]> git.zerfleddert.de Git - proxmark3-svn/blob - client/mifarehost.c
6acd22f8cb0e0cdaa287b3f0023b6256b4ff9e27
[proxmark3-svn] / client / mifarehost.c
1 // Merlok, 2011, 2012
2 // people from mifare@nethemba.com, 2010
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // mifare commands
9 //-----------------------------------------------------------------------------
10
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <pthread.h>
15 #include "mifarehost.h"
16 #include "proxmark3.h"
17
18 #define llx PRIx64
19
20 // MIFARE
21 int compar_int(const void * a, const void * b) {
22 // didn't work: (the result is truncated to 32 bits)
23 //return (*(uint64_t*)b - *(uint64_t*)a);
24
25 // better:
26 if (*(uint64_t*)b == *(uint64_t*)a) return 0;
27 else if (*(uint64_t*)b > *(uint64_t*)a) return 1;
28 else return -1;
29 }
30
31 // Compare 16 Bits out of cryptostate
32 int Compare16Bits(const void * a, const void * b) {
33 if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
34 else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
35 else return -1;
36 }
37
38 typedef
39 struct {
40 union {
41 struct Crypto1State *slhead;
42 uint64_t *keyhead;
43 } head;
44 union {
45 struct Crypto1State *sltail;
46 uint64_t *keytail;
47 } tail;
48 uint32_t len;
49 uint32_t uid;
50 uint32_t blockNo;
51 uint32_t keyType;
52 uint32_t nt;
53 uint32_t ks1;
54 } StateList_t;
55
56
57 // wrapper function for multi-threaded lfsr_recovery32
58 void* nested_worker_thread(void *arg)
59 {
60 struct Crypto1State *p1;
61 StateList_t *statelist = arg;
62
63 statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
64 for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
65 statelist->len = p1 - statelist->head.slhead;
66 statelist->tail.sltail = --p1;
67 qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
68
69 return statelist->head.slhead;
70 }
71
72 int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate)
73 {
74 uint16_t i;
75 uint32_t uid;
76 UsbCommand resp;
77
78 StateList_t statelists[2];
79 struct Crypto1State *p1, *p2, *p3, *p4;
80
81 // flush queue
82 WaitForResponseTimeout(CMD_ACK,NULL,100);
83
84 UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
85 memcpy(c.d.asBytes, key, 6);
86 SendCommand(&c);
87
88 if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
89 return -1;
90 }
91
92 if (resp.arg[0]) {
93 return resp.arg[0]; // error during nested
94 }
95
96 memcpy(&uid, resp.d.asBytes, 4);
97 PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
98
99 for (i = 0; i < 2; i++) {
100 statelists[i].blockNo = resp.arg[2] & 0xff;
101 statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
102 statelists[i].uid = uid;
103 memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
104 memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
105 }
106
107 // calc keys
108
109 pthread_t thread_id[2];
110
111 // create and run worker threads
112 for (i = 0; i < 2; i++) {
113 pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
114 }
115
116 // wait for threads to terminate:
117 for (i = 0; i < 2; i++) {
118 pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
119 }
120
121
122 // the first 16 Bits of the cryptostate already contain part of our key.
123 // Create the intersection of the two lists based on these 16 Bits and
124 // roll back the cryptostate
125 p1 = p3 = statelists[0].head.slhead;
126 p2 = p4 = statelists[1].head.slhead;
127 while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) {
128 if (Compare16Bits(p1, p2) == 0) {
129 struct Crypto1State savestate, *savep = &savestate;
130 savestate = *p1;
131 while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
132 *p3 = *p1;
133 lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
134 p3++;
135 p1++;
136 }
137 savestate = *p2;
138 while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
139 *p4 = *p2;
140 lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
141 p4++;
142 p2++;
143 }
144 }
145 else {
146 while (Compare16Bits(p1, p2) == -1) p1++;
147 while (Compare16Bits(p1, p2) == 1) p2++;
148 }
149 }
150 p3->even = 0; p3->odd = 0;
151 p4->even = 0; p4->odd = 0;
152 statelists[0].len = p3 - statelists[0].head.slhead;
153 statelists[1].len = p4 - statelists[1].head.slhead;
154 statelists[0].tail.sltail=--p3;
155 statelists[1].tail.sltail=--p4;
156
157 // the statelists now contain possible keys. The key we are searching for must be in the
158 // intersection of both lists. Create the intersection:
159 qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
160 qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
161
162 uint64_t *p5, *p6, *p7;
163 p5 = p7 = statelists[0].head.keyhead;
164 p6 = statelists[1].head.keyhead;
165 while (p5 <= statelists[0].tail.keytail && p6 <= statelists[1].tail.keytail) {
166 if (compar_int(p5, p6) == 0) {
167 *p7++ = *p5++;
168 p6++;
169 }
170 else {
171 while (compar_int(p5, p6) == -1) p5++;
172 while (compar_int(p5, p6) == 1) p6++;
173 }
174 }
175 statelists[0].len = p7 - statelists[0].head.keyhead;
176 statelists[0].tail.keytail=--p7;
177
178 memset(resultKey, 0, 6);
179 // The list may still contain several key candidates. Test each of them with mfCheckKeys
180 for (i = 0; i < statelists[0].len; i++) {
181 uint8_t keyBlock[6];
182 uint64_t key64;
183 crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
184 num_to_bytes(key64, 6, keyBlock);
185 key64 = 0;
186 if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, 1, keyBlock, &key64)) {
187 num_to_bytes(key64, 6, resultKey);
188 break;
189 }
190 }
191
192 free(statelists[0].head.slhead);
193 free(statelists[1].head.slhead);
194
195 return 0;
196 }
197
198 int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
199
200 *key = 0;
201
202 UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType&0xff)<<8)), clear_trace, keycnt}};
203 memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
204 SendCommand(&c);
205
206 UsbCommand resp;
207 if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1;
208 if ((resp.arg[0] & 0xff) != 0x01) return 2;
209 *key = bytes_to_num(resp.d.asBytes, 6);
210 return 0;
211 }
212
213 // EMULATOR
214
215 int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
216 UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
217 SendCommand(&c);
218
219 UsbCommand resp;
220 if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1;
221 memcpy(data, resp.d.asBytes, blocksCount * 16);
222 return 0;
223 }
224
225 int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
226 UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}};
227 memcpy(c.d.asBytes, data, blocksCount * 16);
228 SendCommand(&c);
229 return 0;
230 }
231
232 // "MAGIC" CARD
233
234 int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, bool wantWipe) {
235 uint8_t oldblock0[16] = {0x00};
236 uint8_t block0[16] = {0x00};
237
238 int old = mfCGetBlock(0, oldblock0, CSETBLOCK_SINGLE_OPER);
239 if (old == 0) {
240 memcpy(block0, oldblock0, 16);
241 PrintAndLog("old block 0: %s", sprint_hex(block0,16));
242 } else {
243 PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
244 }
245
246 // fill in the new values
247 // UID
248 memcpy(block0, uid, 4);
249 // Mifare UID BCC
250 block0[4] = block0[0]^block0[1]^block0[2]^block0[3];
251 // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
252 if (sak!=NULL)
253 block0[5]=sak[0];
254 if (atqa!=NULL) {
255 block0[6]=atqa[1];
256 block0[7]=atqa[0];
257 }
258 PrintAndLog("new block 0: %s", sprint_hex(block0,16));
259 return mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER);
260 }
261
262 int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) {
263
264 uint8_t isOK = 0;
265 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
266 memcpy(c.d.asBytes, data, 16);
267 SendCommand(&c);
268
269 UsbCommand resp;
270 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
271 isOK = resp.arg[0] & 0xff;
272 if (uid != NULL)
273 memcpy(uid, resp.d.asBytes, 4);
274 if (!isOK)
275 return 2;
276 } else {
277 PrintAndLog("Command execute timeout");
278 return 1;
279 }
280 return 0;
281 }
282
283 int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
284 uint8_t isOK = 0;
285
286 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
287 SendCommand(&c);
288
289 UsbCommand resp;
290 if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
291 isOK = resp.arg[0] & 0xff;
292 memcpy(data, resp.d.asBytes, 16);
293 if (!isOK) return 2;
294 } else {
295 PrintAndLog("Command execute timeout");
296 return 1;
297 }
298 return 0;
299 }
300
301 // SNIFFER
302
303 // constants
304 static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00};
305
306 // variables
307 char logHexFileName[FILE_PATH_SIZE] = {0x00};
308 static uint8_t traceCard[4096] = {0x00};
309 static char traceFileName[FILE_PATH_SIZE] = {0x00};
310 static int traceState = TRACE_IDLE;
311 static uint8_t traceCurBlock = 0;
312 static uint8_t traceCurKey = 0;
313
314 struct Crypto1State *traceCrypto1 = NULL;
315
316 struct Crypto1State *revstate = NULL;
317
318 uint64_t key = 0;
319 uint32_t ks2 = 0;
320 uint32_t ks3 = 0;
321
322 uint32_t uid = 0; // serial number
323 uint32_t nt =0; // tag challenge
324 uint32_t nr_enc =0; // encrypted reader challenge
325 uint32_t ar_enc =0; // encrypted reader response
326 uint32_t at_enc =0; // encrypted tag response
327
328 int isTraceCardEmpty(void) {
329 return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
330 }
331
332 int isBlockEmpty(int blockN) {
333 for (int i = 0; i < 16; i++)
334 if (traceCard[blockN * 16 + i] != 0) return 0;
335
336 return 1;
337 }
338
339 int isBlockTrailer(int blockN) {
340 return ((blockN & 0x03) == 0x03);
341 }
342
343 int loadTraceCard(uint8_t *tuid) {
344 FILE * f;
345 char buf[64] = {0x00};
346 uint8_t buf8[64] = {0x00};
347 int i, blockNum;
348
349 if (!isTraceCardEmpty())
350 saveTraceCard();
351
352 memset(traceCard, 0x00, 4096);
353 memcpy(traceCard, tuid + 3, 4);
354
355 FillFileNameByUID(traceFileName, tuid, ".eml", 7);
356
357 f = fopen(traceFileName, "r");
358 if (!f) return 1;
359
360 blockNum = 0;
361
362 while(!feof(f)){
363
364 memset(buf, 0, sizeof(buf));
365 if (fgets(buf, sizeof(buf), f) == NULL) {
366 PrintAndLog("File reading error.");
367 fclose(f);
368 return 2;
369 }
370
371 if (strlen(buf) < 32){
372 if (feof(f)) break;
373 PrintAndLog("File content error. Block data must include 32 HEX symbols");
374 fclose(f);
375 return 2;
376 }
377 for (i = 0; i < 32; i += 2)
378 sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
379
380 memcpy(traceCard + blockNum * 16, buf8, 16);
381
382 blockNum++;
383 }
384 fclose(f);
385
386 return 0;
387 }
388
389 int saveTraceCard(void) {
390 FILE * f;
391
392 if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
393
394 f = fopen(traceFileName, "w+");
395 if ( !f ) return 1;
396
397 for (int i = 0; i < 64; i++) { // blocks
398 for (int j = 0; j < 16; j++) // bytes
399 fprintf(f, "%02x", *(traceCard + i * 16 + j));
400 fprintf(f,"\n");
401 }
402 fclose(f);
403 return 0;
404 }
405
406 int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
407
408 if (traceCrypto1)
409 crypto1_destroy(traceCrypto1);
410
411 traceCrypto1 = NULL;
412
413 if (wantSaveToEmlFile)
414 loadTraceCard(tuid);
415
416 traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3];
417 traceCard[5] = sak;
418 memcpy(&traceCard[6], atqa, 2);
419 traceCurBlock = 0;
420 uid = bytes_to_num(tuid + 3, 4);
421
422 traceState = TRACE_IDLE;
423
424 return 0;
425 }
426
427 void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
428 uint8_t bt = 0;
429 int i;
430
431 if (len != 1) {
432 for (i = 0; i < len; i++)
433 data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
434 } else {
435 bt = 0;
436 for (i = 0; i < 4; i++)
437 bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i;
438
439 data[0] = bt;
440 }
441 return;
442 }
443
444
445 int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
446 uint8_t data[64];
447
448 if (traceState == TRACE_ERROR) return 1;
449 if (len > 64) {
450 traceState = TRACE_ERROR;
451 return 1;
452 }
453
454 memcpy(data, data_src, len);
455 if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) {
456 mf_crypto1_decrypt(traceCrypto1, data, len, 0);
457 PrintAndLog("dec> %s", sprint_hex(data, len));
458 AddLogHex(logHexFileName, "dec> ", data, len);
459 }
460
461 switch (traceState) {
462 case TRACE_IDLE:
463 // check packet crc16!
464 if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) {
465 PrintAndLog("dec> CRC ERROR!!!");
466 AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!");
467 traceState = TRACE_ERROR; // do not decrypt the next commands
468 return 1;
469 }
470
471 // AUTHENTICATION
472 if ((len == 4) && ((data[0] == 0x60) || (data[0] == 0x61))) {
473 traceState = TRACE_AUTH1;
474 traceCurBlock = data[1];
475 traceCurKey = data[0] == 60 ? 1:0;
476 return 0;
477 }
478
479 // READ
480 if ((len ==4) && ((data[0] == 0x30))) {
481 traceState = TRACE_READ_DATA;
482 traceCurBlock = data[1];
483 return 0;
484 }
485
486 // WRITE
487 if ((len ==4) && ((data[0] == 0xA0))) {
488 traceState = TRACE_WRITE_OK;
489 traceCurBlock = data[1];
490 return 0;
491 }
492
493 // HALT
494 if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) {
495 traceState = TRACE_ERROR; // do not decrypt the next commands
496 return 0;
497 }
498
499 return 0;
500 break;
501
502 case TRACE_READ_DATA:
503 if (len == 18) {
504 traceState = TRACE_IDLE;
505
506 if (isBlockTrailer(traceCurBlock)) {
507 memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
508 } else {
509 memcpy(traceCard + traceCurBlock * 16, data, 16);
510 }
511 if (wantSaveToEmlFile) saveTraceCard();
512 return 0;
513 } else {
514 traceState = TRACE_ERROR;
515 return 1;
516 }
517 break;
518
519 case TRACE_WRITE_OK:
520 if ((len == 1) && (data[0] == 0x0a)) {
521 traceState = TRACE_WRITE_DATA;
522
523 return 0;
524 } else {
525 traceState = TRACE_ERROR;
526 return 1;
527 }
528 break;
529
530 case TRACE_WRITE_DATA:
531 if (len == 18) {
532 traceState = TRACE_IDLE;
533
534 memcpy(traceCard + traceCurBlock * 16, data, 16);
535 if (wantSaveToEmlFile) saveTraceCard();
536 return 0;
537 } else {
538 traceState = TRACE_ERROR;
539 return 1;
540 }
541 break;
542
543 case TRACE_AUTH1:
544 if (len == 4) {
545 traceState = TRACE_AUTH2;
546 nt = bytes_to_num(data, 4);
547 return 0;
548 } else {
549 traceState = TRACE_ERROR;
550 return 1;
551 }
552 break;
553
554 case TRACE_AUTH2:
555 if (len == 8) {
556 traceState = TRACE_AUTH_OK;
557
558 nr_enc = bytes_to_num(data, 4);
559 ar_enc = bytes_to_num(data + 4, 4);
560 return 0;
561 } else {
562 traceState = TRACE_ERROR;
563 return 1;
564 }
565 break;
566
567 case TRACE_AUTH_OK:
568 if (len ==4) {
569 traceState = TRACE_IDLE;
570
571 at_enc = bytes_to_num(data, 4);
572
573 // decode key here)
574 ks2 = ar_enc ^ prng_successor(nt, 64);
575 ks3 = at_enc ^ prng_successor(nt, 96);
576 revstate = lfsr_recovery64(ks2, ks3);
577 lfsr_rollback_word(revstate, 0, 0);
578 lfsr_rollback_word(revstate, 0, 0);
579 lfsr_rollback_word(revstate, nr_enc, 1);
580 lfsr_rollback_word(revstate, uid ^ nt, 0);
581
582 crypto1_get_lfsr(revstate, &key);
583 printf("Key: %012"llx"\n",key);
584 AddLogUint64(logHexFileName, "key: ", key);
585
586 int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
587 if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
588
589 if (traceCurKey) {
590 num_to_bytes(key, 6, traceCard + blockShift + 10);
591 } else {
592 num_to_bytes(key, 6, traceCard + blockShift);
593 }
594 if (wantSaveToEmlFile) saveTraceCard();
595
596 if (traceCrypto1) {
597 crypto1_destroy(traceCrypto1);
598 }
599
600 // set cryptosystem state
601 traceCrypto1 = lfsr_recovery64(ks2, ks3);
602
603 // nt = crypto1_word(traceCrypto1, nt ^ uid, 1) ^ nt;
604
605 /* traceCrypto1 = crypto1_create(key); // key in lfsr
606 crypto1_word(traceCrypto1, nt ^ uid, 0);
607 crypto1_word(traceCrypto1, ar, 1);
608 crypto1_word(traceCrypto1, 0, 0);
609 crypto1_word(traceCrypto1, 0, 0);*/
610
611 return 0;
612 } else {
613 traceState = TRACE_ERROR;
614 return 1;
615 }
616 break;
617
618 default:
619 traceState = TRACE_ERROR;
620 return 1;
621 }
622
623 return 0;
624 }
Impressum, Datenschutz