1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
18 #include "iso14443crc.h"
19 #include "iso14443a.h"
21 #include "mifareutil.h"
23 static uint32_t iso14a_timeout
;
24 uint8_t *trace
= (uint8_t *) BigBuf
;
30 // CARD TO READER - manchester
31 // Sequence D: 11110000 modulation with subcarrier during first half
32 // Sequence E: 00001111 modulation with subcarrier during second half
33 // Sequence F: 00000000 no modulation with subcarrier
34 // READER TO CARD - miller
35 // Sequence X: 00001100 drop after half a period
36 // Sequence Y: 00000000 no drop
37 // Sequence Z: 11000000 drop at start
45 const uint8_t OddByteParity
[256] = {
46 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
47 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
48 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
49 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
50 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
51 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
52 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
53 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
54 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
55 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
56 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
57 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
58 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
59 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
60 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
61 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
65 void iso14a_set_trigger(int enable
) {
69 void iso14a_clear_tracelen(void) {
72 void iso14a_set_tracing(int enable
) {
76 //-----------------------------------------------------------------------------
77 // Generate the parity value for a byte sequence
79 //-----------------------------------------------------------------------------
80 byte_t
oddparity (const byte_t bt
)
82 return OddByteParity
[bt
];
85 uint32_t GetParity(const uint8_t * pbtCmd
, int iLen
)
90 // Generate the encrypted data
91 for (i
= 0; i
< iLen
; i
++) {
92 // Save the encrypted parity bit
93 dwPar
|= ((OddByteParity
[pbtCmd
[i
]]) << i
);
98 void AppendCrc14443a(uint8_t* data
, int len
)
100 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
103 // The function LogTrace() is also used by the iClass implementation in iClass.c
104 int RAMFUNC
LogTrace(const uint8_t * btBytes
, int iLen
, int iSamples
, uint32_t dwParity
, int bReader
)
106 // Return when trace is full
107 if (traceLen
>= TRACE_SIZE
) return FALSE
;
109 // Trace the random, i'm curious
110 rsamples
+= iSamples
;
111 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
112 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
113 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
114 trace
[traceLen
++] = ((rsamples
>> 24) & 0xff);
116 trace
[traceLen
- 1] |= 0x80;
118 trace
[traceLen
++] = ((dwParity
>> 0) & 0xff);
119 trace
[traceLen
++] = ((dwParity
>> 8) & 0xff);
120 trace
[traceLen
++] = ((dwParity
>> 16) & 0xff);
121 trace
[traceLen
++] = ((dwParity
>> 24) & 0xff);
122 trace
[traceLen
++] = iLen
;
123 memcpy(trace
+ traceLen
, btBytes
, iLen
);
128 //-----------------------------------------------------------------------------
129 // The software UART that receives commands from the reader, and its state
131 //-----------------------------------------------------------------------------
134 static RAMFUNC
int MillerDecoding(int bit
)
139 if(!Uart
.bitBuffer
) {
140 Uart
.bitBuffer
= bit
^ 0xFF0;
144 Uart
.bitBuffer
<<= 4;
145 Uart
.bitBuffer
^= bit
;
150 if(Uart
.state
!= STATE_UNSYNCD
) {
153 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
159 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
165 if(bit
!= bitright
) { bit
= bitright
; }
167 if(Uart
.posCnt
== 1) {
168 // measurement first half bitperiod
170 Uart
.drop
= DROP_FIRST_HALF
;
174 // measurement second half bitperiod
175 if(!bit
& (Uart
.drop
== DROP_NONE
)) {
176 Uart
.drop
= DROP_SECOND_HALF
;
179 // measured a drop in first and second half
180 // which should not be possible
181 Uart
.state
= STATE_ERROR_WAIT
;
188 case STATE_START_OF_COMMUNICATION
:
190 if(Uart
.drop
== DROP_SECOND_HALF
) {
191 // error, should not happen in SOC
192 Uart
.state
= STATE_ERROR_WAIT
;
197 Uart
.state
= STATE_MILLER_Z
;
204 if(Uart
.drop
== DROP_NONE
) {
205 // logic '0' followed by sequence Y
206 // end of communication
207 Uart
.state
= STATE_UNSYNCD
;
210 // if(Uart.drop == DROP_FIRST_HALF) {
211 // Uart.state = STATE_MILLER_Z; stay the same
212 // we see a logic '0' }
213 if(Uart
.drop
== DROP_SECOND_HALF
) {
214 // we see a logic '1'
215 Uart
.shiftReg
|= 0x100;
216 Uart
.state
= STATE_MILLER_X
;
222 if(Uart
.drop
== DROP_NONE
) {
223 // sequence Y, we see a '0'
224 Uart
.state
= STATE_MILLER_Y
;
227 if(Uart
.drop
== DROP_FIRST_HALF
) {
228 // Would be STATE_MILLER_Z
229 // but Z does not follow X, so error
230 Uart
.state
= STATE_ERROR_WAIT
;
233 if(Uart
.drop
== DROP_SECOND_HALF
) {
234 // We see a '1' and stay in state X
235 Uart
.shiftReg
|= 0x100;
243 if(Uart
.drop
== DROP_NONE
) {
244 // logic '0' followed by sequence Y
245 // end of communication
246 Uart
.state
= STATE_UNSYNCD
;
249 if(Uart
.drop
== DROP_FIRST_HALF
) {
251 Uart
.state
= STATE_MILLER_Z
;
253 if(Uart
.drop
== DROP_SECOND_HALF
) {
254 // We see a '1' and go to state X
255 Uart
.shiftReg
|= 0x100;
256 Uart
.state
= STATE_MILLER_X
;
260 case STATE_ERROR_WAIT
:
261 // That went wrong. Now wait for at least two bit periods
262 // and try to sync again
263 if(Uart
.drop
== DROP_NONE
) {
265 Uart
.state
= STATE_UNSYNCD
;
270 Uart
.state
= STATE_UNSYNCD
;
275 Uart
.drop
= DROP_NONE
;
277 // should have received at least one whole byte...
278 if((Uart
.bitCnt
== 2) && EOC
&& (Uart
.byteCnt
> 0)) {
282 if(Uart
.bitCnt
== 9) {
283 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
286 Uart
.parityBits
<<= 1;
287 Uart
.parityBits
^= ((Uart
.shiftReg
>> 8) & 0x01);
290 // when End of Communication received and
291 // all data bits processed..
298 Uart.output[Uart.byteCnt] = 0xAA;
300 Uart.output[Uart.byteCnt] = error & 0xFF;
302 Uart.output[Uart.byteCnt] = 0xAA;
304 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
306 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
308 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
310 Uart.output[Uart.byteCnt] = 0xAA;
318 bit
= Uart
.bitBuffer
& 0xf0;
322 // should have been high or at least (4 * 128) / fc
323 // according to ISO this should be at least (9 * 128 + 20) / fc
324 if(Uart
.highCnt
== 8) {
325 // we went low, so this could be start of communication
326 // it turns out to be safer to choose a less significant
327 // syncbit... so we check whether the neighbour also represents the drop
328 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
329 Uart
.syncBit
= bit
& 8;
331 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
332 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
333 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
334 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
335 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
336 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
339 // the first half bit period is expected in next sample
344 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
347 Uart
.state
= STATE_START_OF_COMMUNICATION
;
348 Uart
.drop
= DROP_FIRST_HALF
;
359 if(Uart
.highCnt
< 8) {
368 //=============================================================================
369 // ISO 14443 Type A - Manchester
370 //=============================================================================
373 static RAMFUNC
int ManchesterDecoding(int v
)
389 if(Demod
.state
==DEMOD_UNSYNCD
) {
390 Demod
.output
[Demod
.len
] = 0xfa;
393 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
396 Demod
.syncBit
= 0x08;
403 Demod
.syncBit
= 0x04;
410 Demod
.syncBit
= 0x02;
413 if(bit
& 0x01 && Demod
.syncBit
) {
414 Demod
.syncBit
= 0x01;
419 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
420 Demod
.sub
= SUB_FIRST_HALF
;
423 Demod
.parityBits
= 0;
426 if(trigger
) LED_A_OFF();
427 switch(Demod
.syncBit
) {
428 case 0x08: Demod
.samples
= 3; break;
429 case 0x04: Demod
.samples
= 2; break;
430 case 0x02: Demod
.samples
= 1; break;
431 case 0x01: Demod
.samples
= 0; break;
438 //modulation = bit & Demod.syncBit;
439 modulation
= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
443 if(Demod
.posCount
==0) {
446 Demod
.sub
= SUB_FIRST_HALF
;
449 Demod
.sub
= SUB_NONE
;
454 if(modulation
&& (Demod
.sub
== SUB_FIRST_HALF
)) {
455 if(Demod
.state
!=DEMOD_ERROR_WAIT
) {
456 Demod
.state
= DEMOD_ERROR_WAIT
;
457 Demod
.output
[Demod
.len
] = 0xaa;
461 else if(modulation
) {
462 Demod
.sub
= SUB_SECOND_HALF
;
465 switch(Demod
.state
) {
466 case DEMOD_START_OF_COMMUNICATION
:
467 if(Demod
.sub
== SUB_FIRST_HALF
) {
468 Demod
.state
= DEMOD_MANCHESTER_D
;
471 Demod
.output
[Demod
.len
] = 0xab;
472 Demod
.state
= DEMOD_ERROR_WAIT
;
477 case DEMOD_MANCHESTER_D
:
478 case DEMOD_MANCHESTER_E
:
479 if(Demod
.sub
== SUB_FIRST_HALF
) {
481 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
482 Demod
.state
= DEMOD_MANCHESTER_D
;
484 else if(Demod
.sub
== SUB_SECOND_HALF
) {
486 Demod
.shiftReg
>>= 1;
487 Demod
.state
= DEMOD_MANCHESTER_E
;
490 Demod
.state
= DEMOD_MANCHESTER_F
;
494 case DEMOD_MANCHESTER_F
:
495 // Tag response does not need to be a complete byte!
496 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
497 if(Demod
.bitCount
> 0) {
498 Demod
.shiftReg
>>= (9 - Demod
.bitCount
);
499 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
501 // No parity bit, so just shift a 0
502 Demod
.parityBits
<<= 1;
505 Demod
.state
= DEMOD_UNSYNCD
;
509 Demod
.output
[Demod
.len
] = 0xad;
510 Demod
.state
= DEMOD_ERROR_WAIT
;
515 case DEMOD_ERROR_WAIT
:
516 Demod
.state
= DEMOD_UNSYNCD
;
520 Demod
.output
[Demod
.len
] = 0xdd;
521 Demod
.state
= DEMOD_UNSYNCD
;
525 if(Demod
.bitCount
>=9) {
526 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
529 Demod
.parityBits
<<= 1;
530 Demod
.parityBits
^= ((Demod
.shiftReg
>> 8) & 0x01);
537 Demod.output[Demod.len] = 0xBB;
539 Demod.output[Demod.len] = error & 0xFF;
541 Demod.output[Demod.len] = 0xBB;
543 Demod.output[Demod.len] = bit & 0xFF;
545 Demod.output[Demod.len] = Demod.buffer & 0xFF;
547 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
549 Demod.output[Demod.len] = 0xBB;
556 } // end (state != UNSYNCED)
561 //=============================================================================
562 // Finally, a `sniffer' for ISO 14443 Type A
563 // Both sides of communication!
564 //=============================================================================
566 //-----------------------------------------------------------------------------
567 // Record the sequence of commands sent by the reader to the tag, with
568 // triggering so that we start recording at the point that the tag is moved
570 //-----------------------------------------------------------------------------
571 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
573 // bit 0 - trigger from first card answer
574 // bit 1 - trigger from first reader 7-bit request
579 memset(trace
, 0x44, TRACE_SIZE
);
581 // We won't start recording the frames that we acquire until we trigger;
582 // a good trigger condition to get started is probably when we see a
583 // response from the tag.
584 // triggered == FALSE -- to wait first for card
585 int triggered
= !(param
& 0x03);
587 // The command (reader -> tag) that we're receiving.
588 // The length of a received command will in most cases be no more than 18 bytes.
589 // So 32 should be enough!
590 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
591 // The response (tag -> reader) that we're receiving.
592 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
594 // As we receive stuff, we copy it from receivedCmd or receivedResponse
595 // into trace, along with its length and other annotations.
596 //uint8_t *trace = (uint8_t *)BigBuf;
598 // The DMA buffer, used to stream samples from the FPGA
599 int8_t *dmaBuf
= ((int8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
600 int8_t *data
= dmaBuf
;
604 // Set up the demodulator for tag -> reader responses.
605 Demod
.output
= receivedResponse
;
607 Demod
.state
= DEMOD_UNSYNCD
;
609 // Set up the demodulator for the reader -> tag commands
610 memset(&Uart
, 0, sizeof(Uart
));
611 Uart
.output
= receivedCmd
;
612 Uart
.byteCntMax
= 32; // was 100 (greg)//////////////////
613 Uart
.state
= STATE_UNSYNCD
;
615 // Setup for the DMA.
617 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
619 // And put the FPGA in the appropriate mode
620 // Signal field is off with the appropriate LED
622 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
623 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
625 // Count of samples received so far, so that we can include timing
626 // information in the trace buffer.
628 // And now we loop, receiving samples.
631 DbpString("cancelled by button");
638 int register readBufDataP
= data
- dmaBuf
;
639 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
640 if (readBufDataP
<= dmaBufDataP
){
641 dataLen
= dmaBufDataP
- readBufDataP
;
643 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
+ 1;
645 // test for length of buffer
646 if(dataLen
> maxDataLen
) {
647 maxDataLen
= dataLen
;
649 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
653 if(dataLen
< 1) continue;
655 // primary buffer was stopped( <-- we lost data!
656 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
657 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
658 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
660 // secondary buffer sets as primary, secondary buffer was stopped
661 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
662 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
663 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
669 if(MillerDecoding((data
[0] & 0xF0) >> 4)) {
672 // check - if there is a short 7bit request from reader
673 if ((!triggered
) && (param
& 0x02) && (Uart
.byteCnt
== 1) && (Uart
.bitCnt
= 9)) triggered
= TRUE
;
676 if (!LogTrace(receivedCmd
, Uart
.byteCnt
, 0 - Uart
.samples
, Uart
.parityBits
, TRUE
)) break;
678 /* And ready to receive another command. */
679 Uart
.state
= STATE_UNSYNCD
;
680 /* And also reset the demod code, which might have been */
681 /* false-triggered by the commands from the reader. */
682 Demod
.state
= DEMOD_UNSYNCD
;
686 if(ManchesterDecoding(data
[0] & 0x0F)) {
689 if (!LogTrace(receivedResponse
, Demod
.len
, 0 - Demod
.samples
, Demod
.parityBits
, FALSE
)) break;
691 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
693 // And ready to receive another response.
694 memset(&Demod
, 0, sizeof(Demod
));
695 Demod
.output
= receivedResponse
;
696 Demod
.state
= DEMOD_UNSYNCD
;
701 if(data
> dmaBuf
+ DMA_BUFFER_SIZE
) {
706 DbpString("COMMAND FINISHED");
709 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
710 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x", maxDataLen
, Uart
.state
, Uart
.byteCnt
);
711 Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%08x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
715 //-----------------------------------------------------------------------------
716 // Prepare tag messages
717 //-----------------------------------------------------------------------------
718 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, int len
, uint32_t dwParity
)
724 // Correction bit, might be removed when not needed
729 ToSendStuffBit(1); // 1
735 ToSend
[++ToSendMax
] = SEC_D
;
737 for(i
= 0; i
< len
; i
++) {
742 for(j
= 0; j
< 8; j
++) {
744 ToSend
[++ToSendMax
] = SEC_D
;
746 ToSend
[++ToSendMax
] = SEC_E
;
751 // Get the parity bit
752 if ((dwParity
>> i
) & 0x01) {
753 ToSend
[++ToSendMax
] = SEC_D
;
755 ToSend
[++ToSendMax
] = SEC_E
;
760 ToSend
[++ToSendMax
] = SEC_F
;
762 // Convert from last byte pos to length
766 static void CodeIso14443aAsTag(const uint8_t *cmd
, int len
){
767 CodeIso14443aAsTagPar(cmd
, len
, GetParity(cmd
, len
));
770 //-----------------------------------------------------------------------------
771 // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
772 //-----------------------------------------------------------------------------
773 static void CodeStrangeAnswerAsTag()
779 // Correction bit, might be removed when not needed
784 ToSendStuffBit(1); // 1
790 ToSend
[++ToSendMax
] = SEC_D
;
793 ToSend
[++ToSendMax
] = SEC_E
;
796 ToSend
[++ToSendMax
] = SEC_E
;
799 ToSend
[++ToSendMax
] = SEC_D
;
802 ToSend
[++ToSendMax
] = SEC_F
;
804 // Flush the buffer in FPGA!!
805 for(i
= 0; i
< 5; i
++) {
806 ToSend
[++ToSendMax
] = SEC_F
;
809 // Convert from last byte pos to length
813 static void Code4bitAnswerAsTag(uint8_t cmd
)
819 // Correction bit, might be removed when not needed
824 ToSendStuffBit(1); // 1
830 ToSend
[++ToSendMax
] = SEC_D
;
833 for(i
= 0; i
< 4; i
++) {
835 ToSend
[++ToSendMax
] = SEC_D
;
837 ToSend
[++ToSendMax
] = SEC_E
;
843 ToSend
[++ToSendMax
] = SEC_F
;
845 // Flush the buffer in FPGA!!
846 for(i
= 0; i
< 5; i
++) {
847 ToSend
[++ToSendMax
] = SEC_F
;
850 // Convert from last byte pos to length
854 //-----------------------------------------------------------------------------
855 // Wait for commands from reader
856 // Stop when button is pressed
857 // Or return TRUE when command is captured
858 //-----------------------------------------------------------------------------
859 static int GetIso14443aCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
861 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
862 // only, since we are receiving, not transmitting).
863 // Signal field is off with the appropriate LED
865 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
867 // Now run a `software UART' on the stream of incoming samples.
868 Uart
.output
= received
;
869 Uart
.byteCntMax
= maxLen
;
870 Uart
.state
= STATE_UNSYNCD
;
875 if(BUTTON_PRESS()) return FALSE
;
877 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
878 AT91C_BASE_SSC
->SSC_THR
= 0x00;
880 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
881 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
882 if(MillerDecoding((b
& 0xf0) >> 4)) {
886 if(MillerDecoding(b
& 0x0f)) {
893 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, int correctionNeeded
);
895 //-----------------------------------------------------------------------------
896 // Main loop of simulated tag: receive commands from reader, decide what
897 // response to send, and send it.
898 //-----------------------------------------------------------------------------
899 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
)
901 // Enable and clear the trace
904 memset(trace
, 0x44, TRACE_SIZE
);
906 // This function contains the tag emulation
909 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
910 uint8_t response1
[2];
913 case 1: { // MIFARE Classic
914 // Says: I am Mifare 1k - original line
919 case 2: { // MIFARE Ultralight
920 // Says: I am a stupid memory tag, no crypto
925 case 3: { // MIFARE DESFire
926 // Says: I am a DESFire tag, ph33r me
931 case 4: { // ISO/IEC 14443-4
932 // Says: I am a javacard (JCOP)
938 Dbprintf("Error: unkown tagtype (%d)",tagType
);
943 // The second response contains the (mandatory) first 24 bits of the UID
944 uint8_t response2
[5];
946 // Check if the uid uses the (optional) part
947 uint8_t response2a
[5];
950 num_to_bytes(uid_1st
,3,response2
+1);
951 num_to_bytes(uid_2nd
,4,response2a
);
952 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
954 // Configure the ATQA and SAK accordingly
955 response1
[0] |= 0x40;
958 num_to_bytes(uid_1st
,4,response2
);
959 // Configure the ATQA and SAK accordingly
960 response1
[0] &= 0xBF;
964 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
965 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
967 // Prepare the mandatory SAK (for 4 and 7 byte UID)
968 uint8_t response3
[3];
970 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
972 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
973 uint8_t response3a
[3];
974 response3a
[0] = sak
& 0xFB;
975 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
977 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
978 uint8_t response6
[] = { 0x03, 0x3B, 0x00, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
979 ComputeCrc14443(CRC_14443_A
, response6
, 3, &response6
[3], &response6
[4]);
984 // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
986 // 144 data bits (18 * 8)
989 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
990 // 1 just for the case
994 // 166 bytes, since every bit that needs to be send costs us a byte
997 // Respond with card type
998 uint8_t *resp1
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
1001 // Anticollision cascade1 - respond with uid
1002 uint8_t *resp2
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ 166);
1005 // Anticollision cascade2 - respond with 2nd half of uid if asked
1006 // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
1007 uint8_t *resp2a
= (((uint8_t *)BigBuf
) + 1140);
1010 // Acknowledge select - cascade 1
1011 uint8_t *resp3
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*2));
1014 // Acknowledge select - cascade 2
1015 uint8_t *resp3a
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*3));
1018 // Response to a read request - not implemented atm
1019 uint8_t *resp4
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*4));
1022 // Authenticate response - nonce
1023 uint8_t *resp5
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*5));
1026 // Authenticate response - nonce
1027 uint8_t *resp6
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
+ (166*6));
1030 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
1033 // To control where we are in the protocol
1037 // Just to allow some checks
1042 uint8_t* respdata
= NULL
;
1044 uint8_t nack
= 0x04;
1046 memset(receivedCmd
, 0x44, RECV_CMD_SIZE
);
1048 // Prepare the responses of the anticollision phase
1049 // there will be not enough time to do this at the moment the reader sends it REQA
1051 // Answer to request
1052 CodeIso14443aAsTag(response1
, sizeof(response1
));
1053 memcpy(resp1
, ToSend
, ToSendMax
); resp1Len
= ToSendMax
;
1055 // Send our UID (cascade 1)
1056 CodeIso14443aAsTag(response2
, sizeof(response2
));
1057 memcpy(resp2
, ToSend
, ToSendMax
); resp2Len
= ToSendMax
;
1059 // Answer to select (cascade1)
1060 CodeIso14443aAsTag(response3
, sizeof(response3
));
1061 memcpy(resp3
, ToSend
, ToSendMax
); resp3Len
= ToSendMax
;
1063 // Send the cascade 2 2nd part of the uid
1064 CodeIso14443aAsTag(response2a
, sizeof(response2a
));
1065 memcpy(resp2a
, ToSend
, ToSendMax
); resp2aLen
= ToSendMax
;
1067 // Answer to select (cascade 2)
1068 CodeIso14443aAsTag(response3a
, sizeof(response3a
));
1069 memcpy(resp3a
, ToSend
, ToSendMax
); resp3aLen
= ToSendMax
;
1071 // Strange answer is an example of rare message size (3 bits)
1072 CodeStrangeAnswerAsTag();
1073 memcpy(resp4
, ToSend
, ToSendMax
); resp4Len
= ToSendMax
;
1075 // Authentication answer (random nonce)
1076 CodeIso14443aAsTag(response5
, sizeof(response5
));
1077 memcpy(resp5
, ToSend
, ToSendMax
); resp5Len
= ToSendMax
;
1079 // dummy ATS (pseudo-ATR), answer to RATS
1080 CodeIso14443aAsTag(response6
, sizeof(response6
));
1081 memcpy(resp6
, ToSend
, ToSendMax
); resp6Len
= ToSendMax
;
1083 // We need to listen to the high-frequency, peak-detected path.
1084 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1092 if(!GetIso14443aCommandFromReader(receivedCmd
, &len
, RECV_CMD_SIZE
)) {
1093 DbpString("button press");
1096 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1097 // Okay, look at the command now.
1099 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1100 resp
= resp1
; respLen
= resp1Len
; order
= 1;
1101 respdata
= response1
;
1102 respsize
= sizeof(response1
);
1103 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1104 resp
= resp1
; respLen
= resp1Len
; order
= 6;
1105 respdata
= response1
;
1106 respsize
= sizeof(response1
);
1107 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1108 resp
= resp2
; respLen
= resp2Len
; order
= 2;
1109 respdata
= response2
;
1110 respsize
= sizeof(response2
);
1111 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1112 resp
= resp2a
; respLen
= resp2aLen
; order
= 20;
1113 respdata
= response2a
;
1114 respsize
= sizeof(response2a
);
1115 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1116 resp
= resp3
; respLen
= resp3Len
; order
= 3;
1117 respdata
= response3
;
1118 respsize
= sizeof(response3
);
1119 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1120 resp
= resp3a
; respLen
= resp3aLen
; order
= 30;
1121 respdata
= response3a
;
1122 respsize
= sizeof(response3a
);
1123 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1124 resp
= resp4
; respLen
= resp4Len
; order
= 4; // Do nothing
1125 Dbprintf("Read request from reader: %x %x",receivedCmd
[0],receivedCmd
[1]);
1127 respsize
= sizeof(nack
); // 4-bit answer
1128 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1129 DbpString("Reader requested we HALT!:");
1131 resp
= resp1
; respLen
= 0; order
= 0;
1134 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1135 resp
= resp5
; respLen
= resp5Len
; order
= 7;
1136 respdata
= response5
;
1137 respsize
= sizeof(response5
);
1138 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1139 resp
= resp6
; respLen
= resp6Len
; order
= 70;
1140 respdata
= response6
;
1141 respsize
= sizeof(response6
);
1143 // Never seen this command before
1144 Dbprintf("Received (len=%d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1146 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1147 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1148 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1150 resp
= resp1
; respLen
= 0; order
= 0;
1155 // Count number of wakeups received after a halt
1156 if(order
== 6 && lastorder
== 5) { happened
++; }
1158 // Count number of other messages after a halt
1159 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1161 // Look at last parity bit to determine timing of answer
1162 if((Uart
.parityBits
& 0x01) || receivedCmd
[0] == 0x52) {
1163 // 1236, so correction bit needed
1167 if(cmdsRecvd
> 999) {
1168 DbpString("1000 commands later...");
1175 EmSendCmd14443aRaw(resp
, respLen
, receivedCmd
[0] == 0x52);
1179 LogTrace(receivedCmd
,len
, 0, Uart
.parityBits
, TRUE
);
1180 if (respdata
!= NULL
) {
1181 LogTrace(respdata
,respsize
, 0, SwapBits(GetParity(respdata
,respsize
),respsize
), FALSE
);
1183 if(traceLen
> TRACE_SIZE
) {
1184 DbpString("Trace full");
1189 memset(receivedCmd
, 0x44, RECV_CMD_SIZE
);
1192 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1196 //-----------------------------------------------------------------------------
1197 // Transmit the command (to the tag) that was placed in ToSend[].
1198 //-----------------------------------------------------------------------------
1199 static void TransmitFor14443a(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1203 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1209 for(c
= 0; c
< *wait
;) {
1210 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1211 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1214 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1215 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1223 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1224 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1230 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1231 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1236 if (samples
) *samples
= (c
+ *wait
) << 3;
1239 //-----------------------------------------------------------------------------
1240 // Code a 7-bit command without parity bit
1241 // This is especially for 0x26 and 0x52 (REQA and WUPA)
1242 //-----------------------------------------------------------------------------
1243 void ShortFrameFromReader(const uint8_t bt
)
1251 // Start of Communication (Seq. Z)
1252 ToSend
[++ToSendMax
] = SEC_Z
;
1256 for(j
= 0; j
< 7; j
++) {
1259 ToSend
[++ToSendMax
] = SEC_X
;
1264 ToSend
[++ToSendMax
] = SEC_Z
;
1268 ToSend
[++ToSendMax
] = SEC_Y
;
1275 // End of Communication
1278 ToSend
[++ToSendMax
] = SEC_Z
;
1282 ToSend
[++ToSendMax
] = SEC_Y
;
1286 ToSend
[++ToSendMax
] = SEC_Y
;
1289 ToSend
[++ToSendMax
] = SEC_Y
;
1290 ToSend
[++ToSendMax
] = SEC_Y
;
1291 ToSend
[++ToSendMax
] = SEC_Y
;
1293 // Convert from last character reference to length
1297 //-----------------------------------------------------------------------------
1298 // Prepare reader command to send to FPGA
1300 //-----------------------------------------------------------------------------
1301 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, int len
, uint32_t dwParity
)
1309 // Start of Communication (Seq. Z)
1310 ToSend
[++ToSendMax
] = SEC_Z
;
1313 // Generate send structure for the data bits
1314 for (i
= 0; i
< len
; i
++) {
1315 // Get the current byte to send
1318 for (j
= 0; j
< 8; j
++) {
1321 ToSend
[++ToSendMax
] = SEC_X
;
1326 ToSend
[++ToSendMax
] = SEC_Z
;
1329 ToSend
[++ToSendMax
] = SEC_Y
;
1336 // Get the parity bit
1337 if ((dwParity
>> i
) & 0x01) {
1339 ToSend
[++ToSendMax
] = SEC_X
;
1344 ToSend
[++ToSendMax
] = SEC_Z
;
1347 ToSend
[++ToSendMax
] = SEC_Y
;
1353 // End of Communication
1356 ToSend
[++ToSendMax
] = SEC_Z
;
1359 ToSend
[++ToSendMax
] = SEC_Y
;
1363 ToSend
[++ToSendMax
] = SEC_Y
;
1366 ToSend
[++ToSendMax
] = SEC_Y
;
1367 ToSend
[++ToSendMax
] = SEC_Y
;
1368 ToSend
[++ToSendMax
] = SEC_Y
;
1370 // Convert from last character reference to length
1374 //-----------------------------------------------------------------------------
1375 // Wait for commands from reader
1376 // Stop when button is pressed (return 1) or field was gone (return 2)
1377 // Or return 0 when command is captured
1378 //-----------------------------------------------------------------------------
1379 static int EmGetCmd(uint8_t *received
, int *len
, int maxLen
)
1383 uint32_t timer
= 0, vtime
= 0;
1387 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1388 // only, since we are receiving, not transmitting).
1389 // Signal field is off with the appropriate LED
1391 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1393 // Set ADC to read field strength
1394 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1395 AT91C_BASE_ADC
->ADC_MR
=
1396 ADC_MODE_PRESCALE(32) |
1397 ADC_MODE_STARTUP_TIME(16) |
1398 ADC_MODE_SAMPLE_HOLD_TIME(8);
1399 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1401 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1403 // Now run a 'software UART' on the stream of incoming samples.
1404 Uart
.output
= received
;
1405 Uart
.byteCntMax
= maxLen
;
1406 Uart
.state
= STATE_UNSYNCD
;
1411 if (BUTTON_PRESS()) return 1;
1413 // test if the field exists
1414 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1416 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1417 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1418 if (analogCnt
>= 32) {
1419 if ((33000 * (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1420 vtime
= GetTickCount();
1421 if (!timer
) timer
= vtime
;
1422 // 50ms no field --> card to idle state
1423 if (vtime
- timer
> 50) return 2;
1425 if (timer
) timer
= 0;
1431 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1432 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1434 // receive and test the miller decoding
1435 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1436 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1437 if(MillerDecoding((b
& 0xf0) >> 4)) {
1438 *len
= Uart
.byteCnt
;
1439 if (tracing
) LogTrace(received
, *len
, GetDeltaCountUS(), Uart
.parityBits
, TRUE
);
1442 if(MillerDecoding(b
& 0x0f)) {
1443 *len
= Uart
.byteCnt
;
1444 if (tracing
) LogTrace(received
, *len
, GetDeltaCountUS(), Uart
.parityBits
, TRUE
);
1451 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, int correctionNeeded
)
1456 // Modulate Manchester
1457 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1458 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1461 // include correction bit
1463 if((Uart
.parityBits
& 0x01) || correctionNeeded
) {
1464 // 1236, so correction bit needed
1470 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1471 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1474 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1476 b
= 0xff; // was 0x00
1482 AT91C_BASE_SSC
->SSC_THR
= b
;
1486 if(BUTTON_PRESS()) {
1494 int EmSend4bitEx(uint8_t resp
, int correctionNeeded
){
1495 Code4bitAnswerAsTag(resp
);
1496 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1497 if (tracing
) LogTrace(&resp
, 1, GetDeltaCountUS(), GetParity(&resp
, 1), FALSE
);
1501 int EmSend4bit(uint8_t resp
){
1502 return EmSend4bitEx(resp
, 0);
1505 int EmSendCmdExPar(uint8_t *resp
, int respLen
, int correctionNeeded
, uint32_t par
){
1506 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1507 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1508 if (tracing
) LogTrace(resp
, respLen
, GetDeltaCountUS(), par
, FALSE
);
1512 int EmSendCmdEx(uint8_t *resp
, int respLen
, int correctionNeeded
){
1513 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, GetParity(resp
, respLen
));
1516 int EmSendCmd(uint8_t *resp
, int respLen
){
1517 return EmSendCmdExPar(resp
, respLen
, 0, GetParity(resp
, respLen
));
1520 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
){
1521 return EmSendCmdExPar(resp
, respLen
, 0, par
);
1524 //-----------------------------------------------------------------------------
1525 // Wait a certain time for tag response
1526 // If a response is captured return TRUE
1527 // If it takes to long return FALSE
1528 //-----------------------------------------------------------------------------
1529 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1531 // buffer needs to be 512 bytes
1534 // Set FPGA mode to "reader listen mode", no modulation (listen
1535 // only, since we are receiving, not transmitting).
1536 // Signal field is on with the appropriate LED
1538 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1540 // Now get the answer from the card
1541 Demod
.output
= receivedResponse
;
1543 Demod
.state
= DEMOD_UNSYNCD
;
1546 if (elapsed
) *elapsed
= 0;
1552 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1553 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1554 if (elapsed
) (*elapsed
)++;
1556 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1557 if(c
< iso14a_timeout
) { c
++; } else { return FALSE
; }
1558 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1559 if(ManchesterDecoding((b
>>4) & 0xf)) {
1560 *samples
= ((c
- 1) << 3) + 4;
1563 if(ManchesterDecoding(b
& 0x0f)) {
1571 void ReaderTransmitShort(const uint8_t* bt
)
1576 ShortFrameFromReader(*bt
);
1579 TransmitFor14443a(ToSend
, ToSendMax
, &samples
, &wait
);
1581 // Store reader command in buffer
1582 if (tracing
) LogTrace(bt
,1,0,GetParity(bt
,1),TRUE
);
1585 void ReaderTransmitPar(uint8_t* frame
, int len
, uint32_t par
)
1590 // This is tied to other size changes
1591 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1592 CodeIso14443aAsReaderPar(frame
,len
,par
);
1595 TransmitFor14443a(ToSend
, ToSendMax
, &samples
, &wait
);
1599 // Store reader command in buffer
1600 if (tracing
) LogTrace(frame
,len
,0,par
,TRUE
);
1604 void ReaderTransmit(uint8_t* frame
, int len
)
1606 // Generate parity and redirect
1607 ReaderTransmitPar(frame
,len
,GetParity(frame
,len
));
1610 int ReaderReceive(uint8_t* receivedAnswer
)
1613 if (!GetIso14443aAnswerFromTag(receivedAnswer
,160,&samples
,0)) return FALSE
;
1614 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,samples
,Demod
.parityBits
,FALSE
);
1615 if(samples
== 0) return FALSE
;
1619 int ReaderReceivePar(uint8_t* receivedAnswer
, uint32_t * parptr
)
1622 if (!GetIso14443aAnswerFromTag(receivedAnswer
,160,&samples
,0)) return FALSE
;
1623 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,samples
,Demod
.parityBits
,FALSE
);
1624 *parptr
= Demod
.parityBits
;
1625 if(samples
== 0) return FALSE
;
1629 /* performs iso14443a anticolision procedure
1630 * fills the uid pointer unless NULL
1631 * fills resp_data unless NULL */
1632 int iso14443a_select_card(uint8_t * uid_ptr
, iso14a_card_select_t
* resp_data
, uint32_t * cuid_ptr
) {
1633 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1634 uint8_t sel_all
[] = { 0x93,0x20 };
1635 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1636 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1638 uint8_t* resp
= (((uint8_t *)BigBuf
) + 3560); // was 3560 - tied to other size changes
1640 uint8_t sak
= 0x04; // cascade uid
1641 int cascade_level
= 0;
1646 memset(uid_ptr
, 0, 8);
1648 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1649 ReaderTransmitShort(wupa
);
1651 if(!ReaderReceive(resp
)) return 0;
1654 memcpy(resp_data
->atqa
, resp
, 2);
1656 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1657 // which case we need to make a cascade 2 request and select - this is a long UID
1658 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1659 for(; sak
& 0x04; cascade_level
++)
1661 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1662 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1665 ReaderTransmit(sel_all
,sizeof(sel_all
));
1666 if (!ReaderReceive(resp
)) return 0;
1667 if(uid_ptr
) memcpy(uid_ptr
+ cascade_level
*4, resp
, 4);
1669 // calculate crypto UID
1670 if(cuid_ptr
) *cuid_ptr
= bytes_to_num(resp
, 4);
1672 // Construct SELECT UID command
1673 memcpy(sel_uid
+2,resp
,5);
1674 AppendCrc14443a(sel_uid
,7);
1675 ReaderTransmit(sel_uid
,sizeof(sel_uid
));
1678 if (!ReaderReceive(resp
)) return 0;
1682 resp_data
->sak
= sak
;
1683 resp_data
->ats_len
= 0;
1685 //-- this byte not UID, it CT. http://www.nxp.com/documents/application_note/AN10927.pdf page 3
1686 if (uid_ptr
[0] == 0x88) {
1687 memcpy(uid_ptr
, uid_ptr
+ 1, 7);
1691 if( (sak
& 0x20) == 0)
1692 return 2; // non iso14443a compliant tag
1694 // Request for answer to select
1695 if(resp_data
) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!!
1696 AppendCrc14443a(rats
, 2);
1697 ReaderTransmit(rats
, sizeof(rats
));
1699 if (!(len
= ReaderReceive(resp
))) return 0;
1701 memcpy(resp_data
->ats
, resp
, sizeof(resp_data
->ats
));
1702 resp_data
->ats_len
= len
;
1708 void iso14443a_setup() {
1711 // Start from off (no field generated)
1712 // Signal field is off with the appropriate LED
1714 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1717 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1719 // Now give it time to spin up.
1720 // Signal field is on with the appropriate LED
1722 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1725 iso14a_timeout
= 2048; //default
1728 int iso14_apdu(uint8_t * cmd
, size_t cmd_len
, void * data
) {
1729 uint8_t real_cmd
[cmd_len
+4];
1730 real_cmd
[0] = 0x0a; //I-Block
1731 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1732 memcpy(real_cmd
+2, cmd
, cmd_len
);
1733 AppendCrc14443a(real_cmd
,cmd_len
+2);
1735 ReaderTransmit(real_cmd
, cmd_len
+4);
1736 size_t len
= ReaderReceive(data
);
1738 return -1; //DATA LINK ERROR
1744 //-----------------------------------------------------------------------------
1745 // Read an ISO 14443a tag. Send out commands and store answers.
1747 //-----------------------------------------------------------------------------
1748 void ReaderIso14443a(UsbCommand
* c
, UsbCommand
* ack
)
1750 iso14a_command_t param
= c
->arg
[0];
1751 uint8_t * cmd
= c
->d
.asBytes
;
1752 size_t len
= c
->arg
[1];
1754 if(param
& ISO14A_REQUEST_TRIGGER
) iso14a_set_trigger(1);
1756 if(param
& ISO14A_CONNECT
) {
1758 ack
->arg
[0] = iso14443a_select_card(ack
->d
.asBytes
, (iso14a_card_select_t
*) (ack
->d
.asBytes
+12), NULL
);
1759 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1762 if(param
& ISO14A_SET_TIMEOUT
) {
1763 iso14a_timeout
= c
->arg
[2];
1766 if(param
& ISO14A_SET_TIMEOUT
) {
1767 iso14a_timeout
= c
->arg
[2];
1770 if(param
& ISO14A_APDU
) {
1771 ack
->arg
[0] = iso14_apdu(cmd
, len
, ack
->d
.asBytes
);
1772 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1775 if(param
& ISO14A_RAW
) {
1776 if(param
& ISO14A_APPEND_CRC
) {
1777 AppendCrc14443a(cmd
,len
);
1780 ReaderTransmit(cmd
,len
);
1781 ack
->arg
[0] = ReaderReceive(ack
->d
.asBytes
);
1782 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1785 if(param
& ISO14A_REQUEST_TRIGGER
) iso14a_set_trigger(0);
1787 if(param
& ISO14A_NO_DISCONNECT
)
1790 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1793 //-----------------------------------------------------------------------------
1794 // Read an ISO 14443a tag. Send out commands and store answers.
1796 //-----------------------------------------------------------------------------
1797 void ReaderMifare(uint32_t parameter
)
1800 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1801 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1803 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + 3560); // was 3560 - tied to other size changes
1816 //byte_t par_mask = 0xff;
1823 byte_t nt
[4] = {0,0,0,0};
1824 byte_t nt_attacked
[4], nt_noattack
[4];
1825 byte_t par_list
[8] = {0,0,0,0,0,0,0,0};
1826 byte_t ks_list
[8] = {0,0,0,0,0,0,0,0};
1827 num_to_bytes(parameter
, 4, nt_noattack
);
1828 int isOK
= 0, isNULL
= 0;
1833 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1835 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1838 // Test if the action was cancelled
1839 if(BUTTON_PRESS()) {
1843 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) continue;
1845 // Transmit MIFARE_CLASSIC_AUTH
1846 ReaderTransmit(mf_auth
, sizeof(mf_auth
));
1848 // Receive the (16 bit) "random" nonce
1849 if (!ReaderReceive(receivedAnswer
)) continue;
1850 memcpy(nt
, receivedAnswer
, 4);
1852 // Transmit reader nonce and reader answer
1853 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
),par
);
1855 // Receive 4 bit answer
1856 if (ReaderReceive(receivedAnswer
))
1858 if ( (parameter
!= 0) && (memcmp(nt
, nt_noattack
, 4) == 0) ) continue;
1860 isNULL
= !(nt_attacked
[0] == 0) && (nt_attacked
[1] == 0) && (nt_attacked
[2] == 0) && (nt_attacked
[3] == 0);
1861 if ( (isNULL
!= 0 ) && (memcmp(nt
, nt_attacked
, 4) != 0) ) continue;
1866 memcpy(nt_attacked
, nt
, 4);
1868 par_low
= par
& 0x07;
1872 if(led_on
) LED_B_ON(); else LED_B_OFF();
1873 par_list
[nt_diff
] = par
;
1874 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
1876 // Test if the information is complete
1877 if (nt_diff
== 0x07) {
1882 nt_diff
= (nt_diff
+ 1) & 0x07;
1883 mf_nr_ar
[3] = nt_diff
<< 5;
1890 par
= (((par
>> 3) + 1) << 3) | par_low
;
1895 LogTrace(nt
, 4, 0, GetParity(nt
, 4), TRUE
);
1896 LogTrace(par_list
, 8, 0, GetParity(par_list
, 8), TRUE
);
1897 LogTrace(ks_list
, 8, 0, GetParity(ks_list
, 8), TRUE
);
1899 UsbCommand ack
= {CMD_ACK
, {isOK
, 0, 0}};
1900 memcpy(ack
.d
.asBytes
+ 0, uid
, 4);
1901 memcpy(ack
.d
.asBytes
+ 4, nt
, 4);
1902 memcpy(ack
.d
.asBytes
+ 8, par_list
, 8);
1903 memcpy(ack
.d
.asBytes
+ 16, ks_list
, 8);
1906 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
1910 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1914 if (MF_DBGLEVEL
>= 1) DbpString("COMMAND mifare FINISHED");
1918 //-----------------------------------------------------------------------------
1919 // MIFARE 1K simulate.
1921 //-----------------------------------------------------------------------------
1922 void Mifare1ksim(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)
1924 int cardSTATE
= MFEMUL_NOFIELD
;
1926 int vHf
= 0; // in mV
1927 //int nextCycleTimeout = 0;
1929 // uint32_t timer = 0;
1930 uint32_t selTimer
= 0;
1931 uint32_t authTimer
= 0;
1934 uint8_t cardWRBL
= 0;
1935 uint8_t cardAUTHSC
= 0;
1936 uint8_t cardAUTHKEY
= 0xff; // no authentication
1937 //uint32_t cardRn = 0;
1938 uint32_t cardRr
= 0;
1940 //uint32_t rn_enc = 0;
1942 uint32_t cardINTREG
= 0;
1943 uint8_t cardINTBLOCK
= 0;
1944 struct Crypto1State mpcs
= {0, 0};
1945 struct Crypto1State
*pcs
;
1948 uint8_t* receivedCmd
= eml_get_bigbufptr_recbuf();
1949 uint8_t *response
= eml_get_bigbufptr_sendbuf();
1951 static uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
1953 static uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
1954 static uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
1956 static uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
1957 static uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
1959 static uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
1960 // static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f};
1961 static uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
1967 // Authenticate response - nonce
1968 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
1970 // get UID from emul memory
1971 emlGetMemBt(receivedCmd
, 7, 1);
1972 _7BUID
= !(receivedCmd
[0] == 0x00);
1973 if (!_7BUID
) { // ---------- 4BUID
1976 emlGetMemBt(rUIDBCC1
, 0, 4);
1977 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
1978 } else { // ---------- 7BUID
1982 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
1983 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
1984 emlGetMemBt(rUIDBCC2
, 3, 4);
1985 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
1988 // -------------------------------------- test area
1990 // -------------------------------------- END test area
1991 // start mkseconds counter
1994 // We need to listen to the high-frequency, peak-detected path.
1995 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1998 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2001 if (MF_DBGLEVEL
>= 1) Dbprintf("Started. 7buid=%d", _7BUID
);
2002 // calibrate mkseconds counter
2007 if(BUTTON_PRESS()) {
2011 // find reader field
2012 // Vref = 3300mV, and an 10:1 voltage divider on the input
2013 // can measure voltages up to 33000 mV
2014 if (cardSTATE
== MFEMUL_NOFIELD
) {
2015 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
2016 if (vHf
> MF_MINFIELDV
) {
2017 cardSTATE_TO_IDLE();
2022 if (cardSTATE
!= MFEMUL_NOFIELD
) {
2023 res
= EmGetCmd(receivedCmd
, &len
, RECV_CMD_SIZE
); // (+ nextCycleTimeout)
2025 cardSTATE
= MFEMUL_NOFIELD
;
2032 //nextCycleTimeout = 0;
2034 // if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
2036 if (len
!= 4 && cardSTATE
!= MFEMUL_NOFIELD
) { // len != 4 <---- speed up the code 4 authentication
2037 // REQ or WUP request in ANY state and WUP in HALTED state
2038 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2039 selTimer
= GetTickCount();
2040 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2041 cardSTATE
= MFEMUL_SELECT1
;
2043 // init crypto block
2046 crypto1_destroy(pcs
);
2051 switch (cardSTATE
) {
2052 case MFEMUL_NOFIELD
:{
2055 case MFEMUL_HALTED
:{
2061 case MFEMUL_SELECT1
:{
2063 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2064 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2070 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2072 EmSendCmd(rSAK
, sizeof(rSAK
));
2074 EmSendCmd(rSAK1
, sizeof(rSAK1
));
2076 cuid
= bytes_to_num(rUIDBCC1
, 4);
2078 cardSTATE
= MFEMUL_WORK
;
2080 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2083 cardSTATE
= MFEMUL_SELECT2
;
2090 case MFEMUL_SELECT2
:{
2093 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2094 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2100 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2101 EmSendCmd(rSAK
, sizeof(rSAK
));
2103 cuid
= bytes_to_num(rUIDBCC2
, 4);
2104 cardSTATE
= MFEMUL_WORK
;
2106 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2110 // i guess there is a command). go into the work state.
2111 if (len
!= 4) break;
2112 cardSTATE
= MFEMUL_WORK
;
2118 //rn_enc = bytes_to_num(receivedCmd, 4);
2119 //cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1);
2120 cardRr
= bytes_to_num(&receivedCmd
[4], 4) ^ crypto1_word(pcs
, 0, 0);
2122 if (cardRr
!= prng_successor(nonce
, 64)){
2123 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr
, prng_successor(nonce
, 64));
2124 cardSTATE_TO_IDLE();
2127 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2128 num_to_bytes(ans
, 4, rAUTH_AT
);
2130 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2131 cardSTATE
= MFEMUL_AUTH2
;
2133 cardSTATE_TO_IDLE();
2135 if (cardSTATE
!= MFEMUL_AUTH2
) break;
2139 cardSTATE
= MFEMUL_WORK
;
2140 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC
, cardAUTHKEY
, GetTickCount() - authTimer
);
2144 lbWORK
: if (len
== 0) break;
2146 if (cardAUTHKEY
== 0xff) {
2147 // first authentication
2148 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2149 authTimer
= GetTickCount();
2151 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2152 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2155 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2156 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2157 num_to_bytes(nonce
, 4, rAUTH_AT
);
2158 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2161 // last working revision
2162 // EmSendCmd14443aRaw(resp1, resp1Len, 0);
2163 // LogTrace(NULL, 0, GetDeltaCountUS(), 0, true);
2165 cardSTATE
= MFEMUL_AUTH1
;
2166 //nextCycleTimeout = 10;
2171 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2173 // nested authentication
2174 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2175 authTimer
= GetTickCount();
2177 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2178 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2181 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2182 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2183 num_to_bytes(ans
, 4, rAUTH_AT
);
2184 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2187 cardSTATE
= MFEMUL_AUTH1
;
2188 //nextCycleTimeout = 10;
2193 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2194 // BUT... ACK --> NACK
2195 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2196 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2200 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2201 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2202 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2207 if (len
== 4 && receivedCmd
[0] == 0x30) {
2208 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2209 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2212 emlGetMem(response
, receivedCmd
[1], 1);
2213 AppendCrc14443a(response
, 16);
2214 mf_crypto1_encrypt(pcs
, response
, 18, &par
);
2215 EmSendCmdPar(response
, 18, par
);
2220 if (len
== 4 && receivedCmd
[0] == 0xA0) {
2221 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2222 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2225 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2226 //nextCycleTimeout = 50;
2227 cardSTATE
= MFEMUL_WRITEBL2
;
2228 cardWRBL
= receivedCmd
[1];
2232 // works with cardINTREG
2234 // increment, decrement, restore
2235 if (len
== 4 && (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2)) {
2236 if (receivedCmd
[1] >= 16 * 4 ||
2237 receivedCmd
[1] / 4 != cardAUTHSC
||
2238 emlCheckValBl(receivedCmd
[1])) {
2239 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2242 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2243 if (receivedCmd
[0] == 0xC1)
2244 cardSTATE
= MFEMUL_INTREG_INC
;
2245 if (receivedCmd
[0] == 0xC0)
2246 cardSTATE
= MFEMUL_INTREG_DEC
;
2247 if (receivedCmd
[0] == 0xC2)
2248 cardSTATE
= MFEMUL_INTREG_REST
;
2249 cardWRBL
= receivedCmd
[1];
2256 if (len
== 4 && receivedCmd
[0] == 0xB0) {
2257 if (receivedCmd
[1] >= 16 * 4 || receivedCmd
[1] / 4 != cardAUTHSC
) {
2258 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2262 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2263 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2265 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2271 if (len
== 4 && (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00)) {
2274 cardSTATE
= MFEMUL_HALTED
;
2275 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2279 // command not allowed
2281 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2288 case MFEMUL_WRITEBL2
:{
2290 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2291 emlSetMem(receivedCmd
, cardWRBL
, 1);
2292 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2293 cardSTATE
= MFEMUL_WORK
;
2296 cardSTATE_TO_IDLE();
2302 case MFEMUL_INTREG_INC
:{
2303 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2304 memcpy(&ans
, receivedCmd
, 4);
2305 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2306 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2307 cardSTATE_TO_IDLE();
2310 cardINTREG
= cardINTREG
+ ans
;
2311 cardSTATE
= MFEMUL_WORK
;
2314 case MFEMUL_INTREG_DEC
:{
2315 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2316 memcpy(&ans
, receivedCmd
, 4);
2317 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2318 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2319 cardSTATE_TO_IDLE();
2322 cardINTREG
= cardINTREG
- ans
;
2323 cardSTATE
= MFEMUL_WORK
;
2326 case MFEMUL_INTREG_REST
:{
2327 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2328 memcpy(&ans
, receivedCmd
, 4);
2329 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2330 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2331 cardSTATE_TO_IDLE();
2334 cardSTATE
= MFEMUL_WORK
;
2340 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2343 // add trace trailer
2344 memset(rAUTH_NT
, 0x44, 4);
2345 LogTrace(rAUTH_NT
, 4, 0, 0, TRUE
);
2347 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, traceLen
);
2350 //-----------------------------------------------------------------------------
2353 //-----------------------------------------------------------------------------
2354 void RAMFUNC
SniffMifare(uint8_t param
) {
2356 // bit 0 - trigger from first card answer
2357 // bit 1 - trigger from first reader 7-bit request
2359 // C(red) A(yellow) B(green)
2361 // init trace buffer
2363 memset(trace
, 0x44, TRACE_SIZE
);
2365 // The command (reader -> tag) that we're receiving.
2366 // The length of a received command will in most cases be no more than 18 bytes.
2367 // So 32 should be enough!
2368 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
2369 // The response (tag -> reader) that we're receiving.
2370 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
2372 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2373 // into trace, along with its length and other annotations.
2374 //uint8_t *trace = (uint8_t *)BigBuf;
2376 // The DMA buffer, used to stream samples from the FPGA
2377 int8_t *dmaBuf
= ((int8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
2378 int8_t *data
= dmaBuf
;
2382 // Set up the demodulator for tag -> reader responses.
2383 Demod
.output
= receivedResponse
;
2385 Demod
.state
= DEMOD_UNSYNCD
;
2387 // Set up the demodulator for the reader -> tag commands
2388 memset(&Uart
, 0, sizeof(Uart
));
2389 Uart
.output
= receivedCmd
;
2390 Uart
.byteCntMax
= 32; // was 100 (greg)//////////////////
2391 Uart
.state
= STATE_UNSYNCD
;
2393 // Setup for the DMA.
2395 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
2397 // And put the FPGA in the appropriate mode
2398 // Signal field is off with the appropriate LED
2400 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
2401 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
2405 int sniffCounter
= 0;
2407 // And now we loop, receiving samples.
2409 if(BUTTON_PRESS()) {
2410 DbpString("cancelled by button");
2417 if (++sniffCounter
> 65) {
2418 if (MfSniffSend(2000)) {
2424 int register readBufDataP
= data
- dmaBuf
;
2425 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
2426 if (readBufDataP
<= dmaBufDataP
){
2427 dataLen
= dmaBufDataP
- readBufDataP
;
2429 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
+ 1;
2431 // test for length of buffer
2432 if(dataLen
> maxDataLen
) {
2433 maxDataLen
= dataLen
;
2435 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2439 if(dataLen
< 1) continue;
2441 // primary buffer was stopped( <-- we lost data!
2442 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2443 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2444 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2445 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2447 // secondary buffer sets as primary, secondary buffer was stopped
2448 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2449 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2450 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2455 if(MillerDecoding((data
[0] & 0xF0) >> 4)) {
2457 // check - if there is a short 7bit request from reader
2458 if (MfSniffLogic(receivedCmd
, Uart
.byteCnt
, Uart
.parityBits
, Uart
.bitCnt
, TRUE
)) break;
2460 /* And ready to receive another command. */
2461 Uart
.state
= STATE_UNSYNCD
;
2463 /* And also reset the demod code */
2464 Demod
.state
= DEMOD_UNSYNCD
;
2467 if(ManchesterDecoding(data
[0] & 0x0F)) {
2470 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parityBits
, Demod
.bitCount
, FALSE
)) break;
2472 // And ready to receive another response.
2473 memset(&Demod
, 0, sizeof(Demod
));
2474 Demod
.output
= receivedResponse
;
2475 Demod
.state
= DEMOD_UNSYNCD
;
2477 /* And also reset the uart code */
2478 Uart
.state
= STATE_UNSYNCD
;
2482 if(data
> dmaBuf
+ DMA_BUFFER_SIZE
) {
2487 DbpString("COMMAND FINISHED");
2490 FpgaDisableSscDma();
2493 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x Uart.byteCntMax=%x", maxDataLen
, Uart
.state
, Uart
.byteCnt
, Uart
.byteCntMax
);