1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
24 #include "legicrfsim.h"
28 #include "iso14443b.h"
30 #include "lfsampling.h"
32 #include "mifarecmd.h"
33 #include "mifareutil.h"
34 #include "mifaresim.h"
38 #include "fpgaloader.h"
43 static uint32_t hw_capabilities
;
45 // Craig Young - 14a stand-alone code
47 #include "iso14443a.h"
50 //=============================================================================
51 // A buffer where we can queue things up to be sent through the FPGA, for
52 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
53 // is the order in which they go out on the wire.
54 //=============================================================================
56 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
57 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
60 struct common_area common_area
__attribute__((section(".commonarea")));
62 void ToSendReset(void) {
67 void ToSendStuffBit(int b
) {
70 ToSend
[ToSendMax
] = 0;
75 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
80 if (ToSendMax
>= sizeof(ToSend
)) {
82 DbpString("ToSendStuffBit overflowed!");
86 //=============================================================================
87 // Debug print functions, to go out over USB, to the usual PC-side client.
88 //=============================================================================
90 void DbpString(char *str
) {
91 uint8_t len
= strlen(str
);
92 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(uint8_t*)str
,len
);
95 void Dbprintf(const char *fmt
, ...) {
96 // should probably limit size here; oh well, let's just use a big buffer
97 char output_string
[128];
101 kvsprintf(fmt
, output_string
, 10, ap
);
104 DbpString(output_string
);
107 // prints HEX & ASCII
108 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
120 for (i
= 0; i
< l
; i
++)
121 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
] = '.';
124 Dbprintf("%-8s %*D",ascii
, l
, d
, " ");
126 Dbprintf("%*D", l
, d
, " ");
134 //-----------------------------------------------------------------------------
135 // Read an ADC channel and block till it completes, then return the result
136 // in ADC units (0 to 1023). Also a routine to average 32 samples and
138 //-----------------------------------------------------------------------------
139 static int ReadAdc(int ch
) {
140 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
141 // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
142 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
145 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
147 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
149 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
150 AT91C_BASE_ADC
->ADC_MR
=
151 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
152 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
153 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
155 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
156 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
158 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
160 return AT91C_BASE_ADC
->ADC_CDR
[ch
] & 0x3ff;
163 int AvgAdc(int ch
) { // was static - merlok{
167 for(i
= 0; i
< 32; i
++) {
171 return (a
+ 15) >> 5;
174 static int AvgAdc_Voltage_HF(void) {
175 int AvgAdc_Voltage_Low
, AvgAdc_Voltage_High
;
177 AvgAdc_Voltage_Low
= (MAX_ADC_HF_VOLTAGE_LOW
* AvgAdc(ADC_CHAN_HF_LOW
)) >> 10;
178 // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
179 if (AvgAdc_Voltage_Low
> MAX_ADC_HF_VOLTAGE_LOW
- 300) {
180 AvgAdc_Voltage_High
= (MAX_ADC_HF_VOLTAGE_HIGH
* AvgAdc(ADC_CHAN_HF_HIGH
)) >> 10;
181 if (AvgAdc_Voltage_High
>= AvgAdc_Voltage_Low
) {
182 return AvgAdc_Voltage_High
;
185 return AvgAdc_Voltage_Low
;
188 static int AvgAdc_Voltage_LF(void) {
189 return (MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10;
192 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[]) {
193 int i
, adcval
= 0, peak
= 0;
196 * Sweeps the useful LF range of the proxmark from
197 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
198 * read the voltage in the antenna, the result left
199 * in the buffer is a graph which should clearly show
200 * the resonating frequency of your LF antenna
201 * ( hopefully around 95 if it is tuned to 125kHz!)
204 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
205 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
208 for (i
= 255; i
>= 19; i
--) {
210 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
212 adcval
= AvgAdc_Voltage_LF();
213 if (i
== 95) *vLf125
= adcval
; // voltage at 125Khz
214 if (i
== 89) *vLf134
= adcval
; // voltage at 134Khz
216 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
217 if (LF_Results
[i
] > peak
) {
219 peak
= LF_Results
[i
];
225 for (i
= 18; i
>= 0; i
--) LF_Results
[i
] = 0;
230 void MeasureAntennaTuningHfOnly(int *vHf
) {
231 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
233 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
234 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
236 *vHf
= AvgAdc_Voltage_HF();
241 void MeasureAntennaTuning(int mode
) {
242 uint8_t LF_Results
[256] = {0};
243 int peakv
= 0, peakf
= 0;
244 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
248 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
249 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
250 MeasureAntennaTuningHfOnly(&vHf
);
251 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
253 if (mode
& FLAG_TUNE_LF
) {
254 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
256 if (mode
& FLAG_TUNE_HF
) {
257 MeasureAntennaTuningHfOnly(&vHf
);
261 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
262 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
267 void MeasureAntennaTuningHf(void) {
268 int vHf
= 0; // in mV
270 DbpString("Measuring HF antenna, press button to exit");
272 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
273 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
274 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
278 vHf
= AvgAdc_Voltage_HF();
280 Dbprintf("%d mV",vHf
);
281 if (BUTTON_PRESS()) break;
283 DbpString("cancelled");
285 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
290 void ReadMem(int addr
) {
291 const uint8_t *data
= ((uint8_t *)addr
);
293 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
294 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
297 /* osimage version information is linked in */
298 extern struct version_information version_information
;
299 /* bootrom version information is pointed to from _bootphase1_version_pointer */
300 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
303 void set_hw_capabilities(void) {
304 if (I2C_is_available()) {
305 hw_capabilities
|= HAS_SMARTCARD_SLOT
;
308 if (false) { // TODO: implement a test
309 hw_capabilities
|= HAS_EXTRA_FLASH_MEM
;
314 void SendVersion(void) {
315 set_hw_capabilities();
317 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
318 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
320 /* Try to find the bootrom version information. Expect to find a pointer at
321 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
322 * pointer, then use it.
324 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
325 if (bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
326 strcat(VersionString
, "bootrom version information appears invalid\n");
328 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
329 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
332 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
333 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
335 for (int i
= 0; i
< fpga_bitstream_num
; i
++) {
336 strncat(VersionString
, fpga_version_information
[i
], sizeof(VersionString
) - strlen(VersionString
) - 1);
337 strncat(VersionString
, "\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
340 // test availability of SmartCard slot
341 if (I2C_is_available()) {
342 strncat(VersionString
, "SmartCard Slot: available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
344 strncat(VersionString
, "SmartCard Slot: not available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
347 // Send Chip ID and used flash memory
348 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
349 uint32_t compressed_data_section_size
= common_area
.arg1
;
350 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, hw_capabilities
, VersionString
, strlen(VersionString
));
353 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
354 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
355 void printUSBSpeed(void) {
356 Dbprintf("USB Speed:");
357 Dbprintf(" Sending USB packets to client...");
359 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
360 uint8_t *test_data
= BigBuf_get_addr();
363 uint32_t start_time
= end_time
= GetTickCount();
364 uint32_t bytes_transferred
= 0;
367 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
368 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
369 end_time
= GetTickCount();
370 bytes_transferred
+= USB_CMD_DATA_SIZE
;
374 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
375 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
376 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
377 1000 * bytes_transferred
/ (end_time
- start_time
));
382 * Prints runtime information about the PM3.
384 void SendStatus(void) {
385 BigBuf_print_status();
387 #ifdef WITH_SMARTCARD
390 printConfig(); //LF Sampling config
393 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
394 Dbprintf(" ToSendMax..........%d", ToSendMax
);
395 Dbprintf(" ToSendBit..........%d", ToSendBit
);
397 cmd_send(CMD_ACK
,1,0,0,0,0);
400 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
404 void StandAloneMode() {
405 DbpString("Stand-alone mode! No PC necessary.");
406 // Oooh pretty -- notify user we're in elite samy mode now
408 LED(LED_ORANGE
, 200);
410 LED(LED_ORANGE
, 200);
412 LED(LED_ORANGE
, 200);
414 LED(LED_ORANGE
, 200);
422 #ifdef WITH_ISO14443a_StandAlone
423 void StandAloneMode14a() {
425 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
428 bool playing
= false, GotoRecord
= false, GotoClone
= false;
429 bool cardRead
[OPTS
] = {false};
430 uint8_t readUID
[10] = {0};
431 uint32_t uid_1st
[OPTS
]={0};
432 uint32_t uid_2nd
[OPTS
]={0};
433 uint32_t uid_tmp1
= 0;
434 uint32_t uid_tmp2
= 0;
435 iso14a_card_select_t hi14a_card
[OPTS
];
437 LED(selected
+ 1, 0);
444 if (GotoRecord
|| !cardRead
[selected
]) {
447 LED(selected
+ 1, 0);
451 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
452 /* need this delay to prevent catching some weird data */
454 /* Code for reading from 14a tag */
455 uint8_t uid
[10] ={0};
457 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
461 if (BUTTON_PRESS()) {
462 if (cardRead
[selected
]) {
463 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
465 } else if (cardRead
[(selected
+1)%OPTS
]) {
466 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
467 selected
= (selected
+1)%OPTS
;
470 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
474 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
477 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
478 memcpy(readUID
,uid
,10*sizeof(uint8_t));
479 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
480 // Set UID byte order
481 for (int i
= 0; i
< 4; i
++)
483 dst
= (uint8_t *)&uid_tmp2
;
484 for (int i
= 0; i
< 4; i
++)
486 if (uid_1st
[(selected
+1) % OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1) % OPTS
] == uid_tmp2
) {
487 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
490 Dbprintf("Bank[%d] received a 7-byte UID", selected
);
491 uid_1st
[selected
] = (uid_tmp1
)>>8;
492 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
494 Dbprintf("Bank[%d] received a 4-byte UID", selected
);
495 uid_1st
[selected
] = uid_tmp1
;
496 uid_2nd
[selected
] = uid_tmp2
;
502 Dbprintf("ATQA = %02X%02X", hi14a_card
[selected
].atqa
[0], hi14a_card
[selected
].atqa
[1]);
503 Dbprintf("SAK = %02X", hi14a_card
[selected
].sak
);
506 LED(LED_ORANGE
, 200);
508 LED(LED_ORANGE
, 200);
511 LED(selected
+ 1, 0);
513 // Next state is replay:
516 cardRead
[selected
] = true;
517 } else if (GotoClone
) { /* MF Classic UID clone */
520 LED(selected
+ 1, 0);
521 LED(LED_ORANGE
, 250);
525 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
527 // wait for button to be released
528 while(BUTTON_PRESS()) {
529 // Delay cloning until card is in place
532 Dbprintf("Starting clone. [Bank: %u]", selected
);
533 // need this delay to prevent catching some weird data
535 // Begin clone function here:
536 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
537 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
538 memcpy(c.d.asBytes, data, 16);
541 Block read is similar:
542 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
543 We need to imitate that call with blockNo 0 to set a uid.
545 The get and set commands are handled in this file:
546 // Work with "magic Chinese" card
547 case CMD_MIFARE_CSETBLOCK:
548 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
550 case CMD_MIFARE_CGETBLOCK:
551 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
554 mfCSetUID provides example logic for UID set workflow:
555 -Read block0 from card in field with MifareCGetBlock()
556 -Configure new values without replacing reserved bytes
557 memcpy(block0, uid, 4); // Copy UID bytes from byte array
559 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
560 Bytes 5-7 are reserved SAK and ATQA for mifare classic
561 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
563 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
564 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
565 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
566 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
567 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
570 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0], oldBlock0
[1], oldBlock0
[2], oldBlock0
[3]);
571 memcpy(newBlock0
, oldBlock0
, 16);
572 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
574 newBlock0
[0] = uid_1st
[selected
] >> 24;
575 newBlock0
[1] = 0xFF & (uid_1st
[selected
] >> 16);
576 newBlock0
[2] = 0xFF & (uid_1st
[selected
] >> 8);
577 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
578 newBlock0
[4] = newBlock0
[0] ^ newBlock0
[1] ^ newBlock0
[2] ^ newBlock0
[3];
579 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
580 MifareCSetBlock(0, 0xFF, 0, newBlock0
);
581 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
582 if (memcmp(testBlock0
, newBlock0
, 16) == 0) {
583 DbpString("Cloned successfull!");
584 cardRead
[selected
] = false; // Only if the card was cloned successfully should we clear it
587 selected
= (selected
+1) % OPTS
;
589 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
594 LED(selected
+ 1, 0);
596 } else if (playing
) {
597 // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
598 // Change where to record (or begin playing)
600 LED(selected
+ 1, 0);
602 // Begin transmitting
604 DbpString("Playing");
607 int button_action
= BUTTON_HELD(1000);
608 if (button_action
== 0) { // No button action, proceed with sim
609 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
610 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
], uid_2nd
[selected
], selected
);
611 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
612 DbpString("Mifare Classic");
613 SimulateIso14443aTag(1, uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
614 } else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
615 DbpString("Mifare Ultralight");
616 SimulateIso14443aTag(2, uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Ultralight
617 } else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
618 DbpString("Mifare DESFire");
619 SimulateIso14443aTag(3, uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare DESFire
621 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
622 SimulateIso14443aTag(1, uid_1st
[selected
], uid_2nd
[selected
], data
);
624 } else if (button_action
== BUTTON_SINGLE_CLICK
) {
625 selected
= (selected
+ 1) % OPTS
;
626 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
629 } else if (button_action
== BUTTON_HOLD
) {
630 Dbprintf("Playtime over. Begin cloning...");
637 /* We pressed a button so ignore it here with a delay */
640 LED(selected
+ 1, 0);
645 #elif WITH_LF_StandAlone
647 // samy's sniff and repeat routine
650 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
652 int tops
[OPTS
], high
[OPTS
], low
[OPTS
];
657 // Turn on selected LED
658 LED(selected
+ 1, 0);
664 // Was our button held down or pressed?
665 int button_pressed
= BUTTON_HELD(1000);
668 // Button was held for a second, begin recording
669 if (button_pressed
> 0 && cardRead
== 0) {
671 LED(selected
+ 1, 0);
675 DbpString("Starting recording");
677 // wait for button to be released
678 while(BUTTON_PRESS())
681 /* need this delay to prevent catching some weird data */
684 CmdHIDdemodFSK(1, &tops
[selected
], &high
[selected
], &low
[selected
], 0);
685 if (tops
[selected
] > 0)
686 Dbprintf("Recorded %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
688 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
691 LED(selected
+ 1, 0);
692 // Finished recording
694 // If we were previously playing, set playing off
695 // so next button push begins playing what we recorded
700 } else if (button_pressed
> 0 && cardRead
== 1) {
702 LED(selected
+ 1, 0);
706 if (tops
[selected
] > 0)
707 Dbprintf("Cloning %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
709 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
711 // wait for button to be released
712 while(BUTTON_PRESS())
715 /* need this delay to prevent catching some weird data */
718 CopyHIDtoT55x7(tops
[selected
] & 0x000FFFFF, high
[selected
], low
[selected
], (tops
[selected
] != 0 && ((high
[selected
]& 0xFFFFFFC0) != 0)), 0x1D);
719 if (tops
[selected
] > 0)
720 Dbprintf("Cloned %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
722 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
725 LED(selected
+ 1, 0);
726 // Finished recording
728 // If we were previously playing, set playing off
729 // so next button push begins playing what we recorded
734 } else if (button_pressed
) {
736 // Change where to record (or begin playing)
737 // Next option if we were previously playing
739 selected
= (selected
+ 1) % OPTS
;
743 LED(selected
+ 1, 0);
745 // Begin transmitting
748 DbpString("Playing");
749 // wait for button to be released
750 while(BUTTON_PRESS())
752 if (tops
[selected
] > 0)
753 Dbprintf("%x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
755 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
757 CmdHIDsimTAG(tops
[selected
], high
[selected
], low
[selected
], 0);
758 DbpString("Done playing");
759 if (BUTTON_HELD(1000) > 0) {
760 DbpString("Exiting");
765 /* We pressed a button so ignore it here with a delay */
768 // when done, we're done playing, move to next option
769 selected
= (selected
+ 1) % OPTS
;
772 LED(selected
+ 1, 0);
774 while(BUTTON_PRESS())
784 Listen and detect an external reader. Determine the best location
788 Inside the ListenReaderField() function, there is two mode.
789 By default, when you call the function, you will enter mode 1.
790 If you press the PM3 button one time, you will enter mode 2.
791 If you press the PM3 button a second time, you will exit the function.
793 DESCRIPTION OF MODE 1:
794 This mode just listens for an external reader field and lights up green
795 for HF and/or red for LF. This is the original mode of the detectreader
798 DESCRIPTION OF MODE 2:
799 This mode will visually represent, using the LEDs, the actual strength of the
800 current compared to the maximum current detected. Basically, once you know
801 what kind of external reader is present, it will help you spot the best location to place
802 your antenna. You will probably not get some good results if there is a LF and a HF reader
803 at the same place! :-)
807 static const char LIGHT_SCHEME
[] = {
808 0x0, /* ---- | No field detected */
809 0x1, /* X--- | 14% of maximum current detected */
810 0x2, /* -X-- | 29% of maximum current detected */
811 0x4, /* --X- | 43% of maximum current detected */
812 0x8, /* ---X | 57% of maximum current detected */
813 0xC, /* --XX | 71% of maximum current detected */
814 0xE, /* -XXX | 86% of maximum current detected */
815 0xF, /* XXXX | 100% of maximum current detected */
818 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
820 void ListenReaderField(int limit
) {
821 int lf_av
, lf_av_new
=0, lf_baseline
= 0, lf_max
;
822 int hf_av
, hf_av_new
=0, hf_baseline
= 0, hf_max
;
823 int mode
=1, display_val
, display_max
, i
;
827 #define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
828 #define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
829 #define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
832 // switch off FPGA - we don't want to measure our own signal
833 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
834 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
838 lf_av
= lf_max
= AvgAdc_Voltage_LF();
840 if (limit
!= HF_ONLY
) {
841 Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av
);
845 hf_av
= hf_max
= AvgAdc_Voltage_HF();
847 if (limit
!= LF_ONLY
) {
848 Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av
);
854 if (BUTTON_PRESS()) {
858 DbpString("Signal Strength Mode");
862 DbpString("Stopped");
867 while (BUTTON_PRESS())
872 if (limit
!= HF_ONLY
) {
874 if (lf_av
- lf_baseline
> MIN_LF_FIELD
)
880 lf_av_new
= AvgAdc_Voltage_LF();
881 // see if there's a significant change
882 if (ABS((lf_av
- lf_av_new
) * 100 / (lf_av
?lf_av
:1)) > REPORT_CHANGE_PERCENT
) {
883 Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new
);
890 if (limit
!= LF_ONLY
) {
892 if (hf_av
- hf_baseline
> MIN_HF_FIELD
)
898 hf_av_new
= AvgAdc_Voltage_HF();
900 // see if there's a significant change
901 if (ABS((hf_av
- hf_av_new
) * 100 / (hf_av
?hf_av
:1)) > REPORT_CHANGE_PERCENT
) {
902 Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new
);
910 if (limit
== LF_ONLY
) {
912 display_max
= lf_max
;
913 } else if (limit
== HF_ONLY
) {
915 display_max
= hf_max
;
916 } else { /* Pick one at random */
917 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
919 display_max
= hf_max
;
922 display_max
= lf_max
;
925 for (i
= 0; i
< LIGHT_LEN
; i
++) {
926 if (display_val
>= (display_max
/ LIGHT_LEN
* i
) && display_val
<= (display_max
/ LIGHT_LEN
* (i
+1))) {
927 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
928 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
929 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
930 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
939 void UsbPacketReceived(uint8_t *packet
, int len
) {
941 UsbCommand
*c
= (UsbCommand
*)packet
;
943 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
947 case CMD_SET_LF_SAMPLING_CONFIG
:
948 setSamplingConfig(c
->d
.asBytes
);
950 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
951 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
953 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
954 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
956 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
957 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
959 case CMD_HID_DEMOD_FSK
:
960 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 0, 1);
962 case CMD_HID_SIM_TAG
:
963 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], 1);
965 case CMD_FSK_SIM_TAG
:
966 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
968 case CMD_ASK_SIM_TAG
:
969 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
971 case CMD_PSK_SIM_TAG
:
972 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
974 case CMD_HID_CLONE_TAG
:
975 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x1D);
977 case CMD_PARADOX_CLONE_TAG
:
978 // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
979 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x0F);
981 case CMD_IO_DEMOD_FSK
:
982 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
984 case CMD_IO_CLONE_TAG
:
985 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
987 case CMD_EM410X_DEMOD
:
988 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
990 case CMD_EM410X_WRITE_TAG
:
991 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
993 case CMD_READ_TI_TYPE
:
996 case CMD_WRITE_TI_TYPE
:
997 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
999 case CMD_SIMULATE_TAG_125K
:
1001 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
1004 case CMD_LF_SIMULATE_BIDIR
:
1005 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
1007 case CMD_INDALA_CLONE_TAG
:
1008 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
1010 case CMD_INDALA_CLONE_TAG_L
:
1011 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
1013 case CMD_T55XX_READ_BLOCK
:
1014 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1016 case CMD_T55XX_WRITE_BLOCK
:
1017 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1019 case CMD_T55XX_WAKEUP
:
1020 T55xxWakeUp(c
->arg
[0]);
1022 case CMD_T55XX_RESET_READ
:
1025 case CMD_PCF7931_READ
:
1028 case CMD_PCF7931_WRITE
:
1029 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1031 case CMD_PCF7931_BRUTEFORCE
:
1032 BruteForcePCF7931(c
->arg
[0], (c
->arg
[1] & 0xFF), c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128);
1034 case CMD_EM4X_READ_WORD
:
1035 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1037 case CMD_EM4X_WRITE_WORD
:
1038 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1040 case CMD_EM4X_PROTECT
:
1041 EM4xProtect(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1043 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1044 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1046 case CMD_VIKING_CLONE_TAG
:
1047 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1055 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1056 SnoopHitag(c
->arg
[0]);
1058 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1059 SimulateHitagTag((bool)c
->arg
[0], (uint8_t*)c
->d
.asBytes
);
1061 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1062 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1064 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1065 SimulateHitagSTag((bool)c
->arg
[0],(uint8_t*)c
->d
.asBytes
);
1067 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1068 check_challenges_cmd((bool)c
->arg
[0], (uint8_t*)c
->d
.asBytes
, (uint8_t)c
->arg
[1]);
1070 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1071 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], false);
1073 case CMD_READ_HITAG_S_BLK
:
1074 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], true);
1076 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1077 if ((hitag_function
)c
->arg
[0] < 10) {
1078 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1080 else if ((hitag_function
)c
->arg
[0] >= 10) {
1081 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1086 #ifdef WITH_ISO15693
1087 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1088 AcquireRawAdcSamplesIso15693();
1091 case CMD_SNOOP_ISO_15693
:
1092 SnoopIso15693(0, NULL
);
1095 case CMD_ISO_15693_COMMAND
:
1096 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1099 case CMD_ISO_15693_FIND_AFI
:
1100 BruteforceIso15693Afi(c
->arg
[0]);
1103 case CMD_ISO_15693_DEBUG
:
1104 SetDebugIso15693(c
->arg
[0]);
1107 case CMD_READER_ISO_15693
:
1108 ReaderIso15693(c
->arg
[0]);
1111 case CMD_SIMTAG_ISO_15693
:
1112 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1115 case CMD_CSETUID_ISO_15693
:
1116 SetTag15693Uid(c
->d
.asBytes
);
1121 case CMD_SIMULATE_TAG_LEGIC_RF
:
1122 LegicRfSimulate(c
->arg
[0]);
1125 case CMD_WRITER_LEGIC_RF
:
1126 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1129 case CMD_READER_LEGIC_RF
:
1130 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1134 #ifdef WITH_ISO14443b
1135 case CMD_READ_SRI512_TAG
:
1136 ReadSTMemoryIso14443b(0x0F);
1138 case CMD_READ_SRIX4K_TAG
:
1139 ReadSTMemoryIso14443b(0x7F);
1141 case CMD_SNOOP_ISO_14443B
:
1144 case CMD_SIMULATE_TAG_ISO_14443B
:
1145 SimulateIso14443bTag();
1147 case CMD_ISO_14443B_COMMAND
:
1148 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1152 #ifdef WITH_ISO14443a
1153 case CMD_SNOOP_ISO_14443a
:
1154 SnoopIso14443a(c
->arg
[0]);
1156 case CMD_READER_ISO_14443a
:
1159 case CMD_SIMULATE_TAG_ISO_14443a
:
1160 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1163 case CMD_EPA_PACE_COLLECT_NONCE
:
1164 EPA_PACE_Collect_Nonce(c
);
1166 case CMD_EPA_PACE_REPLAY
:
1170 case CMD_READER_MIFARE
:
1171 ReaderMifare(c
->arg
[0]);
1173 case CMD_MIFARE_READBL
:
1174 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1176 case CMD_MIFAREU_READBL
:
1177 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1179 case CMD_MIFAREUC_AUTH
:
1180 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1182 case CMD_MIFAREU_READCARD
:
1183 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1185 case CMD_MIFAREUC_SETPWD
:
1186 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1188 case CMD_MIFARE_READSC
:
1189 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1191 case CMD_MIFARE_WRITEBL
:
1192 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1194 case CMD_MIFARE_PERSONALIZE_UID
:
1195 MifarePersonalizeUID(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1197 //case CMD_MIFAREU_WRITEBL_COMPAT:
1198 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1200 case CMD_MIFAREU_WRITEBL
:
1201 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1203 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1204 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1206 case CMD_MIFARE_NESTED
:
1207 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1209 case CMD_MIFARE_CHKKEYS
:
1210 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1212 case CMD_SIMULATE_MIFARE_CARD
:
1213 MifareSim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1217 case CMD_MIFARE_SET_DBGMODE
:
1218 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1220 case CMD_MIFARE_EML_MEMCLR
:
1221 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1223 case CMD_MIFARE_EML_MEMSET
:
1224 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1226 case CMD_MIFARE_EML_MEMGET
:
1227 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1229 case CMD_MIFARE_EML_CARDLOAD
:
1230 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1233 // Work with "magic Chinese" card
1234 case CMD_MIFARE_CWIPE
:
1235 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1237 case CMD_MIFARE_CSETBLOCK
:
1238 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1240 case CMD_MIFARE_CGETBLOCK
:
1241 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1243 case CMD_MIFARE_CIDENT
:
1248 case CMD_MIFARE_SNIFFER
:
1249 SniffMifare(c
->arg
[0]);
1255 // Makes use of ISO14443a FPGA Firmware
1256 case CMD_SNOOP_ICLASS
:
1257 SnoopIClass(c
->arg
[0], c
->d
.asBytes
);
1259 case CMD_SIMULATE_TAG_ICLASS
:
1260 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1262 case CMD_READER_ICLASS
:
1263 ReaderIClass(c
->arg
[0]);
1265 case CMD_ICLASS_EML_MEMSET
:
1266 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1268 case CMD_ICLASS_WRITEBLOCK
:
1269 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1271 case CMD_ICLASS_READBLOCK
:
1272 iClass_ReadBlk(c
->arg
[0]);
1274 case CMD_ICLASS_CHECK
:
1275 iClass_Check(c
->d
.asBytes
);
1277 case CMD_ICLASS_READCHECK
:
1278 iClass_Readcheck(c
->arg
[0], c
->arg
[1]);
1280 case CMD_ICLASS_DUMP
:
1281 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1283 case CMD_ICLASS_CLONE
:
1284 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1289 case CMD_HF_SNIFFER
:
1290 HfSnoop(c
->arg
[0], c
->arg
[1]);
1297 #ifdef WITH_SMARTCARD
1298 case CMD_SMART_ATR
: {
1302 case CMD_SMART_SETCLOCK
:{
1303 SmartCardSetClock(c
->arg
[0]);
1306 case CMD_SMART_RAW
: {
1307 SmartCardRaw(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1310 case CMD_SMART_UPLOAD
: {
1311 // upload file from client
1312 uint8_t *mem
= BigBuf_get_addr();
1313 memcpy( mem
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1314 cmd_send(CMD_ACK
,1,0,0,0,0);
1317 case CMD_SMART_UPGRADE
: {
1318 SmartCardUpgrade(c
->arg
[0]);
1323 case CMD_BUFF_CLEAR
:
1327 case CMD_MEASURE_ANTENNA_TUNING
:
1328 MeasureAntennaTuning(c
->arg
[0]);
1331 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1332 MeasureAntennaTuningHf();
1335 case CMD_LISTEN_READER_FIELD
:
1336 ListenReaderField(c
->arg
[0]);
1339 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1340 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1342 LED_D_OFF(); // LED D indicates field ON or OFF
1345 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1347 uint8_t *BigBuf
= BigBuf_get_addr();
1348 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1349 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1350 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1352 // Trigger a finish downloading signal with an ACK frame
1353 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1357 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1358 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1359 // to be able to use this one for uploading data to device
1360 // arg1 = 0 upload for LF usage
1361 // 1 upload for HF usage
1363 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1365 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1367 uint8_t *b
= BigBuf_get_addr();
1368 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1369 cmd_send(CMD_ACK
,0,0,0,0,0);
1376 case CMD_SET_LF_DIVISOR
:
1377 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1378 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1381 case CMD_SET_ADC_MUX
:
1383 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1384 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1385 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1386 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1397 cmd_send(CMD_ACK
,0,0,0,0,0);
1407 case CMD_SETUP_WRITE
:
1408 case CMD_FINISH_WRITE
:
1409 case CMD_HARDWARE_RESET
:
1413 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1415 // We're going to reset, and the bootrom will take control.
1419 case CMD_START_FLASH
:
1420 if(common_area
.flags
.bootrom_present
) {
1421 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1424 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1428 case CMD_DEVICE_INFO
: {
1429 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1430 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1431 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1435 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1441 void __attribute__((noreturn
)) AppMain(void) {
1445 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1446 /* Initialize common area */
1447 memset(&common_area
, 0, sizeof(common_area
));
1448 common_area
.magic
= COMMON_AREA_MAGIC
;
1449 common_area
.version
= 1;
1451 common_area
.flags
.osimage_present
= 1;
1458 // The FPGA gets its clock from us from PCK0 output, so set that up.
1459 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1460 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1461 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1462 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1463 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1464 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1465 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1468 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1470 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1472 // Load the FPGA image, which we have stored in our flash.
1473 // (the HF version by default)
1474 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1482 uint8_t rx
[sizeof(UsbCommand
)];
1487 rx_len
= usb_read(rx
, sizeof(UsbCommand
));
1489 UsbPacketReceived(rx
, rx_len
);
1494 #ifdef WITH_LF_StandAlone
1495 #ifndef WITH_ISO14443a_StandAlone
1496 if (BUTTON_HELD(1000) > 0)
1500 #ifdef WITH_ISO14443a
1501 #ifdef WITH_ISO14443a_StandAlone
1502 if (BUTTON_HELD(1000) > 0)
1503 StandAloneMode14a();