1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2015, 2016 by piwi
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
17 #include "cmdhfmfhard.h"
27 #include "proxmark3.h"
31 #include "util_posix.h"
32 #include "crapto1/crapto1.h"
34 #include "hardnested/hardnested_bruteforce.h"
35 #include "hardnested/hardnested_bf_core.h"
36 #include "hardnested/hardnested_bitarray_core.h"
39 #define NUM_CHECK_BITFLIPS_THREADS (num_CPUs())
40 #define NUM_REDUCTION_WORKING_THREADS (num_CPUs())
42 #define IGNORE_BITFLIP_THRESHOLD 0.99 // ignore bitflip arrays which have nearly only valid states
44 #define STATE_FILES_DIRECTORY "hardnested/tables/"
45 #define STATE_FILE_TEMPLATE "bitflip_%d_%03" PRIx16 "_states.bin.z"
47 #define DEBUG_KEY_ELIMINATION
48 // #define DEBUG_REDUCTION
50 static uint16_t sums
[NUM_SUMS
] = {0, 32, 56, 64, 80, 96, 104, 112, 120, 128, 136, 144, 152, 160, 176, 192, 200, 224, 256}; // possible sum property values
52 #define NUM_PART_SUMS 9 // number of possible partial sum property values
59 static uint32_t num_acquired_nonces
= 0;
60 static uint64_t start_time
= 0;
61 static uint16_t effective_bitflip
[2][0x400];
62 static uint16_t num_effective_bitflips
[2] = {0, 0};
63 static uint16_t all_effective_bitflip
[0x400];
64 static uint16_t num_all_effective_bitflips
= 0;
65 static uint16_t num_1st_byte_effective_bitflips
= 0;
66 #define CHECK_1ST_BYTES 0x01
67 #define CHECK_2ND_BYTES 0x02
68 static uint8_t hardnested_stage
= CHECK_1ST_BYTES
;
69 static uint64_t known_target_key
;
70 static uint32_t test_state
[2] = {0,0};
71 static float brute_force_per_second
;
74 static void get_SIMD_instruction_set(char* instruction_set
) {
75 switch(GetSIMDInstrAuto()) {
77 strcpy(instruction_set
, "AVX512F");
80 strcpy(instruction_set
, "AVX2");
83 strcpy(instruction_set
, "AVX");
86 strcpy(instruction_set
, "SSE2");
89 strcpy(instruction_set
, "MMX");
92 strcpy(instruction_set
, "no");
98 static void print_progress_header(void) {
99 char progress_text
[80];
100 char instr_set
[12] = {0};
101 get_SIMD_instruction_set(instr_set
);
102 sprintf(progress_text
, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set
);
104 PrintAndLog(" time | #nonces | Activity | expected to brute force");
105 PrintAndLog(" | | | #states | time ");
106 PrintAndLog("------------------------------------------------------------------------------------------------------");
107 PrintAndLog(" 0 | 0 | %-55s | |", progress_text
);
111 void hardnested_print_progress(uint32_t nonces
, char *activity
, float brute_force
, uint64_t min_diff_print_time
) {
112 static uint64_t last_print_time
= 0;
113 if (msclock() - last_print_time
> min_diff_print_time
) {
114 last_print_time
= msclock();
115 uint64_t total_time
= msclock() - start_time
;
116 float brute_force_time
= brute_force
/ brute_force_per_second
;
117 char brute_force_time_string
[20];
118 if (brute_force_time
< 90) {
119 sprintf(brute_force_time_string
, "%2.0fs", brute_force_time
);
120 } else if (brute_force_time
< 60 * 90) {
121 sprintf(brute_force_time_string
, "%2.0fmin", brute_force_time
/60);
122 } else if (brute_force_time
< 60 * 60 * 36) {
123 sprintf(brute_force_time_string
, "%2.0fh", brute_force_time
/(60*60));
125 sprintf(brute_force_time_string
, "%2.0fd", brute_force_time
/(60*60*24));
127 PrintAndLog(" %7.0f | %7d | %-55s | %15.0f | %5s", (float)total_time
/1000.0, nonces
, activity
, brute_force
, brute_force_time_string
);
132 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
133 // bitarray functions
135 static inline void clear_bitarray24(uint32_t *bitarray
)
137 memset(bitarray
, 0x00, sizeof(uint32_t) * (1<<19));
141 static inline void set_bitarray24(uint32_t *bitarray
)
143 memset(bitarray
, 0xff, sizeof(uint32_t) * (1<<19));
147 static inline void set_bit24(uint32_t *bitarray
, uint32_t index
)
149 bitarray
[index
>>5] |= 0x80000000>>(index
&0x0000001f);
153 static inline uint32_t test_bit24(uint32_t *bitarray
, uint32_t index
)
155 return bitarray
[index
>>5] & (0x80000000>>(index
&0x0000001f));
159 static inline uint32_t next_state(uint32_t *bitarray
, uint32_t state
)
161 if (++state
== 1<<24) return 1<<24;
162 uint32_t index
= state
>> 5;
163 uint_fast8_t bit
= state
& 0x1f;
164 uint32_t line
= bitarray
[index
] << bit
;
165 while (bit
<= 0x1f) {
166 if (line
& 0x80000000) return state
;
172 while (bitarray
[index
] == 0x00000000 && state
< 1<<24) {
176 if (state
>= 1<<24) return 1<<24;
178 return state
+ __builtin_clz(bitarray
[index
]);
181 line
= bitarray
[index
];
182 while (bit
<= 0x1f) {
183 if (line
& 0x80000000) return state
;
195 #define BITFLIP_2ND_BYTE 0x0200
198 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
199 // bitflip property bitarrays
201 static uint32_t *bitflip_bitarrays
[2][0x400];
202 static uint32_t count_bitflip_bitarrays
[2][0x400];
204 static int compare_count_bitflip_bitarrays(const void *b1
, const void *b2
)
206 uint64_t count1
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b1
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b1
];
207 uint64_t count2
= (uint64_t)count_bitflip_bitarrays
[ODD_STATE
][*(uint16_t *)b2
] * count_bitflip_bitarrays
[EVEN_STATE
][*(uint16_t *)b2
];
208 return (count1
> count2
) - (count2
> count1
);
212 static voidpf
inflate_malloc(voidpf opaque
, uInt items
, uInt size
)
214 return malloc(items
*size
);
218 static void inflate_free(voidpf opaque
, voidpf address
)
223 #define OUTPUT_BUFFER_LEN 80
224 #define INPUT_BUFFER_LEN 80
226 //----------------------------------------------------------------------------
227 // Initialize decompression of the respective (HF or LF) FPGA stream
228 //----------------------------------------------------------------------------
229 static void init_inflate(z_streamp compressed_stream
, uint8_t *input_buffer
, uint32_t insize
, uint8_t *output_buffer
, uint32_t outsize
)
232 // initialize z_stream structure for inflate:
233 compressed_stream
->next_in
= input_buffer
;
234 compressed_stream
->avail_in
= insize
;
235 compressed_stream
->next_out
= output_buffer
;
236 compressed_stream
->avail_out
= outsize
;
237 compressed_stream
->zalloc
= &inflate_malloc
;
238 compressed_stream
->zfree
= &inflate_free
;
240 inflateInit2(compressed_stream
, 0);
245 static void init_bitflip_bitarrays(void)
247 #if defined (DEBUG_REDUCTION)
252 z_stream compressed_stream
;
254 char state_files_path
[strlen(get_my_executable_directory()) + strlen(STATE_FILES_DIRECTORY
) + strlen(STATE_FILE_TEMPLATE
) + 1];
255 char state_file_name
[strlen(STATE_FILE_TEMPLATE
)+1];
257 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
258 num_effective_bitflips
[odd_even
] = 0;
259 for (uint16_t bitflip
= 0x001; bitflip
< 0x400; bitflip
++) {
260 bitflip_bitarrays
[odd_even
][bitflip
] = NULL
;
261 count_bitflip_bitarrays
[odd_even
][bitflip
] = 1<<24;
262 sprintf(state_file_name
, STATE_FILE_TEMPLATE
, odd_even
, bitflip
);
263 strcpy(state_files_path
, get_my_executable_directory());
264 strcat(state_files_path
, STATE_FILES_DIRECTORY
);
265 strcat(state_files_path
, state_file_name
);
266 FILE *statesfile
= fopen(state_files_path
, "rb");
267 if (statesfile
== NULL
) {
270 fseek(statesfile
, 0, SEEK_END
);
271 uint32_t filesize
= (uint32_t)ftell(statesfile
);
273 uint8_t input_buffer
[filesize
];
274 size_t bytesread
= fread(input_buffer
, 1, filesize
, statesfile
);
275 if (bytesread
!= filesize
) {
276 printf("File read error with %s. Aborting...\n", state_file_name
);
278 inflateEnd(&compressed_stream
);
283 init_inflate(&compressed_stream
, input_buffer
, filesize
, (uint8_t *)&count
, sizeof(count
));
284 inflate(&compressed_stream
, Z_SYNC_FLUSH
);
285 if ((float)count
/(1<<24) < IGNORE_BITFLIP_THRESHOLD
) {
286 uint32_t *bitset
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
287 if (bitset
== NULL
) {
288 printf("Out of memory error in init_bitflip_statelists(). Aborting...\n");
289 inflateEnd(&compressed_stream
);
292 compressed_stream
.next_out
= (uint8_t *)bitset
;
293 compressed_stream
.avail_out
= sizeof(uint32_t) * (1<<19);
294 inflate(&compressed_stream
, Z_SYNC_FLUSH
);
295 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]++] = bitflip
;
296 bitflip_bitarrays
[odd_even
][bitflip
] = bitset
;
297 count_bitflip_bitarrays
[odd_even
][bitflip
] = count
;
298 #if defined (DEBUG_REDUCTION)
299 printf("(%03" PRIx16
" %s:%5.1f%%) ", bitflip
, odd_even
?"odd ":"even", (float)count
/(1<<24)*100.0);
307 inflateEnd(&compressed_stream
);
310 effective_bitflip
[odd_even
][num_effective_bitflips
[odd_even
]] = 0x400; // EndOfList marker
315 num_all_effective_bitflips
= 0;
316 num_1st_byte_effective_bitflips
= 0;
317 while (i
< num_effective_bitflips
[EVEN_STATE
] || j
< num_effective_bitflips
[ODD_STATE
]) {
318 if (effective_bitflip
[EVEN_STATE
][i
] < effective_bitflip
[ODD_STATE
][j
]) {
319 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
];
321 } else if (effective_bitflip
[EVEN_STATE
][i
] > effective_bitflip
[ODD_STATE
][j
]) {
322 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[ODD_STATE
][j
];
325 all_effective_bitflip
[num_all_effective_bitflips
++] = effective_bitflip
[EVEN_STATE
][i
];
328 if (!(all_effective_bitflip
[num_all_effective_bitflips
-1] & BITFLIP_2ND_BYTE
)) {
329 num_1st_byte_effective_bitflips
= num_all_effective_bitflips
;
332 qsort(all_effective_bitflip
, num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
);
333 #if defined (DEBUG_REDUCTION)
334 printf("\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips
);
335 for(uint16_t i
= 0; i
< num_1st_byte_effective_bitflips
; i
++) {
336 printf("%03x ", all_effective_bitflip
[i
]);
339 qsort(all_effective_bitflip
+num_1st_byte_effective_bitflips
, num_all_effective_bitflips
- num_1st_byte_effective_bitflips
, sizeof(uint16_t), compare_count_bitflip_bitarrays
);
340 #if defined (DEBUG_REDUCTION)
341 printf("\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips
- num_1st_byte_effective_bitflips
);
342 for(uint16_t i
= num_1st_byte_effective_bitflips
; i
< num_all_effective_bitflips
; i
++) {
343 printf("%03x ", all_effective_bitflip
[i
]);
346 char progress_text
[80];
347 sprintf(progress_text
, "Using %d precalculated bitflip state tables", num_all_effective_bitflips
);
348 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
352 static void free_bitflip_bitarrays(void)
354 for (int16_t bitflip
= 0x3ff; bitflip
> 0x000; bitflip
--) {
355 free_bitarray(bitflip_bitarrays
[ODD_STATE
][bitflip
]);
357 for (int16_t bitflip
= 0x3ff; bitflip
> 0x000; bitflip
--) {
358 free_bitarray(bitflip_bitarrays
[EVEN_STATE
][bitflip
]);
363 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
364 // sum property bitarrays
366 static uint32_t *part_sum_a0_bitarrays
[2][NUM_PART_SUMS
];
367 static uint32_t *part_sum_a8_bitarrays
[2][NUM_PART_SUMS
];
368 static uint32_t *sum_a0_bitarrays
[2][NUM_SUMS
];
370 static uint16_t PartialSumProperty(uint32_t state
, odd_even_t odd_even
)
373 for (uint16_t j
= 0; j
< 16; j
++) {
375 uint16_t part_sum
= 0;
376 if (odd_even
== ODD_STATE
) {
377 for (uint16_t i
= 0; i
< 5; i
++) {
378 part_sum
^= filter(st
);
379 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
381 part_sum
^= 1; // XOR 1 cancelled out for the other 8 bits
383 for (uint16_t i
= 0; i
< 4; i
++) {
384 st
= (st
<< 1) | ((j
>> (3-i
)) & 0x01) ;
385 part_sum
^= filter(st
);
394 static void init_part_sum_bitarrays(void)
396 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
397 for (uint16_t part_sum_a0
= 0; part_sum_a0
< NUM_PART_SUMS
; part_sum_a0
++) {
398 part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
399 if (part_sum_a0_bitarrays
[odd_even
][part_sum_a0
] == NULL
) {
400 printf("Out of memory error in init_part_suma0_statelists(). Aborting...\n");
403 clear_bitarray24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
]);
406 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
407 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a0);
408 for (uint32_t state
= 0; state
< (1<<20); state
++) {
409 uint16_t part_sum_a0
= PartialSumProperty(state
, odd_even
) / 2;
410 for (uint16_t low_bits
= 0; low_bits
< 1<<4; low_bits
++) {
411 set_bit24(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], state
<<4 | low_bits
);
416 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
417 for (uint16_t part_sum_a8
= 0; part_sum_a8
< NUM_PART_SUMS
; part_sum_a8
++) {
418 part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
419 if (part_sum_a8_bitarrays
[odd_even
][part_sum_a8
] == NULL
) {
420 printf("Out of memory error in init_part_suma8_statelists(). Aborting...\n");
423 clear_bitarray24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]);
426 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
427 //printf("(%d, %" PRIu16 ")...", odd_even, part_sum_a8);
428 for (uint32_t state
= 0; state
< (1<<20); state
++) {
429 uint16_t part_sum_a8
= PartialSumProperty(state
, odd_even
) / 2;
430 for (uint16_t high_bits
= 0; high_bits
< 1<<4; high_bits
++) {
431 set_bit24(part_sum_a8_bitarrays
[odd_even
][part_sum_a8
], state
| high_bits
<<20);
438 static void free_part_sum_bitarrays(void)
440 for (int16_t part_sum_a8
= (NUM_PART_SUMS
-1); part_sum_a8
>= 0; part_sum_a8
--) {
441 free_bitarray(part_sum_a8_bitarrays
[ODD_STATE
][part_sum_a8
]);
443 for (int16_t part_sum_a8
= (NUM_PART_SUMS
-1); part_sum_a8
>= 0; part_sum_a8
--) {
444 free_bitarray(part_sum_a8_bitarrays
[EVEN_STATE
][part_sum_a8
]);
446 for (int16_t part_sum_a0
= (NUM_PART_SUMS
-1); part_sum_a0
>= 0; part_sum_a0
--) {
447 free_bitarray(part_sum_a0_bitarrays
[ODD_STATE
][part_sum_a0
]);
449 for (int16_t part_sum_a0
= (NUM_PART_SUMS
-1); part_sum_a0
>= 0; part_sum_a0
--) {
450 free_bitarray(part_sum_a0_bitarrays
[EVEN_STATE
][part_sum_a0
]);
455 static void init_sum_bitarrays(void)
457 for (uint16_t sum_a0
= 0; sum_a0
< NUM_SUMS
; sum_a0
++) {
458 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
459 sum_a0_bitarrays
[odd_even
][sum_a0
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
460 if (sum_a0_bitarrays
[odd_even
][sum_a0
] == NULL
) {
461 printf("Out of memory error in init_sum_bitarrays(). Aborting...\n");
464 clear_bitarray24(sum_a0_bitarrays
[odd_even
][sum_a0
]);
467 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
468 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
469 uint16_t sum_a0
= 2*p
*(16-2*q
) + (16-2*p
)*2*q
;
470 uint16_t sum_a0_idx
= 0;
471 while (sums
[sum_a0_idx
] != sum_a0
) sum_a0_idx
++;
472 bitarray_OR(sum_a0_bitarrays
[EVEN_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[EVEN_STATE
][q
]);
473 bitarray_OR(sum_a0_bitarrays
[ODD_STATE
][sum_a0_idx
], part_sum_a0_bitarrays
[ODD_STATE
][p
]);
476 // for (uint16_t sum_a0 = 0; sum_a0 < NUM_SUMS; sum_a0++) {
477 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
478 // uint32_t count = count_states(sum_a0_bitarrays[odd_even][sum_a0]);
479 // printf("sum_a0_bitarray[%s][%d] has %d states (%5.2f%%)\n", odd_even==EVEN_STATE?"even":"odd ", sums[sum_a0], count, (float)count/(1<<24)*100.0);
485 static void free_sum_bitarrays(void)
487 for (int8_t sum_a0
= NUM_SUMS
-1; sum_a0
>= 0; sum_a0
--) {
488 free_bitarray(sum_a0_bitarrays
[ODD_STATE
][sum_a0
]);
489 free_bitarray(sum_a0_bitarrays
[EVEN_STATE
][sum_a0
]);
494 #ifdef DEBUG_KEY_ELIMINATION
495 char failstr
[250] = "";
498 static const float p_K0
[NUM_SUMS
] = { // the probability that a random nonce has a Sum Property K
499 0.0290, 0.0083, 0.0006, 0.0339, 0.0048, 0.0934, 0.0119, 0.0489, 0.0602, 0.4180, 0.0602, 0.0489, 0.0119, 0.0934, 0.0048, 0.0339, 0.0006, 0.0083, 0.0290
502 static float my_p_K
[NUM_SUMS
];
504 static const float *p_K
;
506 static uint32_t cuid
;
507 static noncelist_t nonces
[256];
508 static uint8_t best_first_bytes
[256];
509 static uint64_t maximum_states
= 0;
510 static uint8_t best_first_byte_smallest_bitarray
= 0;
511 static uint16_t first_byte_Sum
= 0;
512 static uint16_t first_byte_num
= 0;
513 static bool write_stats
= false;
514 static FILE *fstats
= NULL
;
515 static uint32_t *all_bitflips_bitarray
[2];
516 static uint32_t num_all_bitflips_bitarray
[2];
517 static bool all_bitflips_bitarray_dirty
[2];
518 static uint64_t last_sample_clock
= 0;
519 static uint64_t sample_period
= 0;
520 static uint64_t num_keys_tested
= 0;
521 static statelist_t
*candidates
= NULL
;
524 static int add_nonce(uint32_t nonce_enc
, uint8_t par_enc
)
526 uint8_t first_byte
= nonce_enc
>> 24;
527 noncelistentry_t
*p1
= nonces
[first_byte
].first
;
528 noncelistentry_t
*p2
= NULL
;
530 if (p1
== NULL
) { // first nonce with this 1st byte
532 first_byte_Sum
+= evenparity32((nonce_enc
& 0xff000000) | (par_enc
& 0x08));
535 while (p1
!= NULL
&& (p1
->nonce_enc
& 0x00ff0000) < (nonce_enc
& 0x00ff0000)) {
540 if (p1
== NULL
) { // need to add at the end of the list
541 if (p2
== NULL
) { // list is empty yet. Add first entry.
542 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
543 } else { // add new entry at end of existing list.
544 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
546 } else if ((p1
->nonce_enc
& 0x00ff0000) != (nonce_enc
& 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
547 if (p2
== NULL
) { // need to insert at start of list
548 p2
= nonces
[first_byte
].first
= malloc(sizeof(noncelistentry_t
));
550 p2
= p2
->next
= malloc(sizeof(noncelistentry_t
));
552 } else { // we have seen this 2nd byte before. Nothing to add or insert.
556 // add or insert new data
558 p2
->nonce_enc
= nonce_enc
;
559 p2
->par_enc
= par_enc
;
561 nonces
[first_byte
].num
++;
562 nonces
[first_byte
].Sum
+= evenparity32((nonce_enc
& 0x00ff0000) | (par_enc
& 0x04));
563 nonces
[first_byte
].sum_a8_guess_dirty
= true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
564 return (1); // new nonce added
568 static void init_nonce_memory(void)
570 for (uint16_t i
= 0; i
< 256; i
++) {
573 nonces
[i
].first
= NULL
;
574 for (uint16_t j
= 0; j
< NUM_SUMS
; j
++) {
575 nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
= j
;
576 nonces
[i
].sum_a8_guess
[j
].prob
= 0.0;
578 nonces
[i
].sum_a8_guess_dirty
= false;
579 for (uint16_t bitflip
= 0x000; bitflip
< 0x400; bitflip
++) {
580 nonces
[i
].BitFlips
[bitflip
] = 0;
582 nonces
[i
].states_bitarray
[EVEN_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
583 if (nonces
[i
].states_bitarray
[EVEN_STATE
] == NULL
) {
584 printf("Out of memory error in init_nonce_memory(). Aborting...\n");
587 set_bitarray24(nonces
[i
].states_bitarray
[EVEN_STATE
]);
588 nonces
[i
].num_states_bitarray
[EVEN_STATE
] = 1 << 24;
589 nonces
[i
].states_bitarray
[ODD_STATE
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
590 if (nonces
[i
].states_bitarray
[ODD_STATE
] == NULL
) {
591 printf("Out of memory error in init_nonce_memory(). Aborting...\n");
594 set_bitarray24(nonces
[i
].states_bitarray
[ODD_STATE
]);
595 nonces
[i
].num_states_bitarray
[ODD_STATE
] = 1 << 24;
596 nonces
[i
].all_bitflips_dirty
[EVEN_STATE
] = false;
597 nonces
[i
].all_bitflips_dirty
[ODD_STATE
] = false;
604 static void free_nonce_list(noncelistentry_t
*p
)
609 free_nonce_list(p
->next
);
615 static void free_nonces_memory(void)
617 for (uint16_t i
= 0; i
< 256; i
++) {
618 free_nonce_list(nonces
[i
].first
);
620 for (int i
= 255; i
>= 0; i
--) {
621 free_bitarray(nonces
[i
].states_bitarray
[ODD_STATE
]);
622 free_bitarray(nonces
[i
].states_bitarray
[EVEN_STATE
]);
627 // static double p_hypergeometric_cache[257][NUM_SUMS][257];
629 // #define CACHE_INVALID -1.0
630 // static void init_p_hypergeometric_cache(void)
632 // for (uint16_t n = 0; n <= 256; n++) {
633 // for (uint16_t i_K = 0; i_K < NUM_SUMS; i_K++) {
634 // for (uint16_t k = 0; k <= 256; k++) {
635 // p_hypergeometric_cache[n][i_K][k] = CACHE_INVALID;
642 static double p_hypergeometric(uint16_t i_K
, uint16_t n
, uint16_t k
)
644 // for efficient computation we are using the recursive definition
646 // P(X=k) = P(X=k-1) * --------------------
649 // (N-K)*(N-K-1)*...*(N-K-n+1)
650 // P(X=0) = -----------------------------
651 // N*(N-1)*...*(N-n+1)
654 uint16_t const N
= 256;
655 uint16_t K
= sums
[i_K
];
657 // if (p_hypergeometric_cache[n][i_K][k] != CACHE_INVALID) {
658 // return p_hypergeometric_cache[n][i_K][k];
661 if (n
-k
> N
-K
|| k
> K
) return 0.0; // avoids log(x<=0) in calculation below
663 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
664 double log_result
= 0.0;
665 for (int16_t i
= N
-K
; i
>= N
-K
-n
+1; i
--) {
666 log_result
+= log(i
);
668 for (int16_t i
= N
; i
>= N
-n
+1; i
--) {
669 log_result
-= log(i
);
671 // p_hypergeometric_cache[n][i_K][k] = exp(log_result);
672 return exp(log_result
);
674 if (n
-k
== N
-K
) { // special case. The published recursion below would fail with a divide by zero exception
675 double log_result
= 0.0;
676 for (int16_t i
= k
+1; i
<= n
; i
++) {
677 log_result
+= log(i
);
679 for (int16_t i
= K
+1; i
<= N
; i
++) {
680 log_result
-= log(i
);
682 // p_hypergeometric_cache[n][i_K][k] = exp(log_result);
683 return exp(log_result
);
684 } else { // recursion
685 return (p_hypergeometric(i_K
, n
, k
-1) * (K
-k
+1) * (n
-k
+1) / (k
* (N
-K
-n
+k
)));
691 static float sum_probability(uint16_t i_K
, uint16_t n
, uint16_t k
)
693 if (k
> sums
[i_K
]) return 0.0;
695 double p_T_is_k_when_S_is_K
= p_hypergeometric(i_K
, n
, k
);
696 double p_S_is_K
= p_K
[i_K
];
698 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
699 p_T_is_k
+= p_K
[i
] * p_hypergeometric(i
, n
, k
);
701 return(p_T_is_k_when_S_is_K
* p_S_is_K
/ p_T_is_k
);
705 static uint32_t part_sum_count
[2][NUM_PART_SUMS
][NUM_PART_SUMS
];
707 static void init_allbitflips_array(void)
709 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
710 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
711 if (bitset
== NULL
) {
712 printf("Out of memory in init_allbitflips_array(). Aborting...");
715 set_bitarray24(bitset
);
716 all_bitflips_bitarray_dirty
[odd_even
] = false;
717 num_all_bitflips_bitarray
[odd_even
] = 1<<24;
722 static void update_allbitflips_array(void)
724 if (hardnested_stage
& CHECK_2ND_BYTES
) {
725 for (uint16_t i
= 0; i
< 256; i
++) {
726 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
727 if (nonces
[i
].all_bitflips_dirty
[odd_even
]) {
728 uint32_t old_count
= num_all_bitflips_bitarray
[odd_even
];
729 num_all_bitflips_bitarray
[odd_even
] = count_bitarray_low20_AND(all_bitflips_bitarray
[odd_even
], nonces
[i
].states_bitarray
[odd_even
]);
730 nonces
[i
].all_bitflips_dirty
[odd_even
] = false;
731 if (num_all_bitflips_bitarray
[odd_even
] != old_count
) {
732 all_bitflips_bitarray_dirty
[odd_even
] = true;
741 static uint32_t estimated_num_states_part_sum_coarse(uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)
743 return part_sum_count
[odd_even
][part_sum_a0_idx
][part_sum_a8_idx
];
747 static uint32_t estimated_num_states_part_sum(uint8_t first_byte
, uint16_t part_sum_a0_idx
, uint16_t part_sum_a8_idx
, odd_even_t odd_even
)
749 if (odd_even
== ODD_STATE
) {
750 return count_bitarray_AND3(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],
751 part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],
752 nonces
[first_byte
].states_bitarray
[odd_even
]);
754 return count_bitarray_AND4(part_sum_a0_bitarrays
[odd_even
][part_sum_a0_idx
],
755 part_sum_a8_bitarrays
[odd_even
][part_sum_a8_idx
],
756 nonces
[first_byte
].states_bitarray
[odd_even
],
757 nonces
[first_byte
^0x80].states_bitarray
[odd_even
]);
760 // estimate reduction by all_bitflips_match()
762 // float p_bitflip = (float)nonces[first_byte ^ 0x80].num_states_bitarray[ODD_STATE] / num_all_bitflips_bitarray[ODD_STATE];
763 // return (float)count * p_bitflip; //(p_bitflip - 0.25*p_bitflip*p_bitflip);
770 static uint64_t estimated_num_states(uint8_t first_byte
, uint16_t sum_a0
, uint16_t sum_a8
)
772 uint64_t num_states
= 0;
773 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
774 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
775 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
776 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
777 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
778 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
779 num_states
+= (uint64_t)estimated_num_states_part_sum(first_byte
, p
, r
, ODD_STATE
)
780 * estimated_num_states_part_sum(first_byte
, q
, s
, EVEN_STATE
);
791 static uint64_t estimated_num_states_coarse(uint16_t sum_a0
, uint16_t sum_a8
)
793 uint64_t num_states
= 0;
794 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
795 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
796 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
797 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
798 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
799 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
800 num_states
+= (uint64_t)estimated_num_states_part_sum_coarse(p
, r
, ODD_STATE
)
801 * estimated_num_states_part_sum_coarse(q
, s
, EVEN_STATE
);
812 static void update_p_K(void)
814 if (hardnested_stage
& CHECK_2ND_BYTES
) {
815 uint64_t total_count
= 0;
816 uint16_t sum_a0
= sums
[first_byte_Sum
];
817 for (uint8_t sum_a8_idx
= 0; sum_a8_idx
< NUM_SUMS
; sum_a8_idx
++) {
818 uint16_t sum_a8
= sums
[sum_a8_idx
];
819 total_count
+= estimated_num_states_coarse(sum_a0
, sum_a8
);
821 for (uint8_t sum_a8_idx
= 0; sum_a8_idx
< NUM_SUMS
; sum_a8_idx
++) {
822 uint16_t sum_a8
= sums
[sum_a8_idx
];
823 my_p_K
[sum_a8_idx
] = (float)estimated_num_states_coarse(sum_a0
, sum_a8
) / total_count
;
825 // printf("my_p_K = [");
826 // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) {
827 // printf("%7.4f ", my_p_K[sum_a8_idx]);
834 static void update_sum_bitarrays(odd_even_t odd_even
)
836 if (all_bitflips_bitarray_dirty
[odd_even
]) {
837 for (uint8_t part_sum
= 0; part_sum
< NUM_PART_SUMS
; part_sum
++) {
838 bitarray_AND(part_sum_a0_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]);
839 bitarray_AND(part_sum_a8_bitarrays
[odd_even
][part_sum
], all_bitflips_bitarray
[odd_even
]);
841 for (uint16_t i
= 0; i
< 256; i
++) {
842 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], all_bitflips_bitarray
[odd_even
]);
844 for (uint8_t part_sum_a0
= 0; part_sum_a0
< NUM_PART_SUMS
; part_sum_a0
++) {
845 for (uint8_t part_sum_a8
= 0; part_sum_a8
< NUM_PART_SUMS
; part_sum_a8
++) {
846 part_sum_count
[odd_even
][part_sum_a0
][part_sum_a8
]
847 += count_bitarray_AND2(part_sum_a0_bitarrays
[odd_even
][part_sum_a0
], part_sum_a8_bitarrays
[odd_even
][part_sum_a8
]);
850 all_bitflips_bitarray_dirty
[odd_even
] = false;
855 static int compare_expected_num_brute_force(const void *b1
, const void *b2
)
857 uint8_t index1
= *(uint8_t *)b1
;
858 uint8_t index2
= *(uint8_t *)b2
;
859 float score1
= nonces
[index1
].expected_num_brute_force
;
860 float score2
= nonces
[index2
].expected_num_brute_force
;
861 return (score1
> score2
) - (score1
< score2
);
865 static int compare_sum_a8_guess(const void *b1
, const void *b2
)
867 float prob1
= ((guess_sum_a8_t
*)b1
)->prob
;
868 float prob2
= ((guess_sum_a8_t
*)b2
)->prob
;
869 return (prob1
< prob2
) - (prob1
> prob2
);
874 static float check_smallest_bitflip_bitarrays(void)
876 uint32_t num_odd
, num_even
;
877 uint64_t smallest
= 1LL << 48;
878 // initialize best_first_bytes, do a rough estimation on remaining states
879 for (uint16_t i
= 0; i
< 256; i
++) {
880 num_odd
= nonces
[i
].num_states_bitarray
[ODD_STATE
];
881 num_even
= nonces
[i
].num_states_bitarray
[EVEN_STATE
]; // * (float)nonces[i^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
882 if ((uint64_t)num_odd
* num_even
< smallest
) {
883 smallest
= (uint64_t)num_odd
* num_even
;
884 best_first_byte_smallest_bitarray
= i
;
888 #if defined (DEBUG_REDUCTION)
889 num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
890 num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
]; // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
891 printf("0x%02x: %8d * %8d = %12" PRIu64
" (2^%1.1f)\n", best_first_byte_smallest_bitarray
, num_odd
, num_even
, (uint64_t)num_odd
* num_even
, log((uint64_t)num_odd
* num_even
)/log(2.0));
893 return (float)smallest
/2.0;
897 static void update_expected_brute_force(uint8_t best_byte
) {
899 float total_prob
= 0.0;
900 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
901 total_prob
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
;
903 // linear adjust probabilities to result in total_prob = 1.0;
904 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
905 nonces
[best_byte
].sum_a8_guess
[i
].prob
/= total_prob
;
907 float prob_all_failed
= 1.0;
908 nonces
[best_byte
].expected_num_brute_force
= 0.0;
909 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
910 nonces
[best_byte
].expected_num_brute_force
+= nonces
[best_byte
].sum_a8_guess
[i
].prob
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states
/ 2.0;
911 prob_all_failed
-= nonces
[best_byte
].sum_a8_guess
[i
].prob
;
912 nonces
[best_byte
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[best_byte
].sum_a8_guess
[i
].num_states
/ 2.0;
918 static float sort_best_first_bytes(void)
921 // initialize best_first_bytes, do a rough estimation on remaining states for each Sum_a8 property
922 // and the expected number of states to brute force
923 for (uint16_t i
= 0; i
< 256; i
++) {
924 best_first_bytes
[i
] = i
;
925 float prob_all_failed
= 1.0;
926 nonces
[i
].expected_num_brute_force
= 0.0;
927 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
928 nonces
[i
].sum_a8_guess
[j
].num_states
= estimated_num_states_coarse(sums
[first_byte_Sum
], sums
[nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
]);
929 nonces
[i
].expected_num_brute_force
+= nonces
[i
].sum_a8_guess
[j
].prob
* (float)nonces
[i
].sum_a8_guess
[j
].num_states
/ 2.0;
930 prob_all_failed
-= nonces
[i
].sum_a8_guess
[j
].prob
;
931 nonces
[i
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[i
].sum_a8_guess
[j
].num_states
/ 2.0;
935 // sort based on expected number of states to brute force
936 qsort(best_first_bytes
, 256, 1, compare_expected_num_brute_force
);
938 // printf("refine estimations: ");
939 #define NUM_REFINES 1
940 // refine scores for the best:
941 for (uint16_t i
= 0; i
< NUM_REFINES
; i
++) {
942 // printf("%d...", i);
943 uint16_t first_byte
= best_first_bytes
[i
];
944 for (uint8_t j
= 0; j
< NUM_SUMS
&& nonces
[first_byte
].sum_a8_guess
[j
].prob
> 0.05; j
++) {
945 nonces
[first_byte
].sum_a8_guess
[j
].num_states
= estimated_num_states(first_byte
, sums
[first_byte_Sum
], sums
[nonces
[first_byte
].sum_a8_guess
[j
].sum_a8_idx
]);
947 // while (nonces[first_byte].sum_a8_guess[0].num_states == 0
948 // || nonces[first_byte].sum_a8_guess[1].num_states == 0
949 // || nonces[first_byte].sum_a8_guess[2].num_states == 0) {
950 // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) {
951 // nonces[first_byte].sum_a8_guess[0].prob = 0.0;
952 // printf("(0x%02x,%d)", first_byte, 0);
954 // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) {
955 // nonces[first_byte].sum_a8_guess[1].prob = 0.0;
956 // printf("(0x%02x,%d)", first_byte, 1);
958 // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) {
959 // nonces[first_byte].sum_a8_guess[2].prob = 0.0;
960 // printf("(0x%02x,%d)", first_byte, 2);
963 // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess);
964 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
965 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
968 // float fix_probs = 0.0;
969 // for (uint8_t j = 0; j < NUM_SUMS; j++) {
970 // fix_probs += nonces[first_byte].sum_a8_guess[j].prob;
972 // for (uint8_t j = 0; j < NUM_SUMS; j++) {
973 // nonces[first_byte].sum_a8_guess[j].prob /= fix_probs;
975 // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
976 // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
978 float prob_all_failed
= 1.0;
979 nonces
[first_byte
].expected_num_brute_force
= 0.0;
980 for (uint8_t j
= 0; j
< NUM_SUMS
; j
++) {
981 nonces
[first_byte
].expected_num_brute_force
+= nonces
[first_byte
].sum_a8_guess
[j
].prob
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states
/ 2.0;
982 prob_all_failed
-= nonces
[first_byte
].sum_a8_guess
[j
].prob
;
983 nonces
[first_byte
].expected_num_brute_force
+= prob_all_failed
* (float)nonces
[first_byte
].sum_a8_guess
[j
].num_states
/ 2.0;
987 // copy best byte to front:
988 float least_expected_brute_force
= (1LL << 48);
989 uint8_t best_byte
= 0;
990 for (uint16_t i
= 0; i
< 10; i
++) {
991 uint16_t first_byte
= best_first_bytes
[i
];
992 if (nonces
[first_byte
].expected_num_brute_force
< least_expected_brute_force
) {
993 least_expected_brute_force
= nonces
[first_byte
].expected_num_brute_force
;
997 if (best_byte
!= 0) {
998 // printf("0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]);
999 uint8_t tmp
= best_first_bytes
[0];
1000 best_first_bytes
[0] = best_first_bytes
[best_byte
];
1001 best_first_bytes
[best_byte
] = tmp
;
1004 return nonces
[best_first_bytes
[0]].expected_num_brute_force
;
1008 static float update_reduction_rate(float last
, bool init
)
1011 static float queue
[QUEUE_LEN
];
1013 for (uint16_t i
= 0; i
< QUEUE_LEN
-1; i
++) {
1015 queue
[i
] = (float)(1LL << 48);
1017 queue
[i
] = queue
[i
+1];
1021 queue
[QUEUE_LEN
-1] = (float)(1LL << 48);
1023 queue
[QUEUE_LEN
-1] = last
;
1026 // linear regression
1029 for (uint16_t i
= 0; i
< QUEUE_LEN
; i
++) {
1038 for (uint16_t i
= 0; i
< QUEUE_LEN
; i
++) {
1039 dev_xy
+= (i
- avg_x
)*(queue
[i
] - avg_y
);
1040 dev_x2
+= (i
- avg_x
)*(i
- avg_x
);
1043 float reduction_rate
= -1.0 * dev_xy
/ dev_x2
; // the negative slope of the linear regression
1045 #if defined (DEBUG_REDUCTION)
1046 printf("update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last
, reduction_rate
, brute_force_per_second
* (float)sample_period
/ 1000.0);
1048 return reduction_rate
;
1052 static bool shrink_key_space(float *brute_forces
)
1054 #if defined(DEBUG_REDUCTION)
1055 printf("shrink_key_space() with stage = 0x%02x\n", hardnested_stage
);
1057 float brute_forces1
= check_smallest_bitflip_bitarrays();
1058 float brute_forces2
= (float)(1LL << 47);
1059 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1060 brute_forces2
= sort_best_first_bytes();
1062 *brute_forces
= MIN(brute_forces1
, brute_forces2
);
1063 float reduction_rate
= update_reduction_rate(*brute_forces
, false);
1064 return ((hardnested_stage
& CHECK_2ND_BYTES
)
1065 && reduction_rate
>= 0.0 && reduction_rate
< brute_force_per_second
* sample_period
/ 1000.0);
1069 static void estimate_sum_a8(void)
1071 if (first_byte_num
== 256) {
1072 for (uint16_t i
= 0; i
< 256; i
++) {
1073 if (nonces
[i
].sum_a8_guess_dirty
) {
1074 for (uint16_t j
= 0; j
< NUM_SUMS
; j
++ ) {
1075 uint16_t sum_a8_idx
= nonces
[i
].sum_a8_guess
[j
].sum_a8_idx
;
1076 nonces
[i
].sum_a8_guess
[j
].prob
= sum_probability(sum_a8_idx
, nonces
[i
].num
, nonces
[i
].Sum
);
1078 qsort(nonces
[i
].sum_a8_guess
, NUM_SUMS
, sizeof(guess_sum_a8_t
), compare_sum_a8_guess
);
1079 nonces
[i
].sum_a8_guess_dirty
= false;
1086 static int read_nonce_file(void)
1088 FILE *fnonces
= NULL
;
1092 uint8_t read_buf
[9];
1093 uint32_t nt_enc1
, nt_enc2
;
1096 num_acquired_nonces
= 0;
1097 if ((fnonces
= fopen("nonces.bin","rb")) == NULL
) {
1098 PrintAndLog("Could not open file nonces.bin");
1102 hardnested_print_progress(0, "Reading nonces from file nonces.bin...", (float)(1LL<<47), 0);
1103 bytes_read
= fread(read_buf
, 1, 6, fnonces
);
1104 if (bytes_read
!= 6) {
1105 PrintAndLog("File reading error.");
1109 cuid
= bytes_to_num(read_buf
, 4);
1110 trgBlockNo
= bytes_to_num(read_buf
+4, 1);
1111 trgKeyType
= bytes_to_num(read_buf
+5, 1);
1113 bytes_read
= fread(read_buf
, 1, 9, fnonces
);
1114 while (bytes_read
== 9) {
1115 nt_enc1
= bytes_to_num(read_buf
, 4);
1116 nt_enc2
= bytes_to_num(read_buf
+4, 4);
1117 par_enc
= bytes_to_num(read_buf
+8, 1);
1118 add_nonce(nt_enc1
, par_enc
>> 4);
1119 add_nonce(nt_enc2
, par_enc
& 0x0f);
1120 num_acquired_nonces
+= 2;
1121 bytes_read
= fread(read_buf
, 1, 9, fnonces
);
1125 char progress_string
[80];
1126 sprintf(progress_string
, "Read %d nonces from file. cuid=%08x", num_acquired_nonces
, cuid
);
1127 hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0);
1128 sprintf(progress_string
, "Target Block=%d, Keytype=%c", trgBlockNo
, trgKeyType
==0?'A':'B');
1129 hardnested_print_progress(num_acquired_nonces
, progress_string
, (float)(1LL<<47), 0);
1131 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1132 if (first_byte_Sum
== sums
[i
]) {
1142 noncelistentry_t
*SearchFor2ndByte(uint8_t b1
, uint8_t b2
)
1144 noncelistentry_t
*p
= nonces
[b1
].first
;
1146 if ((p
->nonce_enc
>> 16 & 0xff) == b2
) {
1155 static bool timeout(void)
1157 return (msclock() > last_sample_clock
+ sample_period
);
1161 static void *check_for_BitFlipProperties_thread(void *args
)
1163 uint8_t first_byte
= ((uint8_t *)args
)[0];
1164 uint8_t last_byte
= ((uint8_t *)args
)[1];
1165 uint8_t time_budget
= ((uint8_t *)args
)[2];
1167 if (hardnested_stage
& CHECK_1ST_BYTES
) {
1168 // for (uint16_t bitflip = 0x001; bitflip < 0x200; bitflip++) {
1169 for (uint16_t bitflip_idx
= 0; bitflip_idx
< num_1st_byte_effective_bitflips
; bitflip_idx
++) {
1170 uint16_t bitflip
= all_effective_bitflip
[bitflip_idx
];
1171 if (time_budget
& timeout()) {
1172 #if defined (DEBUG_REDUCTION)
1173 printf("break at bitflip_idx %d...", bitflip_idx
);
1177 for (uint16_t i
= first_byte
; i
<= last_byte
; i
++) {
1178 if (nonces
[i
].BitFlips
[bitflip
] == 0 && nonces
[i
].BitFlips
[bitflip
^ 0x100] == 0
1179 && nonces
[i
].first
!= NULL
&& nonces
[i
^(bitflip
&0xff)].first
!= NULL
) {
1180 uint8_t parity1
= (nonces
[i
].first
->par_enc
) >> 3; // parity of first byte
1181 uint8_t parity2
= (nonces
[i
^(bitflip
&0xff)].first
->par_enc
) >> 3; // parity of nonce with bits flipped
1182 if ((parity1
== parity2
&& !(bitflip
& 0x100)) // bitflip
1183 || (parity1
!= parity2
&& (bitflip
& 0x100))) { // not bitflip
1184 nonces
[i
].BitFlips
[bitflip
] = 1;
1185 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1186 if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) {
1187 uint32_t old_count
= nonces
[i
].num_states_bitarray
[odd_even
];
1188 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]);
1189 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) {
1190 nonces
[i
].all_bitflips_dirty
[odd_even
] = true;
1192 // printf("bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]);
1198 ((uint8_t *)args
)[1] = num_1st_byte_effective_bitflips
- bitflip_idx
- 1; // bitflips still to go in stage 1
1202 ((uint8_t *)args
)[1] = 0; // stage 1 definitely completed
1204 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1205 for (uint16_t bitflip_idx
= num_1st_byte_effective_bitflips
; bitflip_idx
< num_all_effective_bitflips
; bitflip_idx
++) {
1206 uint16_t bitflip
= all_effective_bitflip
[bitflip_idx
];
1207 if (time_budget
& timeout()) {
1208 #if defined (DEBUG_REDUCTION)
1209 printf("break at bitflip_idx %d...", bitflip_idx
);
1213 for (uint16_t i
= first_byte
; i
<= last_byte
; i
++) {
1214 // Check for Bit Flip Property of 2nd bytes
1215 if (nonces
[i
].BitFlips
[bitflip
] == 0) {
1216 for (uint16_t j
= 0; j
< 256; j
++) { // for each 2nd Byte
1217 noncelistentry_t
*byte1
= SearchFor2ndByte(i
, j
);
1218 noncelistentry_t
*byte2
= SearchFor2ndByte(i
, j
^(bitflip
&0xff));
1219 if (byte1
!= NULL
&& byte2
!= NULL
) {
1220 uint8_t parity1
= byte1
->par_enc
>> 2 & 0x01; // parity of 2nd byte
1221 uint8_t parity2
= byte2
->par_enc
>> 2 & 0x01; // parity of 2nd byte with bits flipped
1222 if ((parity1
== parity2
&& !(bitflip
&0x100)) // bitflip
1223 || (parity1
!= parity2
&& (bitflip
&0x100))) { // not bitflip
1224 nonces
[i
].BitFlips
[bitflip
] = 1;
1225 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1226 if (bitflip_bitarrays
[odd_even
][bitflip
] != NULL
) {
1227 uint32_t old_count
= nonces
[i
].num_states_bitarray
[odd_even
];
1228 nonces
[i
].num_states_bitarray
[odd_even
] = count_bitarray_AND(nonces
[i
].states_bitarray
[odd_even
], bitflip_bitarrays
[odd_even
][bitflip
]);
1229 if (nonces
[i
].num_states_bitarray
[odd_even
] != old_count
) {
1230 nonces
[i
].all_bitflips_dirty
[odd_even
] = true;
1239 // printf("states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE]));
1240 // printf("states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE]));
1249 static void check_for_BitFlipProperties(bool time_budget
)
1251 // create and run worker threads
1252 pthread_t thread_id
[NUM_CHECK_BITFLIPS_THREADS
];
1254 uint8_t args
[NUM_CHECK_BITFLIPS_THREADS
][3];
1255 uint16_t bytes_per_thread
= (256 + (NUM_CHECK_BITFLIPS_THREADS
/2)) / NUM_CHECK_BITFLIPS_THREADS
;
1256 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1257 args
[i
][0] = i
* bytes_per_thread
;
1258 args
[i
][1] = MIN(args
[i
][0]+bytes_per_thread
-1, 255);
1259 args
[i
][2] = time_budget
;
1261 args
[NUM_CHECK_BITFLIPS_THREADS
-1][1] = MAX(args
[NUM_CHECK_BITFLIPS_THREADS
-1][1], 255);
1264 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1265 pthread_create(&thread_id
[i
], NULL
, check_for_BitFlipProperties_thread
, args
[i
]);
1268 // wait for threads to terminate:
1269 for (uint8_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1270 pthread_join(thread_id
[i
], NULL
);
1273 if (hardnested_stage
& CHECK_2ND_BYTES
) {
1274 hardnested_stage
&= ~CHECK_1ST_BYTES
; // we are done with 1st stage, except...
1275 for (uint16_t i
= 0; i
< NUM_CHECK_BITFLIPS_THREADS
; i
++) {
1276 if (args
[i
][1] != 0) {
1277 hardnested_stage
|= CHECK_1ST_BYTES
; // ... when any of the threads didn't complete in time
1282 #if defined (DEBUG_REDUCTION)
1283 if (hardnested_stage
& CHECK_1ST_BYTES
) printf("stage 1 not completed yet\n");
1288 static void update_nonce_data(bool time_budget
)
1290 check_for_BitFlipProperties(time_budget
);
1291 update_allbitflips_array();
1292 update_sum_bitarrays(EVEN_STATE
);
1293 update_sum_bitarrays(ODD_STATE
);
1299 static void apply_sum_a0(void)
1301 uint32_t old_count
= num_all_bitflips_bitarray
[EVEN_STATE
];
1302 num_all_bitflips_bitarray
[EVEN_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[EVEN_STATE
], sum_a0_bitarrays
[EVEN_STATE
][first_byte_Sum
]);
1303 if (num_all_bitflips_bitarray
[EVEN_STATE
] != old_count
) {
1304 all_bitflips_bitarray_dirty
[EVEN_STATE
] = true;
1306 old_count
= num_all_bitflips_bitarray
[ODD_STATE
];
1307 num_all_bitflips_bitarray
[ODD_STATE
] = count_bitarray_AND(all_bitflips_bitarray
[ODD_STATE
], sum_a0_bitarrays
[ODD_STATE
][first_byte_Sum
]);
1308 if (num_all_bitflips_bitarray
[ODD_STATE
] != old_count
) {
1309 all_bitflips_bitarray_dirty
[ODD_STATE
] = true;
1314 static void simulate_MFplus_RNG(uint32_t test_cuid
, uint64_t test_key
, uint32_t *nt_enc
, uint8_t *par_enc
)
1316 struct Crypto1State sim_cs
= {0, 0};
1318 // init cryptostate with key:
1319 for(int8_t i
= 47; i
> 0; i
-= 2) {
1320 sim_cs
.odd
= sim_cs
.odd
<< 1 | BIT(test_key
, (i
- 1) ^ 7);
1321 sim_cs
.even
= sim_cs
.even
<< 1 | BIT(test_key
, i
^ 7);
1325 uint32_t nt
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
1326 for (int8_t byte_pos
= 3; byte_pos
>= 0; byte_pos
--) {
1327 uint8_t nt_byte_dec
= (nt
>> (8*byte_pos
)) & 0xff;
1328 uint8_t nt_byte_enc
= crypto1_byte(&sim_cs
, nt_byte_dec
^ (test_cuid
>> (8*byte_pos
)), false) ^ nt_byte_dec
; // encode the nonce byte
1329 *nt_enc
= (*nt_enc
<< 8) | nt_byte_enc
;
1330 uint8_t ks_par
= filter(sim_cs
.odd
); // the keystream bit to encode/decode the parity bit
1331 uint8_t nt_byte_par_enc
= ks_par
^ oddparity8(nt_byte_dec
); // determine the nt byte's parity and encode it
1332 *par_enc
= (*par_enc
<< 1) | nt_byte_par_enc
;
1338 static void simulate_acquire_nonces()
1340 time_t time1
= time(NULL
);
1341 last_sample_clock
= 0;
1342 sample_period
= 1000; // for simulation
1343 hardnested_stage
= CHECK_1ST_BYTES
;
1344 bool acquisition_completed
= false;
1345 uint32_t total_num_nonces
= 0;
1347 bool reported_suma8
= false;
1349 cuid
= (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
1350 if (known_target_key
== -1) {
1351 known_target_key
= ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
1354 char progress_text
[80];
1355 sprintf(progress_text
, "Simulating key %012" PRIx64
", cuid %08" PRIx32
" ...", known_target_key
, cuid
);
1356 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
1357 fprintf(fstats
, "%012" PRIx64
";%" PRIx32
";", known_target_key
, cuid
);
1359 num_acquired_nonces
= 0;
1362 uint32_t nt_enc
= 0;
1363 uint8_t par_enc
= 0;
1365 for (uint16_t i
= 0; i
< 113; i
++) {
1366 simulate_MFplus_RNG(cuid
, known_target_key
, &nt_enc
, &par_enc
);
1367 num_acquired_nonces
+= add_nonce(nt_enc
, par_enc
);
1371 last_sample_clock
= msclock();
1373 if (first_byte_num
== 256 ) {
1374 if (hardnested_stage
== CHECK_1ST_BYTES
) {
1375 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1376 if (first_byte_Sum
== sums
[i
]) {
1381 hardnested_stage
|= CHECK_2ND_BYTES
;
1384 update_nonce_data(true);
1385 acquisition_completed
= shrink_key_space(&brute_force
);
1386 if (!reported_suma8
) {
1387 char progress_string
[80];
1388 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]);
1389 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0);
1390 reported_suma8
= true;
1392 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1395 update_nonce_data(true);
1396 acquisition_completed
= shrink_key_space(&brute_force
);
1397 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1399 } while (!acquisition_completed
);
1401 time_t end_time
= time(NULL
);
1402 // PrintAndLog("Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)",
1403 // num_acquired_nonces,
1404 // difftime(end_time, time1),
1405 // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY
1408 fprintf(fstats
, "%" PRId32
";%" PRId32
";%1.0f;", total_num_nonces
, num_acquired_nonces
, difftime(end_time
,time1
));
1413 static int acquire_nonces(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, bool nonce_file_write
, bool slow
)
1415 last_sample_clock
= msclock();
1416 sample_period
= 2000; // initial rough estimate. Will be refined.
1417 bool initialize
= true;
1418 bool field_off
= false;
1419 hardnested_stage
= CHECK_1ST_BYTES
;
1420 bool acquisition_completed
= false;
1422 uint8_t write_buf
[9];
1423 uint32_t total_num_nonces
= 0;
1425 bool reported_suma8
= false;
1426 FILE *fnonces
= NULL
;
1429 num_acquired_nonces
= 0;
1431 clearCommandBuffer();
1435 flags
|= initialize
? 0x0001 : 0;
1436 flags
|= slow
? 0x0002 : 0;
1437 flags
|= field_off
? 0x0004 : 0;
1438 UsbCommand c
= {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
, {blockNo
+ keyType
* 0x100, trgBlockNo
+ trgKeyType
* 0x100, flags
}};
1439 memcpy(c
.d
.asBytes
, key
, 6);
1443 if (field_off
) break;
1446 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) return 1;
1448 if (resp
.arg
[0]) return resp
.arg
[0]; // error during nested_hard
1451 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
1452 if (nonce_file_write
&& fnonces
== NULL
) {
1453 if ((fnonces
= fopen("nonces.bin","wb")) == NULL
) {
1454 PrintAndLog("Could not create file nonces.bin");
1457 hardnested_print_progress(0, "Writing acquired nonces to binary file nonces.bin", (float)(1LL<<47), 0);
1458 num_to_bytes(cuid
, 4, write_buf
);
1459 fwrite(write_buf
, 1, 4, fnonces
);
1460 fwrite(&trgBlockNo
, 1, 1, fnonces
);
1461 fwrite(&trgKeyType
, 1, 1, fnonces
);
1466 uint32_t nt_enc1
, nt_enc2
;
1468 uint16_t num_sampled_nonces
= resp
.arg
[2];
1469 uint8_t *bufp
= resp
.d
.asBytes
;
1470 for (uint16_t i
= 0; i
< num_sampled_nonces
; i
+=2) {
1471 nt_enc1
= bytes_to_num(bufp
, 4);
1472 nt_enc2
= bytes_to_num(bufp
+4, 4);
1473 par_enc
= bytes_to_num(bufp
+8, 1);
1475 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
1476 num_acquired_nonces
+= add_nonce(nt_enc1
, par_enc
>> 4);
1477 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
1478 num_acquired_nonces
+= add_nonce(nt_enc2
, par_enc
& 0x0f);
1480 if (nonce_file_write
) {
1481 fwrite(bufp
, 1, 9, fnonces
);
1485 total_num_nonces
+= num_sampled_nonces
;
1487 if (first_byte_num
== 256 ) {
1488 if (hardnested_stage
== CHECK_1ST_BYTES
) {
1489 for (uint16_t i
= 0; i
< NUM_SUMS
; i
++) {
1490 if (first_byte_Sum
== sums
[i
]) {
1495 hardnested_stage
|= CHECK_2ND_BYTES
;
1498 update_nonce_data(true);
1499 acquisition_completed
= shrink_key_space(&brute_force
);
1500 if (!reported_suma8
) {
1501 char progress_string
[80];
1502 sprintf(progress_string
, "Apply Sum property. Sum(a0) = %d", sums
[first_byte_Sum
]);
1503 hardnested_print_progress(num_acquired_nonces
, progress_string
, brute_force
, 0);
1504 reported_suma8
= true;
1506 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1509 update_nonce_data(true);
1510 acquisition_completed
= shrink_key_space(&brute_force
);
1511 hardnested_print_progress(num_acquired_nonces
, "Apply bit flip properties", brute_force
, 0);
1515 if (acquisition_completed
) {
1516 field_off
= true; // switch off field with next SendCommand and then finish
1520 if (!WaitForResponseTimeout(CMD_ACK
, &resp
, 3000)) {
1521 if (nonce_file_write
) {
1527 if (nonce_file_write
) {
1530 return resp
.arg
[0]; // error during nested_hard
1536 if (msclock() - last_sample_clock
< sample_period
) {
1537 sample_period
= msclock() - last_sample_clock
;
1539 last_sample_clock
= msclock();
1541 } while (!acquisition_completed
|| field_off
);
1543 if (nonce_file_write
) {
1547 // PrintAndLog("Sampled a total of %d nonces in %d seconds (%0.0f nonces/minute)",
1548 // total_num_nonces,
1549 // time(NULL)-time1,
1550 // (float)total_num_nonces*60.0/(time(NULL)-time1));
1556 static inline bool invariant_holds(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1558 uint_fast8_t j_1_bit_mask
= 0x01 << (bit
-1);
1559 uint_fast8_t bit_diff
= byte_diff
& j_1_bit_mask
; // difference of (j-1)th bit
1560 uint_fast8_t filter_diff
= filter(state1
>> (4-state_bit
)) ^ filter(state2
>> (4-state_bit
)); // difference in filter function
1561 uint_fast8_t mask_y12_y13
= 0xc0 >> state_bit
;
1562 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y12_y13
; // difference in state bits 12 and 13
1563 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
^ filter_diff
); // use parity function to XOR all bits
1568 static inline bool invalid_state(uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, uint_fast8_t bit
, uint_fast8_t state_bit
)
1570 uint_fast8_t j_bit_mask
= 0x01 << bit
;
1571 uint_fast8_t bit_diff
= byte_diff
& j_bit_mask
; // difference of jth bit
1572 uint_fast8_t mask_y13_y16
= 0x48 >> state_bit
;
1573 uint_fast8_t state_bits_diff
= (state1
^ state2
) & mask_y13_y16
; // difference in state bits 13 and 16
1574 uint_fast8_t all_diff
= evenparity8(bit_diff
^ state_bits_diff
); // use parity function to XOR all bits
1579 static inline bool remaining_bits_match(uint_fast8_t num_common_bits
, uint_fast8_t byte_diff
, uint_fast32_t state1
, uint_fast32_t state2
, odd_even_t odd_even
)
1583 switch (num_common_bits
) {
1584 case 0: if (!invariant_holds(byte_diff
, state1
, state2
, 1, 0)) return true;
1585 case 1: if (invalid_state(byte_diff
, state1
, state2
, 1, 0)) return false;
1586 case 2: if (!invariant_holds(byte_diff
, state1
, state2
, 3, 1)) return true;
1587 case 3: if (invalid_state(byte_diff
, state1
, state2
, 3, 1)) return false;
1588 case 4: if (!invariant_holds(byte_diff
, state1
, state2
, 5, 2)) return true;
1589 case 5: if (invalid_state(byte_diff
, state1
, state2
, 5, 2)) return false;
1590 case 6: if (!invariant_holds(byte_diff
, state1
, state2
, 7, 3)) return true;
1591 case 7: if (invalid_state(byte_diff
, state1
, state2
, 7, 3)) return false;
1595 switch (num_common_bits
) {
1596 case 0: if (invalid_state(byte_diff
, state1
, state2
, 0, 0)) return false;
1597 case 1: if (!invariant_holds(byte_diff
, state1
, state2
, 2, 1)) return true;
1598 case 2: if (invalid_state(byte_diff
, state1
, state2
, 2, 1)) return false;
1599 case 3: if (!invariant_holds(byte_diff
, state1
, state2
, 4, 2)) return true;
1600 case 4: if (invalid_state(byte_diff
, state1
, state2
, 4, 2)) return false;
1601 case 5: if (!invariant_holds(byte_diff
, state1
, state2
, 6, 3)) return true;
1602 case 6: if (invalid_state(byte_diff
, state1
, state2
, 6, 3)) return false;
1606 return true; // valid state
1610 static pthread_mutex_t statelist_cache_mutex
;
1611 static pthread_mutex_t book_of_work_mutex
;
1620 static struct sl_cache_entry
{
1623 work_status_t cache_status
;
1624 } sl_cache
[NUM_PART_SUMS
][NUM_PART_SUMS
][2];
1627 static void init_statelist_cache(void)
1629 pthread_mutex_lock(&statelist_cache_mutex
);
1630 for (uint16_t i
= 0; i
< NUM_PART_SUMS
; i
++) {
1631 for (uint16_t j
= 0; j
< NUM_PART_SUMS
; j
++) {
1632 for (uint16_t k
= 0; k
< 2; k
++) {
1633 sl_cache
[i
][j
][k
].sl
= NULL
;
1634 sl_cache
[i
][j
][k
].len
= 0;
1635 sl_cache
[i
][j
][k
].cache_status
= TO_BE_DONE
;
1639 pthread_mutex_unlock(&statelist_cache_mutex
);
1643 static void free_statelist_cache(void)
1645 pthread_mutex_lock(&statelist_cache_mutex
);
1646 for (uint16_t i
= 0; i
< NUM_PART_SUMS
; i
++) {
1647 for (uint16_t j
= 0; j
< NUM_PART_SUMS
; j
++) {
1648 for (uint16_t k
= 0; k
< 2; k
++) {
1649 free(sl_cache
[i
][j
][k
].sl
);
1653 pthread_mutex_unlock(&statelist_cache_mutex
);
1657 #ifdef DEBUG_KEY_ELIMINATION
1658 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
, bool quiet
)
1660 static inline bool bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)
1663 uint32_t *bitset
= nonces
[byte
].states_bitarray
[odd_even
];
1664 bool possible
= test_bit24(bitset
, state
);
1666 #ifdef DEBUG_KEY_ELIMINATION
1667 if (!quiet
&& known_target_key
!= -1 && state
== test_state
[odd_even
]) {
1668 printf("Initial state lists: %s test state eliminated by bitflip property.\n", odd_even
==EVEN_STATE
?"even":"odd");
1669 sprintf(failstr
, "Initial %s Byte Bitflip property", odd_even
==EVEN_STATE
?"even":"odd");
1679 static uint_fast8_t reverse(uint_fast8_t byte
)
1681 uint_fast8_t rev_byte
= 0;
1683 for (uint8_t i
= 0; i
< 8; i
++) {
1685 rev_byte
|= (byte
>> i
) & 0x01;
1692 static bool all_bitflips_match(uint8_t byte
, uint32_t state
, odd_even_t odd_even
)
1694 uint32_t masks
[2][8] = {{0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe, 0x00ffffff},
1695 {0x00fffff0, 0x00fffff0, 0x00fffff8, 0x00fffff8, 0x00fffffc, 0x00fffffc, 0x00fffffe, 0x00fffffe} };
1697 for (uint16_t i
= 1; i
< 256; i
++) {
1698 uint_fast8_t bytes_diff
= reverse(i
); // start with most common bits
1699 uint_fast8_t byte2
= byte
^ bytes_diff
;
1700 uint_fast8_t num_common
= trailing_zeros(bytes_diff
);
1701 uint32_t mask
= masks
[odd_even
][num_common
];
1702 bool found_match
= false;
1703 for (uint8_t remaining_bits
= 0; remaining_bits
<= (~mask
& 0xff); remaining_bits
++) {
1704 if (remaining_bits_match(num_common
, bytes_diff
, state
, (state
& mask
) | remaining_bits
, odd_even
)) {
1705 #ifdef DEBUG_KEY_ELIMINATION
1706 if (bitflips_match(byte2
, (state
& mask
) | remaining_bits
, odd_even
, true)) {
1708 if (bitflips_match(byte2
, (state
& mask
) | remaining_bits
, odd_even
)) {
1716 #ifdef DEBUG_KEY_ELIMINATION
1717 if (known_target_key
!= -1 && state
== test_state
[odd_even
]) {
1718 printf("all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n",
1719 odd_even
==ODD_STATE
?"odd":"even",
1720 test_state
[odd_even
],
1721 byte
, byte2
, num_common
);
1722 if (failstr
[0] == '\0') {
1723 sprintf(failstr
, "Other 1st Byte %s, all_bitflips_match(), no match", odd_even
?"odd":"even");
1735 static void bitarray_to_list(uint8_t byte
, uint32_t *bitarray
, uint32_t *state_list
, uint32_t *len
, odd_even_t odd_even
)
1737 uint32_t *p
= state_list
;
1738 for (uint32_t state
= next_state(bitarray
, -1L); state
< (1<<24); state
= next_state(bitarray
, state
)) {
1739 if (all_bitflips_match(byte
, state
, odd_even
)) {
1743 // add End Of List marker
1745 *len
= p
- state_list
;
1749 static void add_cached_states(statelist_t
*candidates
, uint16_t part_sum_a0
, uint16_t part_sum_a8
, odd_even_t odd_even
)
1751 candidates
->states
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl
;
1752 candidates
->len
[odd_even
] = sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len
;
1757 static void add_matching_states(statelist_t
*candidates
, uint8_t part_sum_a0
, uint8_t part_sum_a8
, odd_even_t odd_even
)
1759 uint32_t worstcase_size
= 1<<20;
1760 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1761 if (candidates
->states
[odd_even
] == NULL
) {
1762 PrintAndLog("Out of memory error in add_matching_states() - statelist.\n");
1765 uint32_t *candidates_bitarray
= (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1<<19));
1766 if (candidates_bitarray
== NULL
) {
1767 PrintAndLog("Out of memory error in add_matching_states() - bitarray.\n");
1768 free(candidates
->states
[odd_even
]);
1772 uint32_t *bitarray_a0
= part_sum_a0_bitarrays
[odd_even
][part_sum_a0
/2];
1773 uint32_t *bitarray_a8
= part_sum_a8_bitarrays
[odd_even
][part_sum_a8
/2];
1774 uint32_t *bitarray_bitflips
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
];
1776 // for (uint32_t i = 0; i < (1<<19); i++) {
1777 // candidates_bitarray[i] = bitarray_a0[i] & bitarray_a8[i] & bitarray_bitflips[i];
1779 bitarray_AND4(candidates_bitarray
, bitarray_a0
, bitarray_a8
, bitarray_bitflips
);
1781 bitarray_to_list(best_first_bytes
[0], candidates_bitarray
, candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
);
1782 if (candidates
->len
[odd_even
] == 0) {
1783 free(candidates
->states
[odd_even
]);
1784 candidates
->states
[odd_even
] = NULL
;
1785 } else if (candidates
->len
[odd_even
] + 1 < worstcase_size
) {
1786 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1788 free_bitarray(candidates_bitarray
);
1791 pthread_mutex_lock(&statelist_cache_mutex
);
1792 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].sl
= candidates
->states
[odd_even
];
1793 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].len
= candidates
->len
[odd_even
];
1794 sl_cache
[part_sum_a0
/2][part_sum_a8
/2][odd_even
].cache_status
= COMPLETED
;
1795 pthread_mutex_unlock(&statelist_cache_mutex
);
1801 static statelist_t
*add_more_candidates(void)
1803 statelist_t
*new_candidates
= candidates
;
1804 if (candidates
== NULL
) {
1805 candidates
= (statelist_t
*)malloc(sizeof(statelist_t
));
1806 new_candidates
= candidates
;
1808 new_candidates
= candidates
;
1809 while (new_candidates
->next
!= NULL
) {
1810 new_candidates
= new_candidates
->next
;
1812 new_candidates
= new_candidates
->next
= (statelist_t
*)malloc(sizeof(statelist_t
));
1814 new_candidates
->next
= NULL
;
1815 new_candidates
->len
[ODD_STATE
] = 0;
1816 new_candidates
->len
[EVEN_STATE
] = 0;
1817 new_candidates
->states
[ODD_STATE
] = NULL
;
1818 new_candidates
->states
[EVEN_STATE
] = NULL
;
1819 return new_candidates
;
1823 static void add_bitflip_candidates(uint8_t byte
)
1825 statelist_t
*candidates
= add_more_candidates();
1827 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
1828 uint32_t worstcase_size
= nonces
[byte
].num_states_bitarray
[odd_even
] + 1;
1829 candidates
->states
[odd_even
] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size
);
1830 if (candidates
->states
[odd_even
] == NULL
) {
1831 PrintAndLog("Out of memory error in add_bitflip_candidates().\n");
1835 bitarray_to_list(byte
, nonces
[byte
].states_bitarray
[odd_even
], candidates
->states
[odd_even
], &(candidates
->len
[odd_even
]), odd_even
);
1837 if (candidates
->len
[odd_even
] + 1 < worstcase_size
) {
1838 candidates
->states
[odd_even
] = realloc(candidates
->states
[odd_even
], sizeof(uint32_t) * (candidates
->len
[odd_even
] + 1));
1845 static bool TestIfKeyExists(uint64_t key
)
1847 struct Crypto1State
*pcs
;
1848 pcs
= crypto1_create(key
);
1849 crypto1_byte(pcs
, (cuid
>> 24) ^ best_first_bytes
[0], true);
1851 uint32_t state_odd
= pcs
->odd
& 0x00ffffff;
1852 uint32_t state_even
= pcs
->even
& 0x00ffffff;
1855 for (statelist_t
*p
= candidates
; p
!= NULL
; p
= p
->next
) {
1856 bool found_odd
= false;
1857 bool found_even
= false;
1858 uint32_t *p_odd
= p
->states
[ODD_STATE
];
1859 uint32_t *p_even
= p
->states
[EVEN_STATE
];
1860 if (p_odd
!= NULL
&& p_even
!= NULL
) {
1861 while (*p_odd
!= 0xffffffff) {
1862 if ((*p_odd
& 0x00ffffff) == state_odd
) {
1868 while (*p_even
!= 0xffffffff) {
1869 if ((*p_even
& 0x00ffffff) == state_even
) {
1874 count
+= (uint64_t)(p_odd
- p
->states
[ODD_STATE
]) * (uint64_t)(p_even
- p
->states
[EVEN_STATE
]);
1876 if (found_odd
&& found_even
) {
1877 num_keys_tested
+= count
;
1878 hardnested_print_progress(num_acquired_nonces
, "(Test: Key found)", 0.0, 0);
1879 crypto1_destroy(pcs
);
1884 num_keys_tested
+= count
;
1885 hardnested_print_progress(num_acquired_nonces
, "(Test: Key NOT found)", 0.0, 0);
1887 crypto1_destroy(pcs
);
1892 static work_status_t book_of_work
[NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
][NUM_PART_SUMS
];
1895 static void init_book_of_work(void)
1897 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
1898 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
1899 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
1900 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
1901 book_of_work
[p
][q
][r
][s
] = TO_BE_DONE
;
1909 static void *generate_candidates_worker_thread(void *args
)
1911 uint16_t *sum_args
= (uint16_t *)args
;
1912 uint16_t sum_a0
= sums
[sum_args
[0]];
1913 uint16_t sum_a8
= sums
[sum_args
[1]];
1914 // uint16_t my_thread_number = sums[2];
1916 bool there_might_be_more_work
= true;
1918 there_might_be_more_work
= false;
1919 for (uint8_t p
= 0; p
< NUM_PART_SUMS
; p
++) {
1920 for (uint8_t q
= 0; q
< NUM_PART_SUMS
; q
++) {
1921 if (2*p
*(16-2*q
) + (16-2*p
)*2*q
== sum_a0
) {
1922 // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1923 // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1924 for (uint8_t r
= 0; r
< NUM_PART_SUMS
; r
++) {
1925 for (uint8_t s
= 0; s
< NUM_PART_SUMS
; s
++) {
1926 if (2*r
*(16-2*s
) + (16-2*r
)*2*s
== sum_a8
) {
1927 pthread_mutex_lock(&book_of_work_mutex
);
1928 if (book_of_work
[p
][q
][r
][s
] != TO_BE_DONE
) { // this has been done or is currently been done by another thread. Look for some other work.
1929 pthread_mutex_unlock(&book_of_work_mutex
);
1933 pthread_mutex_lock(&statelist_cache_mutex
);
1934 if (sl_cache
[p
][r
][ODD_STATE
].cache_status
== WORK_IN_PROGRESS
1935 || sl_cache
[q
][s
][EVEN_STATE
].cache_status
== WORK_IN_PROGRESS
) { // defer until not blocked by another thread.
1936 pthread_mutex_unlock(&statelist_cache_mutex
);
1937 pthread_mutex_unlock(&book_of_work_mutex
);
1938 there_might_be_more_work
= true;
1942 // we finally can do some work.
1943 book_of_work
[p
][q
][r
][s
] = WORK_IN_PROGRESS
;
1944 statelist_t
*current_candidates
= add_more_candidates();
1946 // Check for cached results and add them first
1947 bool odd_completed
= false;
1948 if (sl_cache
[p
][r
][ODD_STATE
].cache_status
== COMPLETED
) {
1949 add_cached_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
1950 odd_completed
= true;
1952 bool even_completed
= false;
1953 if (sl_cache
[q
][s
][EVEN_STATE
].cache_status
== COMPLETED
) {
1954 add_cached_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
1955 even_completed
= true;
1958 bool work_required
= true;
1960 // if there had been two cached results, there is no more work to do
1961 if (even_completed
&& odd_completed
) {
1962 work_required
= false;
1965 // if there had been one cached empty result, there is no need to calculate the other part:
1966 if (work_required
) {
1967 if (even_completed
&& !current_candidates
->len
[EVEN_STATE
]) {
1968 current_candidates
->len
[ODD_STATE
] = 0;
1969 current_candidates
->states
[ODD_STATE
] = NULL
;
1970 work_required
= false;
1972 if (odd_completed
&& !current_candidates
->len
[ODD_STATE
]) {
1973 current_candidates
->len
[EVEN_STATE
] = 0;
1974 current_candidates
->states
[EVEN_STATE
] = NULL
;
1975 work_required
= false;
1979 if (!work_required
) {
1980 pthread_mutex_unlock(&statelist_cache_mutex
);
1981 pthread_mutex_unlock(&book_of_work_mutex
);
1983 // we really need to calculate something
1984 if (even_completed
) { // we had one cache hit with non-zero even states
1985 // printf("Thread #%u: start working on odd states p=%2d, r=%2d...\n", my_thread_number, p, r);
1986 sl_cache
[p
][r
][ODD_STATE
].cache_status
= WORK_IN_PROGRESS
;
1987 pthread_mutex_unlock(&statelist_cache_mutex
);
1988 pthread_mutex_unlock(&book_of_work_mutex
);
1989 add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
1990 work_required
= false;
1991 } else if (odd_completed
) { // we had one cache hit with non-zero odd_states
1992 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
1993 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= WORK_IN_PROGRESS
;
1994 pthread_mutex_unlock(&statelist_cache_mutex
);
1995 pthread_mutex_unlock(&book_of_work_mutex
);
1996 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
1997 work_required
= false;
2001 if (work_required
) { // we had no cached result. Need to calculate both odd and even
2002 sl_cache
[p
][r
][ODD_STATE
].cache_status
= WORK_IN_PROGRESS
;
2003 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= WORK_IN_PROGRESS
;
2004 pthread_mutex_unlock(&statelist_cache_mutex
);
2005 pthread_mutex_unlock(&book_of_work_mutex
);
2007 add_matching_states(current_candidates
, 2*p
, 2*r
, ODD_STATE
);
2008 if(current_candidates
->len
[ODD_STATE
]) {
2009 // printf("Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s);
2010 add_matching_states(current_candidates
, 2*q
, 2*s
, EVEN_STATE
);
2011 } else { // no need to calculate even states yet
2012 pthread_mutex_lock(&statelist_cache_mutex
);
2013 sl_cache
[q
][s
][EVEN_STATE
].cache_status
= TO_BE_DONE
;
2014 pthread_mutex_unlock(&statelist_cache_mutex
);
2015 current_candidates
->len
[EVEN_STATE
] = 0;
2016 current_candidates
->states
[EVEN_STATE
] = NULL
;
2020 // update book of work
2021 pthread_mutex_lock(&book_of_work_mutex
);
2022 book_of_work
[p
][q
][r
][s
] = COMPLETED
;
2023 pthread_mutex_unlock(&book_of_work_mutex
);
2025 // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) {
2026 // printf("Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n",
2027 // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE],
2028 // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE],
2029 // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2));
2030 // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE);
2031 // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE);
2032 // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even;
2033 // printf("Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2));
2034 // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) {
2035 // printf("############################################################################ERROR! ESTIMATED < REAL !!!\n");
2045 } while (there_might_be_more_work
);
2051 static void generate_candidates(uint8_t sum_a0_idx
, uint8_t sum_a8_idx
)
2053 // printf("Generating crypto1 state candidates... \n");
2055 // estimate maximum candidate states
2056 // maximum_states = 0;
2057 // for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
2058 // for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
2059 // if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
2060 // maximum_states += (uint64_t)count_states(part_sum_a0_bitarrays[EVEN_STATE][sum_even/2])
2061 // * count_states(part_sum_a0_bitarrays[ODD_STATE][sum_odd/2]);
2065 // printf("Number of possible keys with Sum(a0) = %d: %" PRIu64 " (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
2067 init_statelist_cache();
2068 init_book_of_work();
2070 // create mutexes for accessing the statelist cache and our "book of work"
2071 pthread_mutex_init(&statelist_cache_mutex
, NULL
);
2072 pthread_mutex_init(&book_of_work_mutex
, NULL
);
2074 // create and run worker threads
2075 pthread_t thread_id
[NUM_REDUCTION_WORKING_THREADS
];
2077 uint16_t sums
[NUM_REDUCTION_WORKING_THREADS
][3];
2078 for (uint16_t i
= 0; i
< NUM_REDUCTION_WORKING_THREADS
; i
++) {
2079 sums
[i
][0] = sum_a0_idx
;
2080 sums
[i
][1] = sum_a8_idx
;
2082 pthread_create(thread_id
+ i
, NULL
, generate_candidates_worker_thread
, sums
[i
]);
2085 // wait for threads to terminate:
2086 for (uint16_t i
= 0; i
< NUM_REDUCTION_WORKING_THREADS
; i
++) {
2087 pthread_join(thread_id
[i
], NULL
);
2091 pthread_mutex_destroy(&statelist_cache_mutex
);
2094 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2095 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2098 for (uint8_t i
= 0; i
< NUM_SUMS
; i
++) {
2099 if (nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].sum_a8_idx
== sum_a8_idx
) {
2100 nonces
[best_first_bytes
[0]].sum_a8_guess
[i
].num_states
= maximum_states
;
2104 update_expected_brute_force(best_first_bytes
[0]);
2106 hardnested_print_progress(num_acquired_nonces
, "Apply Sum(a8) and all bytes bitflip properties", nonces
[best_first_bytes
[0]].expected_num_brute_force
, 0);
2110 static void free_candidates_memory(statelist_t
*sl
)
2115 free_candidates_memory(sl
->next
);
2121 static void pre_XOR_nonces(void)
2123 // prepare acquired nonces for faster brute forcing.
2125 // XOR the cryptoUID and its parity
2126 for (uint16_t i
= 0; i
< 256; i
++) {
2127 noncelistentry_t
*test_nonce
= nonces
[i
].first
;
2128 while (test_nonce
!= NULL
) {
2129 test_nonce
->nonce_enc
^= cuid
;
2130 test_nonce
->par_enc
^= oddparity8(cuid
>> 0 & 0xff) << 0;
2131 test_nonce
->par_enc
^= oddparity8(cuid
>> 8 & 0xff) << 1;
2132 test_nonce
->par_enc
^= oddparity8(cuid
>> 16 & 0xff) << 2;
2133 test_nonce
->par_enc
^= oddparity8(cuid
>> 24 & 0xff) << 3;
2134 test_nonce
= test_nonce
->next
;
2140 static bool brute_force(void)
2142 if (known_target_key
!= -1) {
2143 TestIfKeyExists(known_target_key
);
2145 return brute_force_bs(NULL
, candidates
, cuid
, num_acquired_nonces
, maximum_states
, nonces
, best_first_bytes
);
2149 static uint16_t SumProperty(struct Crypto1State
*s
)
2151 uint16_t sum_odd
= PartialSumProperty(s
->odd
, ODD_STATE
);
2152 uint16_t sum_even
= PartialSumProperty(s
->even
, EVEN_STATE
);
2153 return (sum_odd
*(16-sum_even
) + (16-sum_odd
)*sum_even
);
2160 /* #define NUM_STATISTICS 100000
2161 uint32_t statistics_odd[17];
2162 uint64_t statistics[257];
2163 uint32_t statistics_even[17];
2164 struct Crypto1State cs;
2165 uint64_t time1 = msclock();
2167 for (uint16_t i = 0; i < 257; i++) {
2170 for (uint16_t i = 0; i < 17; i++) {
2171 statistics_odd[i] = 0;
2172 statistics_even[i] = 0;
2175 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2176 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2177 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2178 uint16_t sum_property = SumProperty(&cs);
2179 statistics[sum_property] += 1;
2180 sum_property = PartialSumProperty(cs.even, EVEN_STATE);
2181 statistics_even[sum_property]++;
2182 sum_property = PartialSumProperty(cs.odd, ODD_STATE);
2183 statistics_odd[sum_property]++;
2184 if (i%(NUM_STATISTICS/100) == 0) printf(".");
2187 printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2188 for (uint16_t i = 0; i < 257; i++) {
2189 if (statistics[i] != 0) {
2190 printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
2193 for (uint16_t i = 0; i <= 16; i++) {
2194 if (statistics_odd[i] != 0) {
2195 printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
2198 for (uint16_t i = 0; i <= 16; i++) {
2199 if (statistics_odd[i] != 0) {
2200 printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
2205 /* #define NUM_STATISTICS 100000000LL
2206 uint64_t statistics_a0[257];
2207 uint64_t statistics_a8[257][257];
2208 struct Crypto1State cs;
2209 uint64_t time1 = msclock();
2211 for (uint16_t i = 0; i < 257; i++) {
2212 statistics_a0[i] = 0;
2213 for (uint16_t j = 0; j < 257; j++) {
2214 statistics_a8[i][j] = 0;
2218 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2219 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2220 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2221 uint16_t sum_property_a0 = SumProperty(&cs);
2222 statistics_a0[sum_property_a0]++;
2223 uint8_t first_byte = rand() & 0xff;
2224 crypto1_byte(&cs, first_byte, true);
2225 uint16_t sum_property_a8 = SumProperty(&cs);
2226 statistics_a8[sum_property_a0][sum_property_a8] += 1;
2227 if (i%(NUM_STATISTICS/100) == 0) printf(".");
2230 printf("\nTests: Probability Distribution of a8 depending on a0:\n");
2232 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2233 printf("%7d ", sums[i]);
2235 printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n");
2237 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2238 printf("%7.5f ", (float)statistics_a0[sums[i]] / NUM_STATISTICS);
2241 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2242 printf("%3d ", sums[i]);
2243 for (uint16_t j = 0; j < NUM_SUMS; j++) {
2244 printf("%7.5f ", (float)statistics_a8[sums[i]][sums[j]] / statistics_a0[sums[i]]);
2248 printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2251 /* #define NUM_STATISTICS 100000LL
2252 uint64_t statistics_a8[257];
2253 struct Crypto1State cs;
2254 uint64_t time1 = msclock();
2256 printf("\nTests: Probability Distribution of a8 depending on first byte:\n");
2258 for (uint16_t i = 0; i < NUM_SUMS; i++) {
2259 printf("%7d ", sums[i]);
2261 printf("\n-------------------------------------------------------------------------------------------------------------------------------------------\n");
2262 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
2263 for (uint16_t i = 0; i < 257; i++) {
2264 statistics_a8[i] = 0;
2266 for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
2267 cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2268 cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
2269 crypto1_byte(&cs, first_byte, true);
2270 uint16_t sum_property_a8 = SumProperty(&cs);
2271 statistics_a8[sum_property_a8] += 1;
2273 printf("%03x ", first_byte);
2274 for (uint16_t j = 0; j < NUM_SUMS; j++) {
2275 printf("%7.5f ", (float)statistics_a8[sums[j]] / NUM_STATISTICS);
2279 printf("\nTests: Calculated %"lld" Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)msclock() - time1)/1000.0, NUM_STATISTICS/((float)msclock() - time1)*1000.0);
2282 /* printf("Tests: Sum Probabilities based on Partial Sums\n");
2283 for (uint16_t i = 0; i < 257; i++) {
2286 uint64_t num_states = 0;
2287 for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
2288 for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
2289 uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
2290 statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
2291 num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
2294 printf("num_states = %"lld", expected %"lld"\n", num_states, (1LL<<48));
2295 for (uint16_t i = 0; i < 257; i++) {
2296 if (statistics[i] != 0) {
2297 printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
2302 /* struct Crypto1State *pcs;
2303 pcs = crypto1_create(0xffffffffffff);
2304 printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2305 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2306 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2307 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2308 best_first_bytes[0],
2310 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2311 //test_state_odd = pcs->odd & 0x00ffffff;
2312 //test_state_even = pcs->even & 0x00ffffff;
2313 crypto1_destroy(pcs);
2314 pcs = crypto1_create(0xa0a1a2a3a4a5);
2315 printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2316 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2317 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2318 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2319 best_first_bytes[0],
2321 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2322 //test_state_odd = pcs->odd & 0x00ffffff;
2323 //test_state_even = pcs->even & 0x00ffffff;
2324 crypto1_destroy(pcs);
2325 pcs = crypto1_create(0xa6b9aa97b955);
2326 printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2327 SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2328 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
2329 printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
2330 best_first_bytes[0],
2332 pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
2333 test_state_odd = pcs->odd & 0x00ffffff;
2334 test_state_even = pcs->even & 0x00ffffff;
2335 crypto1_destroy(pcs);
2338 // printf("\nTests: Sorted First Bytes:\n");
2339 // for (uint16_t i = 0; i < 20; i++) {
2340 // uint8_t best_byte = best_first_bytes[i];
2341 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%\n",
2342 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8) = ", i, best_byte, nonces[best_byte].num, nonces[best_byte].Sum);
2343 // for (uint16_t j = 0; j < 3; j++) {
2344 // printf("%3d @ %4.1f%%, ", sums[nonces[best_byte].sum_a8_guess[j].sum_a8_idx], nonces[best_byte].sum_a8_guess[j].prob * 100.0);
2346 // printf(" %12" PRIu64 ", %12" PRIu64 ", %12" PRIu64 ", exp_brute: %12.0f\n",
2347 // nonces[best_byte].sum_a8_guess[0].num_states,
2348 // nonces[best_byte].sum_a8_guess[1].num_states,
2349 // nonces[best_byte].sum_a8_guess[2].num_states,
2350 // nonces[best_byte].expected_num_brute_force);
2353 // printf("\nTests: Actual BitFlipProperties of best byte:\n");
2354 // printf("[%02x]:", best_first_bytes[0]);
2355 // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
2356 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx];
2357 // if (nonces[best_first_bytes[0]].BitFlips[bitflip_prop]) {
2358 // printf(" %03" PRIx16 , bitflip_prop);
2363 // printf("\nTests2: Actual BitFlipProperties of first_byte_smallest_bitarray:\n");
2364 // printf("[%02x]:", best_first_byte_smallest_bitarray);
2365 // for (uint16_t bitflip_idx = 0; bitflip_idx < num_all_effective_bitflips; bitflip_idx++) {
2366 // uint16_t bitflip_prop = all_effective_bitflip[bitflip_idx];
2367 // if (nonces[best_first_byte_smallest_bitarray].BitFlips[bitflip_prop]) {
2368 // printf(" %03" PRIx16 , bitflip_prop);
2373 if (known_target_key
!= -1) {
2374 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2375 uint32_t *bitset
= nonces
[best_first_bytes
[0]].states_bitarray
[odd_even
];
2376 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2377 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
2378 odd_even
==EVEN_STATE
?"even":"odd ",
2379 best_first_bytes
[0]);
2384 if (known_target_key
!= -1) {
2385 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2386 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
];
2387 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2388 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",
2389 odd_even
==EVEN_STATE
?"even":"odd ");
2394 // if (known_target_key != -1) {
2395 // int16_t p = -1, q = -1, r = -1, s = -1;
2397 // printf("\nTests: known target key is member of these partial sum_a0 bitsets:\n");
2398 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
2399 // printf("%s", odd_even==EVEN_STATE?"even:":"odd: ");
2400 // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
2401 // uint32_t *bitset = part_sum_a0_bitarrays[odd_even][i];
2402 // if (test_bit24(bitset, test_state[odd_even])) {
2403 // printf("%d ", i);
2404 // if (odd_even == ODD_STATE) {
2414 // printf("\nTests: known target key is member of these partial sum_a8 bitsets:\n");
2415 // for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
2416 // printf("%s", odd_even==EVEN_STATE?"even:":"odd: ");
2417 // for (uint16_t i = 0; i < NUM_PART_SUMS; i++) {
2418 // uint32_t *bitset = part_sum_a8_bitarrays[odd_even][i];
2419 // if (test_bit24(bitset, test_state[odd_even])) {
2420 // printf("%d ", i);
2421 // if (odd_even == ODD_STATE) {
2431 // printf("Sum(a0) = p*(16-q) + (16-p)*q = %d*(16-%d) + (16-%d)*%d = %d\n", p, q, p, q, p*(16-q)+(16-p)*q);
2432 // printf("Sum(a8) = r*(16-s) + (16-r)*s = %d*(16-%d) + (16-%d)*%d = %d\n", r, s, r, s, r*(16-s)+(16-r)*s);
2435 /* printf("\nTests: parity performance\n");
2436 uint64_t time1p = msclock();
2437 uint32_t par_sum = 0;
2438 for (uint32_t i = 0; i < 100000000; i++) {
2439 par_sum += parity(i);
2441 printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0);
2445 for (uint32_t i = 0; i < 100000000; i++) {
2446 par_sum += evenparity32(i);
2448 printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(msclock() - time1p)/1000.0);
2454 static void Tests2(void)
2456 if (known_target_key
!= -1) {
2457 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2458 uint32_t *bitset
= nonces
[best_first_byte_smallest_bitarray
].states_bitarray
[odd_even
];
2459 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2460 printf("\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n",
2461 odd_even
==EVEN_STATE
?"even":"odd ",
2462 best_first_byte_smallest_bitarray
);
2467 if (known_target_key
!= -1) {
2468 for (odd_even_t odd_even
= EVEN_STATE
; odd_even
<= ODD_STATE
; odd_even
++) {
2469 uint32_t *bitset
= all_bitflips_bitarray
[odd_even
];
2470 if (!test_bit24(bitset
, test_state
[odd_even
])) {
2471 printf("\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n",
2472 odd_even
==EVEN_STATE
?"even":"odd ");
2480 static uint16_t real_sum_a8
= 0;
2482 static void set_test_state(uint8_t byte
)
2484 struct Crypto1State
*pcs
;
2485 pcs
= crypto1_create(known_target_key
);
2486 crypto1_byte(pcs
, (cuid
>> 24) ^ byte
, true);
2487 test_state
[ODD_STATE
] = pcs
->odd
& 0x00ffffff;
2488 test_state
[EVEN_STATE
] = pcs
->even
& 0x00ffffff;
2489 real_sum_a8
= SumProperty(pcs
);
2490 crypto1_destroy(pcs
);
2494 int mfnestedhard(uint8_t blockNo
, uint8_t keyType
, uint8_t *key
, uint8_t trgBlockNo
, uint8_t trgKeyType
, uint8_t *trgkey
, bool nonce_file_read
, bool nonce_file_write
, bool slow
, int tests
)
2496 char progress_text
[80];
2498 char instr_set
[12] = {0};
2499 get_SIMD_instruction_set(instr_set
);
2500 PrintAndLog("Using %s SIMD core.", instr_set
);
2502 srand((unsigned) time(NULL
));
2503 brute_force_per_second
= brute_force_benchmark();
2504 write_stats
= false;
2507 // set the correct locale for the stats printing
2509 setlocale(LC_NUMERIC
, "");
2510 if ((fstats
= fopen("hardnested_stats.txt","a")) == NULL
) {
2511 PrintAndLog("Could not create/open file hardnested_stats.txt");
2514 for (uint32_t i
= 0; i
< tests
; i
++) {
2515 start_time
= msclock();
2516 print_progress_header();
2517 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0));
2518 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2519 sprintf(progress_text
, "Starting Test #%" PRIu32
" ...", i
+1);
2520 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2521 if (trgkey
!= NULL
) {
2522 known_target_key
= bytes_to_num(trgkey
, 6);
2524 known_target_key
= -1;
2527 init_bitflip_bitarrays();
2528 init_part_sum_bitarrays();
2529 init_sum_bitarrays();
2530 init_allbitflips_array();
2531 init_nonce_memory();
2532 update_reduction_rate(0.0, true);
2534 simulate_acquire_nonces();
2536 set_test_state(best_first_bytes
[0]);
2539 free_bitflip_bitarrays();
2541 fprintf(fstats
, "%" PRIu16
";%1.1f;", sums
[first_byte_Sum
], log(p_K0
[first_byte_Sum
])/log(2.0));
2542 fprintf(fstats
, "%" PRIu16
";%1.1f;", sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
], log(p_K
[nonces
[best_first_bytes
[0]].sum_a8_guess
[0].sum_a8_idx
])/log(2.0));
2543 fprintf(fstats
, "%" PRIu16
";", real_sum_a8
);
2545 #ifdef DEBUG_KEY_ELIMINATION
2548 bool key_found
= false;
2549 num_keys_tested
= 0;
2550 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
2551 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];
2552 float expected_brute_force1
= (float)num_odd
* num_even
/ 2.0;
2553 float expected_brute_force2
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2554 fprintf(fstats
, "%1.1f;%1.1f;", log(expected_brute_force1
)/log(2.0), log(expected_brute_force2
)/log(2.0));
2555 if (expected_brute_force1
< expected_brute_force2
) {
2556 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0);
2557 set_test_state(best_first_byte_smallest_bitarray
);
2558 add_bitflip_candidates(best_first_byte_smallest_bitarray
);
2561 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2562 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2564 //printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
2565 // fprintf("fstats, "%" PRIu64 ";", maximum_states);
2566 best_first_bytes
[0] = best_first_byte_smallest_bitarray
;
2568 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2569 hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force1
, 0);
2570 key_found
= brute_force();
2571 free(candidates
->states
[ODD_STATE
]);
2572 free(candidates
->states
[EVEN_STATE
]);
2573 free_candidates_memory(candidates
);
2577 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2578 for (uint8_t j
= 0; j
< NUM_SUMS
&& !key_found
; j
++) {
2579 float expected_brute_force
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2580 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]);
2581 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2582 if (sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) {
2583 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16
")", real_sum_a8
);
2584 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2586 // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
2587 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
);
2588 // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
2589 hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force
, 0);
2590 key_found
= brute_force();
2591 free_statelist_cache();
2592 free_candidates_memory(candidates
);
2595 // update the statistics
2596 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob
= 0;
2597 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states
= 0;
2598 // and calculate new expected number of brute forces
2599 update_expected_brute_force(best_first_bytes
[0]);
2603 #ifdef DEBUG_KEY_ELIMINATION
2604 fprintf(fstats
, "%1.1f;%1.0f;%d;%s\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
, failstr
);
2606 fprintf(fstats
, "%1.0f;%d\n", log(num_keys_tested
)/log(2.0), (float)num_keys_tested
/brute_force_per_second
, key_found
);
2609 free_nonces_memory();
2610 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2611 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2612 free_sum_bitarrays();
2613 free_part_sum_bitarrays();
2617 start_time
= msclock();
2618 print_progress_header();
2619 sprintf(progress_text
, "Brute force benchmark: %1.0f million (2^%1.1f) keys/s", brute_force_per_second
/1000000, log(brute_force_per_second
)/log(2.0));
2620 hardnested_print_progress(0, progress_text
, (float)(1LL<<47), 0);
2621 init_bitflip_bitarrays();
2622 init_part_sum_bitarrays();
2623 init_sum_bitarrays();
2624 init_allbitflips_array();
2625 init_nonce_memory();
2626 update_reduction_rate(0.0, true);
2628 if (nonce_file_read
) { // use pre-acquired data from file nonces.bin
2629 if (read_nonce_file() != 0) {
2630 free_bitflip_bitarrays();
2631 free_nonces_memory();
2632 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2633 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2634 free_sum_bitarrays();
2635 free_part_sum_bitarrays();
2638 hardnested_stage
= CHECK_1ST_BYTES
| CHECK_2ND_BYTES
;
2639 update_nonce_data(false);
2641 shrink_key_space(&brute_force
);
2642 } else { // acquire nonces.
2643 uint16_t is_OK
= acquire_nonces(blockNo
, keyType
, key
, trgBlockNo
, trgKeyType
, nonce_file_write
, slow
);
2645 free_bitflip_bitarrays();
2646 free_nonces_memory();
2647 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2648 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2649 free_sum_bitarrays();
2650 free_part_sum_bitarrays();
2655 if (trgkey
!= NULL
) {
2656 known_target_key
= bytes_to_num(trgkey
, 6);
2657 set_test_state(best_first_bytes
[0]);
2659 known_target_key
= -1;
2664 free_bitflip_bitarrays();
2665 bool key_found
= false;
2666 num_keys_tested
= 0;
2667 uint32_t num_odd
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[ODD_STATE
];
2668 uint32_t num_even
= nonces
[best_first_byte_smallest_bitarray
].num_states_bitarray
[EVEN_STATE
];
2669 float expected_brute_force1
= (float)num_odd
* num_even
/ 2.0;
2670 float expected_brute_force2
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2671 if (expected_brute_force1
< expected_brute_force2
) {
2672 hardnested_print_progress(num_acquired_nonces
, "(Ignoring Sum(a8) properties)", expected_brute_force1
, 0);
2673 set_test_state(best_first_byte_smallest_bitarray
);
2674 add_bitflip_candidates(best_first_byte_smallest_bitarray
);
2677 for (statelist_t
*sl
= candidates
; sl
!= NULL
; sl
= sl
->next
) {
2678 maximum_states
+= (uint64_t)sl
->len
[ODD_STATE
] * sl
->len
[EVEN_STATE
];
2680 // printf("Number of remaining possible keys: %" PRIu64 " (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
2681 best_first_bytes
[0] = best_first_byte_smallest_bitarray
;
2683 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2684 hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force1
, 0);
2685 key_found
= brute_force();
2686 free(candidates
->states
[ODD_STATE
]);
2687 free(candidates
->states
[EVEN_STATE
]);
2688 free_candidates_memory(candidates
);
2692 prepare_bf_test_nonces(nonces
, best_first_bytes
[0]);
2693 for (uint8_t j
= 0; j
< NUM_SUMS
&& !key_found
; j
++) {
2694 float expected_brute_force
= nonces
[best_first_bytes
[0]].expected_num_brute_force
;
2695 sprintf(progress_text
, "(%d. guess: Sum(a8) = %" PRIu16
")", j
+1, sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
]);
2696 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2697 if (trgkey
!= NULL
&& sums
[nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
] != real_sum_a8
) {
2698 sprintf(progress_text
, "(Estimated Sum(a8) is WRONG! Correct Sum(a8) = %" PRIu16
")", real_sum_a8
);
2699 hardnested_print_progress(num_acquired_nonces
, progress_text
, expected_brute_force
, 0);
2701 // printf("Estimated remaining states: %" PRIu64 " (2^%1.1f)\n", nonces[best_first_bytes[0]].sum_a8_guess[j].num_states, log(nonces[best_first_bytes[0]].sum_a8_guess[j].num_states)/log(2.0));
2702 generate_candidates(first_byte_Sum
, nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].sum_a8_idx
);
2703 // printf("Time for generating key candidates list: %1.0f sec (%1.1f sec CPU)\n", difftime(time(NULL), start_time), (float)(msclock() - start_clock)/1000.0);
2704 hardnested_print_progress(num_acquired_nonces
, "Starting brute force...", expected_brute_force
, 0);
2705 key_found
= brute_force();
2706 free_statelist_cache();
2707 free_candidates_memory(candidates
);
2710 // update the statistics
2711 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].prob
= 0;
2712 nonces
[best_first_bytes
[0]].sum_a8_guess
[j
].num_states
= 0;
2713 // and calculate new expected number of brute forces
2714 update_expected_brute_force(best_first_bytes
[0]);
2720 free_nonces_memory();
2721 free_bitarray(all_bitflips_bitarray
[ODD_STATE
]);
2722 free_bitarray(all_bitflips_bitarray
[EVEN_STATE
]);
2723 free_sum_bitarrays();
2724 free_part_sum_bitarrays();