded data
862 int NedapDemod ( uint8_t * dest
, size_t * size
) {
863 //make sure buffer has data
864 if (* size
< 128 ) return - 3 ;
867 //uint8_t preamble[] = {1,1,1,1,1,1,1,1,1,0,0,0,1};
868 uint8_t preamble
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
869 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
870 return - 4 ; //preamble not found
871 return ( int ) startIdx
;
874 // Find IDTEC PSK1, RF Preamble == 0x4944544B, Demodsize 64bits
876 int IdteckDemodPSK ( uint8_t * dest
, size_t * size
) {
877 //make sure buffer has data
878 if (* size
< 64 * 2 ) return - 1 ;
880 uint8_t preamble
[] = { 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 };
881 if (! preambleSearch ( dest
, preamble
, sizeof ( preamble
), size
, & startIdx
))
882 return - 2 ; //preamble not found
883 if (* size
!= 64 ) return - 3 ; // wrong demoded size
884 return ( int ) startIdx
;
888 // to detect a wave that has heavily clipped (clean) samples
889 uint8_t DetectCleanAskWave ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
891 bool allArePeaks
= true ;
893 size_t loopEnd
= 512 + 160 ;
894 if ( loopEnd
> size
) loopEnd
= size
;
895 for ( size_t i
= 160 ; i
< loopEnd
; i
++){
896 if ( dest
[ i
]> low
&& dest
[ i
]< high
)
902 if ( cntPeaks
> 300 ) return true ;
907 // to help detect clocks on heavily clipped samples
908 // based on count of low to low
909 int DetectStrongAskClock ( uint8_t dest
[], size_t size
, uint8_t high
, uint8_t low
)
911 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
915 // get to first full low to prime loop and skip incomplete first pulse
916 while (( dest
[ i
] < high
) && ( i
< size
))
918 while (( dest
[ i
] > low
) && ( i
< size
))
921 // loop through all samples
923 // measure from low to low
924 while (( dest
[ i
] > low
) && ( i
< size
))
927 while (( dest
[ i
] < high
) && ( i
< size
))
929 while (( dest
[ i
] > low
) && ( i
< size
))
931 //get minimum measured distance
932 if ( i
- startwave
< minClk
&& i
< size
)
933 minClk
= i
- startwave
;
936 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectstrongASKclk smallest wave: %d" , minClk
);
937 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
938 if ( minClk
>= fndClk
[ clkCnt
]-( fndClk
[ clkCnt
]/ 8 ) && minClk
<= fndClk
[ clkCnt
]+ 1 )
939 return fndClk
[ clkCnt
];
943 void SetGraphClock ( int clock
, int startidx
){
945 PlockClockStartIndex
= startidx
;
949 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
950 // maybe somehow adjust peak trimming value based on samples to fix?
951 // return start index of best starting position for that clock and return clock (by reference)
952 int DetectASKClock ( uint8_t dest
[], size_t size
, int * clock
, int maxErr
)
955 uint8_t clk
[] = { 255 , 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
957 uint8_t loopCnt
= 255 ; //don't need to loop through entire array...
958 if ( size
<= loopCnt
+ 60 ) return - 1 ; //not enough samples
959 size
-= 60 ; //sometimes there is a strange end wave - filter out this....
960 //if we already have a valid clock
961 uint8_t clockFnd
= 0 ;
962 for (; i
< clkEnd
; ++ i
)
963 if ( clk
[ i
] == * clock
) clockFnd
= i
;
964 //clock found but continue to find best startpos
966 //get high and low peak
968 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return - 1 ;
970 //test for large clean peaks
972 if ( DetectCleanAskWave ( dest
, size
, peak
, low
)== 1 ){
973 int ans
= DetectStrongAskClock ( dest
, size
, peak
, low
);
974 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d" , ans
);
975 for ( i
= clkEnd
- 1 ; i
> 0 ; i
--){
979 return 0 ; // for strong waves i don't use the 'best start position' yet...
980 //break; //clock found but continue to find best startpos [not yet]
986 uint8_t clkCnt
, tol
= 0 ;
987 uint16_t bestErr
[]={ 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
988 uint8_t bestStart
[]={ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
990 size_t arrLoc
, loopEnd
;
999 //test each valid clock from smallest to greatest to see which lines up
1000 for (; clkCnt
< clkEnd
; clkCnt
++) {
1001 if ( clk
[ clkCnt
] <= 32 ) {
1006 //if no errors allowed - keep start within the first clock
1007 if (! maxErr
&& size
> clk
[ clkCnt
]* 2 + tol
&& clk
[ clkCnt
]< 128 )
1008 loopCnt
= clk
[ clkCnt
] * 2 ;
1010 bestErr
[ clkCnt
] = 1000 ;
1012 //try lining up the peaks by moving starting point (try first few clocks)
1013 for ( ii
= 0 ; ii
< loopCnt
; ii
++){
1014 if ( dest
[ ii
] < peak
&& dest
[ ii
] > low
) continue ;
1017 // now that we have the first one lined up test rest of wave array
1018 loopEnd
= (( size
- ii
- tol
) / clk
[ clkCnt
]) - 1 ;
1019 for ( i
= 0 ; i
< loopEnd
; ++ i
){
1020 arrLoc
= ii
+ ( i
* clk
[ clkCnt
]);
1021 if ( dest
[ arrLoc
] >= peak
|| dest
[ arrLoc
] <= low
){
1022 } else if ( dest
[ arrLoc
- tol
] >= peak
|| dest
[ arrLoc
- tol
] <= low
){
1023 } else if ( dest
[ arrLoc
+ tol
] >= peak
|| dest
[ arrLoc
+ tol
] <= low
){
1024 } else { //error no peak detected
1028 //if we found no errors then we can stop here and a low clock (common clocks)
1029 // this is correct one - return this clock
1030 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, err %d, startpos %d, endpos %d" , clk
[ clkCnt
], errCnt
, ii
, i
);
1031 if ( errCnt
== 0 && clkCnt
< 7 ) {
1032 if (! clockFnd
) * clock
= clk
[ clkCnt
];
1034 SetGraphClock (* clock
, ii
);
1037 //if we found errors see if it is lowest so far and save it as best run
1038 if ( errCnt
< bestErr
[ clkCnt
]) {
1039 bestErr
[ clkCnt
] = errCnt
;
1040 bestStart
[ clkCnt
] = ii
;
1046 for ( k
= 1 ; k
< clkEnd
; ++ k
){
1047 if ( bestErr
[ k
] < bestErr
[ best
]){
1048 if ( bestErr
[ k
] == 0 ) bestErr
[ k
]= 1 ;
1049 // current best bit to error ratio vs new bit to error ratio
1050 if ( ( size
/ clk
[ best
])/ bestErr
[ best
] < ( size
/ clk
[ k
])/ bestErr
[ k
] ){
1054 if ( g_debugMode
== 2 ) prnt ( "DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d" , clk
[ k
], bestErr
[ k
], clk
[ best
], bestStart
[ best
]);
1056 if (! clockFnd
) * clock
= clk
[ best
];
1058 SetGraphClock (* clock
, bestStart
[ best
]);
1059 return bestStart
[ best
];
1063 //detect psk clock by reading each phase shift
1064 // a phase shift is determined by measuring the sample length of each wave
1065 int DetectPSKClock ( uint8_t dest
[], size_t size
, int clock
)
1067 uint8_t clk
[] = { 255 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 }; //255 is not a valid clock
1068 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
1070 //if we already have a valid clock quit
1073 if ( clk
[ i
] == clock
) return clock
;
1075 if ( size
< 160 + 20 ) return 0 ;
1077 // size must be larger than 20 here, and 160 later on.
1078 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
1080 size_t waveStart
= 0 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1081 uint8_t clkCnt
, fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
1082 uint16_t peakcnt
= 0 , errCnt
= 0 , waveLenCnt
= 0 ;
1083 uint16_t bestErr
[] = { 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 , 1000 };
1084 uint16_t peaksdet
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1085 fc
= countFC ( dest
, size
, 0 );
1086 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1087 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: FC: %d" , fc
);
1089 //find first full wave
1090 for ( i
= 160 ; i
< loopCnt
; i
++){
1091 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1092 if ( waveStart
== 0 ) {
1094 //prnt("DEBUG: waveStart: %d",waveStart);
1097 //prnt("DEBUG: waveEnd: %d",waveEnd);
1098 waveLenCnt
= waveEnd
- waveStart
;
1099 if ( waveLenCnt
> fc
){
1100 firstFullWave
= waveStart
;
1101 fullWaveLen
= waveLenCnt
;
1108 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %d, waveLen: %d" , firstFullWave
, fullWaveLen
);
1110 //test each valid clock from greatest to smallest to see which lines up
1111 for ( clkCnt
= 7 ; clkCnt
>= 1 ; clkCnt
--){
1112 lastClkBit
= firstFullWave
; //set end of wave as clock align
1116 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %d" , clk
[ clkCnt
], lastClkBit
);
1118 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< loopCnt
- 2 ; i
++){
1119 //top edge of wave = start of new wave
1120 if ( dest
[ i
] < dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1121 if ( waveStart
== 0 ) {
1126 waveLenCnt
= waveEnd
- waveStart
;
1127 if ( waveLenCnt
> fc
){
1128 //if this wave is a phase shift
1129 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d" , waveStart
, waveLenCnt
, lastClkBit
+ clk
[ clkCnt
]- tol
, i
+ 1 , fc
);
1130 if ( i
+ 1 >= lastClkBit
+ clk
[ clkCnt
] - tol
){ //should be a clock bit
1132 lastClkBit
+= clk
[ clkCnt
];
1133 } else if ( i
< lastClkBit
+ 8 ){
1134 //noise after a phase shift - ignore
1135 } else { //phase shift before supposed to based on clock
1138 } else if ( i
+ 1 > lastClkBit
+ clk
[ clkCnt
] + tol
+ fc
){
1139 lastClkBit
+= clk
[ clkCnt
]; //no phase shift but clock bit
1145 if ( errCnt
== 0 ) return clk
[ clkCnt
];
1146 if ( errCnt
<= bestErr
[ clkCnt
]) bestErr
[ clkCnt
] = errCnt
;
1147 if ( peakcnt
> peaksdet
[ clkCnt
]) peaksdet
[ clkCnt
] = peakcnt
;
1149 //all tested with errors
1150 //return the highest clk with the most peaks found
1152 for ( i
= 7 ; i
>= 1 ; i
--){
1153 if ( peaksdet
[ i
] > peaksdet
[ best
])
1156 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d" , clk
[ i
], peaksdet
[ i
], bestErr
[ i
], clk
[ best
]);
1161 int DetectStrongNRZClk ( uint8_t * dest
, size_t size
, int peak
, int low
){
1162 //find shortest transition from high to low
1164 size_t transition1
= 0 ;
1165 int lowestTransition
= 255 ;
1166 bool lastWasHigh
= false ;
1168 //find first valid beginning of a high or low wave
1169 while (( dest
[ i
] >= peak
|| dest
[ i
] <= low
) && ( i
< size
))
1171 while (( dest
[ i
] < peak
&& dest
[ i
] > low
) && ( i
< size
))
1173 lastWasHigh
= ( dest
[ i
] >= peak
);
1175 if ( i
== size
) return 0 ;
1178 for (; i
< size
; i
++) {
1179 if (( dest
[ i
] >= peak
&& ! lastWasHigh
) || ( dest
[ i
] <= low
&& lastWasHigh
)) {
1180 lastWasHigh
= ( dest
[ i
] >= peak
);
1181 if ( i
- transition1
< lowestTransition
) lowestTransition
= i
- transition1
;
1185 if ( lowestTransition
== 255 ) lowestTransition
= 0 ;
1186 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: detectstrongNRZclk smallest wave: %d" , lowestTransition
);
1187 return lowestTransition
;
1191 //detect nrz clock by reading #peaks vs no peaks(or errors)
1192 //iceman: shouldn't param clock be reference? like DetectASKClock
1193 int DetectNRZClock ( uint8_t dest
[], size_t size
, int clock
)
1196 uint8_t clk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 255 };
1197 size_t loopCnt
= 4096 ; //don't need to loop through entire array...
1199 //if we already have a valid clock quit
1201 if ( clk
[ i
] == clock
) return clock
;
1203 if ( size
< 20 ) return 0 ;
1204 // size must be larger than 20 here
1205 if ( size
< loopCnt
) loopCnt
= size
- 20 ;
1207 //get high and low peak
1209 if ( getHiLo ( dest
, loopCnt
, & peak
, & low
, 75 , 75 ) < 1 ) return 0 ;
1211 int lowestTransition
= DetectStrongNRZClk ( dest
, size
- 20 , peak
, low
);
1215 uint16_t smplCnt
= 0 ;
1216 int16_t peakcnt
= 0 ;
1217 int16_t peaksdet
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1218 uint16_t maxPeak
= 255 ;
1219 bool firstpeak
= false ;
1220 //test for large clipped waves
1221 for ( i
= 0 ; i
< loopCnt
; i
++){
1222 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
){
1223 if (! firstpeak
) continue ;
1228 if ( maxPeak
> smplCnt
){
1230 //prnt("maxPk: %d",maxPeak);
1233 //prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
1238 bool errBitHigh
= 0 ;
1240 uint8_t ignoreCnt
= 0 ;
1241 uint8_t ignoreWindow
= 4 ;
1242 bool lastPeakHigh
= 0 ;
1245 //test each valid clock from smallest to greatest to see which lines up
1246 for ( clkCnt
= 0 ; clkCnt
< 8 ; ++ clkCnt
){
1247 //ignore clocks smaller than smallest peak
1248 if ( clk
[ clkCnt
] < maxPeak
- ( clk
[ clkCnt
]/ 4 )) continue ;
1249 //try lining up the peaks by moving starting point (try first 256)
1250 for ( ii
= 20 ; ii
< loopCnt
; ++ ii
){
1251 if (( dest
[ ii
] >= peak
) || ( dest
[ ii
] <= low
)){
1255 lastBit
= ii
- clk
[ clkCnt
];
1256 //loop through to see if this start location works
1257 for ( i
= ii
; i
< size
- 20 ; ++ i
) {
1258 //if we are at a clock bit
1259 if (( i
>= lastBit
+ clk
[ clkCnt
] - tol
) && ( i
<= lastBit
+ clk
[ clkCnt
] + tol
)) {
1261 if ( dest
[ i
] >= peak
|| dest
[ i
] <= low
) {
1262 //if same peak don't count it
1263 if (( dest
[ i
] >= peak
&& ! lastPeakHigh
) || ( dest
[ i
] <= low
&& lastPeakHigh
)) {
1266 lastPeakHigh
= ( dest
[ i
] >= peak
);
1269 ignoreCnt
= ignoreWindow
;
1270 lastBit
+= clk
[ clkCnt
];
1271 } else if ( i
== lastBit
+ clk
[ clkCnt
] + tol
) {
1272 lastBit
+= clk
[ clkCnt
];
1274 //else if not a clock bit and no peaks
1275 } else if ( dest
[ i
] < peak
&& dest
[ i
] > low
){
1276 if ( ignoreCnt
== 0 ){
1278 if ( errBitHigh
== true )
1284 // else if not a clock bit but we have a peak
1285 } else if (( dest
[ i
]>= peak
|| dest
[ i
]<= low
) && (! bitHigh
)) {
1286 //error bar found no clock...
1290 if ( peakcnt
> peaksdet
[ clkCnt
]) {
1291 peaksdet
[ clkCnt
] = peakcnt
;
1298 for ( int m
= 7 ; m
> 0 ; m
--){
1299 if (( peaksdet
[ m
] >= ( peaksdet
[ best
]- 1 )) && ( peaksdet
[ m
] <= peaksdet
[ best
]+ 1 ) && lowestTransition
) {
1300 if ( clk
[ m
] > ( lowestTransition
- ( clk
[ m
]/ 8 )) && clk
[ m
] < ( lowestTransition
+ ( clk
[ m
]/ 8 ))) {
1303 } else if ( peaksdet
[ m
] > peaksdet
[ best
]){
1306 if ( g_debugMode
== 2 ) prnt ( "DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d" , clk
[ m
], peaksdet
[ m
], maxPeak
, clk
[ best
], lowestTransition
);
1313 // convert psk1 demod to psk2 demod
1314 // only transition waves are 1s
1315 void psk1TOpsk2 ( uint8_t * bits
, size_t size
) {
1316 uint8_t lastBit
= bits
[ 0 ];
1317 for ( size_t i
= 1 ; i
< size
; i
++){
1319 if ( bits
[ i
] == 7 ) continue ;
1321 if ( lastBit
!= bits
[ i
]){
1331 // convert psk2 demod to psk1 demod
1332 // from only transition waves are 1s to phase shifts change bit
1333 void psk2TOpsk1 ( uint8_t * bits
, size_t size
) {
1335 for ( size_t i
= 0 ; i
< size
; i
++){
1343 // redesigned by marshmellow adjusted from existing decode functions
1344 // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
1345 int indala26decode ( uint8_t * bitStream
, size_t * size
, uint8_t * invert
)
1347 //26 bit 40134 format (don't know other formats)
1348 uint8_t preamble
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 };
1349 uint8_t preamble_i
[] = { 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 };
1350 size_t startidx
= 0 ;
1351 if (! preambleSearch ( bitStream
, preamble
, sizeof ( preamble
), size
, & startidx
)){
1352 // if didn't find preamble try again inverting
1353 if (! preambleSearch ( bitStream
, preamble_i
, sizeof ( preamble_i
), size
, & startidx
)) return - 1 ;
1356 if (* size
!= 64 && * size
!= 224 ) return - 2 ;
1358 for ( size_t i
= startidx
; i
< * size
; i
++)
1361 return ( int ) startidx
;
1364 // by marshmellow - demodulate NRZ wave - requires a read with strong signal
1365 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
1366 int nrzRawDemod ( uint8_t * dest
, size_t * size
, int * clk
, int * invert
){
1367 if ( justNoise ( dest
, * size
)) return - 1 ;
1368 * clk
= DetectNRZClock ( dest
, * size
, * clk
);
1369 if (* clk
== 0 ) return - 2 ;
1370 size_t i
, gLen
= 4096 ;
1371 if ( gLen
>* size
) gLen
= * size
- 20 ;
1373 if ( getHiLo ( dest
, gLen
, & high
, & low
, 75 , 75 ) < 1 ) return - 3 ; //25% fuzz on high 25% fuzz on low
1376 //convert wave samples to 1's and 0's
1377 for ( i
= 20 ; i
< * size
- 20 ; i
++){
1378 if ( dest
[ i
] >= high
) bit
= 1 ;
1379 if ( dest
[ i
] <= low
) bit
= 0 ;
1382 //now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit)
1385 for ( i
= 21 ; i
< * size
- 20 ; i
++) {
1386 //if transition detected or large number of same bits - store the passed bits
1387 if ( dest
[ i
] != dest
[ i
- 1 ] || ( i
- lastBit
) == ( 10 * * clk
)) {
1388 memset ( dest
+ numBits
, dest
[ i
- 1 ] ^ * invert
, ( i
- lastBit
+ (* clk
/ 4 )) / * clk
);
1389 numBits
+= ( i
- lastBit
+ (* clk
/ 4 )) / * clk
;
1398 //detects the bit clock for FSK given the high and low Field Clocks
1399 uint8_t detectFSKClk ( uint8_t * BitStream
, size_t size
, uint8_t fcHigh
, uint8_t fcLow
)
1401 uint8_t clk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 100 , 128 , 0 };
1402 uint16_t rfLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1403 uint8_t rfCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1404 uint8_t rfLensFnd
= 0 ;
1405 uint8_t lastFCcnt
= 0 ;
1406 uint16_t fcCounter
= 0 ;
1407 uint16_t rfCounter
= 0 ;
1408 uint8_t firstBitFnd
= 0 ;
1410 if ( size
== 0 ) return 0 ;
1412 uint8_t fcTol
= (( fcHigh
* 100 - fcLow
* 100 )/ 2 + 50 )/ 100 ; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
1417 //prnt("DEBUG: fcTol: %d",fcTol);
1418 // prime i to first peak / up transition
1419 for ( i
= 160 ; i
< size
- 20 ; i
++)
1420 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
]>= BitStream
[ i
+ 1 ])
1423 for (; i
< size
- 20 ; i
++){
1427 if ( BitStream
[ i
] <= BitStream
[ i
- 1 ] || BitStream
[ i
] < BitStream
[ i
+ 1 ])
1430 // if we got less than the small fc + tolerance then set it to the small fc
1431 // if it is inbetween set it to the last counter
1432 if ( fcCounter
< fcHigh
&& fcCounter
> fcLow
)
1433 fcCounter
= lastFCcnt
;
1434 else if ( fcCounter
< fcLow
+ fcTol
)
1436 else //set it to the large fc
1439 //look for bit clock (rf/xx)
1440 if (( fcCounter
< lastFCcnt
|| fcCounter
> lastFCcnt
)){
1441 //not the same size as the last wave - start of new bit sequence
1442 if ( firstBitFnd
> 1 ){ //skip first wave change - probably not a complete bit
1443 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1444 if ( rfLens
[ ii
] >= ( rfCounter
- 4 ) && rfLens
[ ii
] <= ( rfCounter
+ 4 )){
1450 if ( rfCounter
> 0 && rfLensFnd
< 15 ){
1451 //prnt("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
1452 rfCnts
[ rfLensFnd
]++;
1453 rfLens
[ rfLensFnd
++] = rfCounter
;
1459 lastFCcnt
= fcCounter
;
1463 uint8_t rfHighest
= 15 , rfHighest2
= 15 , rfHighest3
= 15 ;
1465 for ( i
= 0 ; i
< 15 ; i
++){
1466 //get highest 2 RF values (might need to get more values to compare or compare all?)
1467 if ( rfCnts
[ i
]> rfCnts
[ rfHighest
]){
1468 rfHighest3
= rfHighest2
;
1469 rfHighest2
= rfHighest
;
1471 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest2
]){
1472 rfHighest3
= rfHighest2
;
1474 } else if ( rfCnts
[ i
]> rfCnts
[ rfHighest3
]){
1477 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: RF %d, cnts %d" , rfLens
[ i
], rfCnts
[ i
]);
1479 // set allowed clock remainder tolerance to be 1 large field clock length+1
1480 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
1481 uint8_t tol1
= fcHigh
+ 1 ;
1483 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d" , rfLens
[ rfHighest
], rfLens
[ rfHighest2
], rfLens
[ rfHighest3
]);
1485 // loop to find the highest clock that has a remainder less than the tolerance
1486 // compare samples counted divided by
1487 // test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
1489 for (; ii
>= 2 ; ii
--){
1490 if ( rfLens
[ rfHighest
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1491 if ( rfLens
[ rfHighest2
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest2
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1492 if ( rfLens
[ rfHighest3
] % clk
[ ii
] < tol1
|| rfLens
[ rfHighest3
] % clk
[ ii
] > clk
[ ii
]- tol1
){
1493 if ( g_debugMode
== 2 ) prnt ( "DEBUG FSK: clk %d divides into the 3 most rf values within tolerance" , clk
[ ii
]);
1500 if ( ii
< 2 ) return 0 ; // oops we went too far
1506 //countFC is to detect the field clock lengths.
1507 //counts and returns the 2 most common wave lengths
1508 //mainly used for FSK field clock detection
1509 uint16_t countFC ( uint8_t * BitStream
, size_t size
, uint8_t fskAdj
)
1511 uint8_t fcLens
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1512 uint16_t fcCnts
[] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
1513 uint8_t fcLensFnd
= 0 ;
1514 uint8_t lastFCcnt
= 0 ;
1515 uint8_t fcCounter
= 0 ;
1517 if ( size
< 180 ) return 0 ;
1519 // prime i to first up transition
1520 for ( i
= 160 ; i
< size
- 20 ; i
++)
1521 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ])
1524 for (; i
< size
- 20 ; i
++){
1525 if ( BitStream
[ i
] > BitStream
[ i
- 1 ] && BitStream
[ i
] >= BitStream
[ i
+ 1 ]){
1526 // new up transition
1529 //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
1530 if ( lastFCcnt
== 5 && fcCounter
== 9 ) fcCounter
--;
1531 //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
1532 if (( fcCounter
== 9 ) || fcCounter
== 4 ) fcCounter
++;
1533 // save last field clock count (fc/xx)
1534 lastFCcnt
= fcCounter
;
1536 // find which fcLens to save it to:
1537 for ( int ii
= 0 ; ii
< 15 ; ii
++){
1538 if ( fcLens
[ ii
]== fcCounter
){
1544 if ( fcCounter
> 0 && fcLensFnd
< 15 ){
1546 fcCnts
[ fcLensFnd
]++;
1547 fcLens
[ fcLensFnd
++]= fcCounter
;
1556 uint8_t best1
= 14 , best2
= 14 , best3
= 14 ;
1558 // go through fclens and find which ones are bigest 2
1559 for ( i
= 0 ; i
< 15 ; i
++){
1560 // get the 3 best FC values
1561 if ( fcCnts
[ i
]> maxCnt1
) {
1566 } else if ( fcCnts
[ i
]> fcCnts
[ best2
]){
1569 } else if ( fcCnts
[ i
]> fcCnts
[ best3
]){
1572 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u" , fcLens
[ i
], fcCnts
[ i
], fcLens
[ best1
], fcLens
[ best2
]);
1574 if ( fcLens
[ best1
]== 0 ) return 0 ;
1575 uint8_t fcH
= 0 , fcL
= 0 ;
1576 if ( fcLens
[ best1
]> fcLens
[ best2
]){
1583 if (( size
- 180 )/ fcH
/ 3 > fcCnts
[ best1
]+ fcCnts
[ best2
]) {
1584 if ( g_debugMode
== 2 ) prnt ( "DEBUG countfc: fc is too large: %u > %u. Not psk or fsk" ,( size
- 180 )/ fcH
/ 3 , fcCnts
[ best1
]+ fcCnts
[ best2
]);
1585 return 0 ; //lots of waves not psk or fsk
1587 // TODO: take top 3 answers and compare to known Field clocks to get top 2
1589 uint16_t fcs
= ((( uint16_t ) fcH
)<< 8 ) | fcL
;
1590 if ( fskAdj
) return fcs
;
1591 return fcLens
[ best1
];
1594 //by marshmellow - demodulate PSK1 wave
1595 //uses wave lengths (# Samples)
1596 int pskRawDemod ( uint8_t dest
[], size_t * size
, int * clock
, int * invert
)
1598 if ( size
== 0 ) return - 1 ;
1599 uint16_t loopCnt
= 4096 ; //don't need to loop through entire array...
1600 if (* size
< loopCnt
) loopCnt
= * size
;
1603 uint8_t curPhase
= * invert
;
1604 size_t i
= 0 , waveStart
= 1 , waveEnd
= 0 , firstFullWave
= 0 , lastClkBit
= 0 ;
1605 uint16_t fc
= 0 , fullWaveLen
= 0 , tol
= 1 ;
1606 uint16_t errCnt
= 0 , waveLenCnt
= 0 , errCnt2
= 0 ;
1607 fc
= countFC ( dest
, * size
, 1 );
1608 uint8_t fc2
= fc
>> 8 ;
1609 if ( fc2
== 10 ) return - 1 ; //fsk found - quit
1611 if ( fc
!= 2 && fc
!= 4 && fc
!= 8 ) return - 1 ;
1612 //prnt("DEBUG: FC: %d",fc);
1613 * clock
= DetectPSKClock ( dest
, * size
, * clock
);
1614 if (* clock
== 0 ) return - 1 ;
1616 //find start of modulating data in trace
1617 uint8_t threshold_value
= 123 ; //-5
1618 i
= findModStart ( dest
, * size
, threshold_value
, fc
);
1620 //find first phase shift
1621 int avgWaveVal
= 0 , lastAvgWaveVal
= 0 ;
1623 for (; i
< loopCnt
; i
++){
1625 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1627 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: waveEnd: %u, waveStart: %u" , waveEnd
, waveStart
);
1628 waveLenCnt
= waveEnd
- waveStart
;
1629 if ( waveLenCnt
> fc
&& waveStart
> fc
&& !( waveLenCnt
> fc
+ 3 )){ //not first peak and is a large wave but not out of whack
1630 lastAvgWaveVal
= avgWaveVal
/( waveLenCnt
);
1631 firstFullWave
= waveStart
;
1632 fullWaveLen
= waveLenCnt
;
1633 //if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
1634 if ( lastAvgWaveVal
> threshold_value
) curPhase
^= 1 ;
1640 avgWaveVal
+= dest
[ i
+ 2 ];
1642 if ( firstFullWave
== 0 ) {
1643 // no phase shift detected - could be all 1's or 0's - doesn't matter where we start
1644 // so skip a little to ensure we are past any Start Signal
1645 firstFullWave
= 160 ;
1646 memset ( dest
, curPhase
, firstFullWave
/ * clock
);
1648 memset ( dest
, curPhase
^ 1 , firstFullWave
/ * clock
);
1651 numBits
+= ( firstFullWave
/ * clock
);
1652 //set start of wave as clock align
1653 lastClkBit
= firstFullWave
;
1654 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: firstFullWave: %u, waveLen: %u" , firstFullWave
, fullWaveLen
);
1655 if ( g_debugMode
== 2 ) prnt ( "DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u" , * clock
, lastClkBit
,( unsigned int ) fc
);
1657 dest
[ numBits
++] = curPhase
; //set first read bit
1658 for ( i
= firstFullWave
+ fullWaveLen
- 1 ; i
< * size
- 3 ; i
++){
1659 //top edge of wave = start of new wave
1660 if ( dest
[ i
]+ fc
< dest
[ i
+ 1 ] && dest
[ i
+ 1 ] >= dest
[ i
+ 2 ]){
1661 if ( waveStart
== 0 ) {
1664 avgWaveVal
= dest
[ i
+ 1 ];
1667 waveLenCnt
= waveEnd
- waveStart
;
1668 lastAvgWaveVal
= avgWaveVal
/ waveLenCnt
;
1669 if ( waveLenCnt
> fc
){
1670 //prnt("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
1671 //this wave is a phase shift
1672 //prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
1673 if ( i
+ 1 >= lastClkBit
+ * clock
- tol
){ //should be a clock bit
1675 dest
[ numBits
++] = curPhase
;
1676 lastClkBit
+= * clock
;
1677 } else if ( i
< lastClkBit
+ 10 + fc
){
1678 //noise after a phase shift - ignore
1679 } else { //phase shift before supposed to based on clock
1681 dest
[ numBits
++] = 7 ;
1683 } else if ( i
+ 1 > lastClkBit
+ * clock
+ tol
+ fc
){
1684 lastClkBit
+= * clock
; //no phase shift but clock bit
1685 dest
[ numBits
++] = curPhase
;
1686 } else if ( waveLenCnt
< fc
- 1 ) { //wave is smaller than field clock (shouldn't happen often)
1688 if ( errCnt2
> 101 ) return errCnt2
;
1694 avgWaveVal
+= dest
[ i
+ 1 ];
1700 bool DetectST ( uint8_t buffer
[], size_t * size
, int * foundclock
) {
1701 size_t ststart
= 0 , stend
= 0 ;
1702 return DetectST_ext ( buffer
, size
, foundclock
, & ststart
, & stend
);
1706 //attempt to identify a Sequence Terminator in ASK modulated raw wave
1707 bool DetectST_ext ( uint8_t buffer
[], size_t * size
, int * foundclock
, size_t * ststart
, size_t * stend
) {
1708 size_t bufsize
= * size
;
1709 //need to loop through all samples and identify our clock, look for the ST pattern
1710 uint8_t fndClk
[] = { 8 , 16 , 32 , 40 , 50 , 64 , 128 };
1713 int i
, j
, skip
, start
, end
, low
, high
, minClk
, waveStart
;
1714 bool complete
= false ;
1715 int tmpbuff
[ bufsize
/ 32 ]; //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
1716 int waveLen
[ bufsize
/ 32 ]; // if clock is larger then we waste memory in array size that is not needed...
1717 size_t testsize
= ( bufsize
< 512 ) ? bufsize
: 512 ;
1720 memset ( tmpbuff
, 0 , sizeof ( tmpbuff
));
1721 memset ( waveLen
, 0 , sizeof ( waveLen
));
1724 if ( getHiLo ( buffer
, testsize
, & high
, & low
, 80 , 80 ) == - 1 ) {
1725 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: just noise detected - quitting" );
1726 return false ; //just noise
1731 // get to first full low to prime loop and skip incomplete first pulse
1732 while (( buffer
[ i
] < high
) && ( i
< bufsize
))
1734 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1738 // populate tmpbuff buffer with pulse lengths
1739 while ( i
< bufsize
) {
1740 // measure from low to low
1741 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1744 while (( buffer
[ i
] < high
) && ( i
< bufsize
))
1746 //first high point for this wave
1748 while (( buffer
[ i
] > low
) && ( i
< bufsize
))
1750 if ( j
>= ( bufsize
/ 32 )) {
1753 waveLen
[ j
] = i
- waveStart
; //first high to first low
1754 tmpbuff
[ j
++] = i
- start
;
1755 if ( i
- start
< minClk
&& i
< bufsize
) {
1759 // set clock - might be able to get this externally and remove this work...
1761 for ( uint8_t clkCnt
= 0 ; clkCnt
< 7 ; clkCnt
++) {
1762 tol
= fndClk
[ clkCnt
]/ 8 ;
1763 if ( minClk
>= fndClk
[ clkCnt
]- tol
&& minClk
<= fndClk
[ clkCnt
]+ 1 ) {
1768 // clock not found - ERROR
1770 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: clock not found - quitting" );
1777 // look for Sequence Terminator - should be pulses of clk*(1 or 1.5), clk*2, clk*(1.5 or 2)
1779 for ( i
= 0 ; i
< j
- 4 ; ++ i
) {
1781 if ( tmpbuff
[ i
] >= clk
* 1 - tol
&& tmpbuff
[ i
] <= ( clk
* 2 )+ tol
&& waveLen
[ i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
1782 if ( tmpbuff
[ i
+ 1 ] >= clk
* 2 - tol
&& tmpbuff
[ i
+ 1 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1783 if ( tmpbuff
[ i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& tmpbuff
[ i
+ 2 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1784 if ( tmpbuff
[ i
+ 3 ] >= clk
* 1 - tol
&& tmpbuff
[ i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1792 // first ST not found - ERROR
1794 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT not found - quitting" );
1797 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: first STT found at: %d, j=%d" , start
, j
);
1799 if ( waveLen
[ i
+ 2 ] > clk
* 1 + tol
)
1804 // skip over the remainder of ST
1805 skip
+= clk
* 7 / 2 ; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
1807 // now do it again to find the end
1809 for ( i
+= 3 ; i
< j
- 4 ; ++ i
) {
1811 if ( tmpbuff
[ i
] >= clk
* 1 - tol
&& tmpbuff
[ i
] <= ( clk
* 2 )+ tol
&& waveLen
[ i
] < clk
+ tol
) { //1 to 2 clocks depending on 2 bits prior
1812 if ( tmpbuff
[ i
+ 1 ] >= clk
* 2 - tol
&& tmpbuff
[ i
+ 1 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 1 ] > clk
* 3 / 2 - tol
) { //2 clocks and wave size is 1 1/2
1813 if ( tmpbuff
[ i
+ 2 ] >= ( clk
* 3 )/ 2 - tol
&& tmpbuff
[ i
+ 2 ] <= clk
* 2 + tol
&& waveLen
[ i
+ 2 ] > clk
- tol
) { //1 1/2 to 2 clocks and at least one full clock wave
1814 if ( tmpbuff
[ i
+ 3 ] >= clk
* 1 - tol
&& tmpbuff
[ i
+ 3 ] <= clk
* 2 + tol
) { //1 to 2 clocks for end of ST + first bit
1823 //didn't find second ST - ERROR
1825 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: second STT not found - quitting" );
1828 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d" , skip
, end
, end
- skip
, clk
, ( end
- skip
)/ clk
, phaseoff
);
1829 //now begin to trim out ST so we can use normal demod cmds
1831 size_t datalen
= end
- start
;
1832 // check validity of datalen (should be even clock increments) - use a tolerance of up to 1/8th a clock
1833 if ( clk
- ( datalen
% clk
) <= clk
/ 8 ) {
1834 // padd the amount off - could be problematic... but shouldn't happen often
1835 datalen
+= clk
- ( datalen
% clk
);
1836 } else if ( ( datalen
% clk
) <= clk
/ 8 ) {
1837 // padd the amount off - could be problematic... but shouldn't happen often
1838 datalen
-= datalen
% clk
;
1840 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting" , datalen
, clk
, datalen
% clk
);
1843 // if datalen is less than one t55xx block - ERROR
1844 if ( datalen
/ clk
< 8 * 4 ) {
1845 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: datalen is less than 1 full t55xx block - quitting" );
1848 size_t dataloc
= start
;
1849 if ( buffer
[ dataloc
-( clk
* 4 )-( clk
/ 8 )] <= low
&& buffer
[ dataloc
] <= low
&& buffer
[ dataloc
-( clk
* 4 )] >= high
) {
1850 //we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start
1851 for ( i
= 0 ; i
<= ( clk
/ 8 ); ++ i
) {
1852 if ( buffer
[ dataloc
- ( clk
* 4 ) - i
] <= low
) {
1861 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: Starting STT trim - start: %d, datalen: %d " , dataloc
, datalen
);
1862 bool firstrun
= true ;
1863 // warning - overwriting buffer given with raw wave data with ST removed...
1864 while ( dataloc
< bufsize
-( clk
/ 2 ) ) {
1865 //compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
1866 if ( buffer
[ dataloc
]< high
&& buffer
[ dataloc
]> low
&& buffer
[ dataloc
+ 3 ]< high
&& buffer
[ dataloc
+ 3 ]> low
) {
1867 for ( i
= 0 ; i
< clk
/ 2 - tol
; ++ i
) {
1868 buffer
[ dataloc
+ i
] = high
+ 5 ;
1870 } //test for single sample outlier (high between two lows) in the case of very strong waves
1871 if ( buffer
[ dataloc
] >= high
&& buffer
[ dataloc
+ 2 ] <= low
) {
1872 buffer
[ dataloc
] = buffer
[ dataloc
+ 2 ];
1873 buffer
[ dataloc
+ 1 ] = buffer
[ dataloc
+ 2 ];
1877 * ststart
= dataloc
-( clk
* 4 );
1880 for ( i
= 0 ; i
< datalen
; ++ i
) {
1881 if ( i
+ newloc
< bufsize
) {
1882 if ( i
+ newloc
< dataloc
)
1883 buffer
[ i
+ newloc
] = buffer
[ dataloc
];
1889 //skip next ST - we just assume it will be there from now on...
1890 if ( g_debugMode
== 2 ) prnt ( "DEBUG STT: skipping STT at %d to %d" , dataloc
, dataloc
+( clk
* 4 ));