1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
25 #include "lfsampling.h"
27 #include "mifareutil.h"
33 // Craig Young - 14a stand-alone code
34 #ifdef WITH_ISO14443a_StandAlone
35 #include "iso14443a.h"
38 //=============================================================================
39 // A buffer where we can queue things up to be sent through the FPGA, for
40 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
41 // is the order in which they go out on the wire.
42 //=============================================================================
44 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
45 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
48 struct common_area common_area
__attribute__((section(".commonarea")));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
)
60 ToSend
[ToSendMax
] = 0;
65 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
70 if(ToSendMax
>= sizeof(ToSend
)) {
72 DbpString("ToSendStuffBit overflowed!");
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
80 void DbpString(char *str
)
82 byte_t len
= strlen(str
);
83 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
87 void DbpIntegers(int x1
, int x2
, int x3
)
89 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
93 void Dbprintf(const char *fmt
, ...) {
94 // should probably limit size here; oh well, let's just use a big buffer
95 char output_string
[128];
99 kvsprintf(fmt
, output_string
, 10, ap
);
102 DbpString(output_string
);
105 // prints HEX & ASCII
106 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
119 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
122 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
124 Dbprintf("%*D",l
,d
," ");
132 //-----------------------------------------------------------------------------
133 // Read an ADC channel and block till it completes, then return the result
134 // in ADC units (0 to 1023). Also a routine to average 32 samples and
136 //-----------------------------------------------------------------------------
137 static int ReadAdc(int ch
)
139 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
140 // AMPL_HI is are high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
141 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
144 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
146 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
148 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
149 AT91C_BASE_ADC
->ADC_MR
=
150 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
151 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
152 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
154 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
155 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
157 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
159 return AT91C_BASE_ADC
->ADC_CDR
[ch
];
162 int AvgAdc(int ch
) // was static - merlok
167 for(i
= 0; i
< 32; i
++) {
171 return (a
+ 15) >> 5;
174 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
176 int i
, adcval
= 0, peak
= 0;
179 * Sweeps the useful LF range of the proxmark from
180 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
181 * read the voltage in the antenna, the result left
182 * in the buffer is a graph which should clearly show
183 * the resonating frequency of your LF antenna
184 * ( hopefully around 95 if it is tuned to 125kHz!)
187 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
188 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
191 for (i
=255; i
>=19; i
--) {
193 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
195 adcval
= ((MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10);
196 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
197 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
199 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
200 if(LF_Results
[i
] > peak
) {
202 peak
= LF_Results
[i
];
208 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
213 void MeasureAntennaTuningHfOnly(int *vHf
)
215 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
217 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
218 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
220 *vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
226 void MeasureAntennaTuning(int mode
)
228 uint8_t LF_Results
[256] = {0};
229 int peakv
= 0, peakf
= 0;
230 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
234 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
235 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
236 MeasureAntennaTuningHfOnly(&vHf
);
237 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
239 if (mode
& FLAG_TUNE_LF
) {
240 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
242 if (mode
& FLAG_TUNE_HF
) {
243 MeasureAntennaTuningHfOnly(&vHf
);
247 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
253 void MeasureAntennaTuningHf(void)
255 int vHf
= 0; // in mV
257 DbpString("Measuring HF antenna, press button to exit");
259 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
260 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
261 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
265 vHf
= (MAX_ADC_HF_VOLTAGE
* AvgAdc(ADC_CHAN_HF
)) >> 10;
267 Dbprintf("%d mV",vHf
);
268 if (BUTTON_PRESS()) break;
270 DbpString("cancelled");
272 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
277 void ReadMem(int addr
)
279 const uint8_t *data
= ((uint8_t *)addr
);
281 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
282 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
285 /* osimage version information is linked in */
286 extern struct version_information version_information
;
287 /* bootrom version information is pointed to from _bootphase1_version_pointer */
288 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
289 void SendVersion(void)
291 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
292 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
294 /* Try to find the bootrom version information. Expect to find a pointer at
295 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
296 * pointer, then use it.
298 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
299 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
300 strcat(VersionString
, "bootrom version information appears invalid\n");
302 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
303 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
306 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
307 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
309 FpgaGatherVersion(FPGA_BITSTREAM_LF
, temp
, sizeof(temp
));
310 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
311 FpgaGatherVersion(FPGA_BITSTREAM_HF
, temp
, sizeof(temp
));
312 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
314 // Send Chip ID and used flash memory
315 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
316 uint32_t compressed_data_section_size
= common_area
.arg1
;
317 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, 0, VersionString
, strlen(VersionString
));
320 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
321 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
322 void printUSBSpeed(void)
324 Dbprintf("USB Speed:");
325 Dbprintf(" Sending USB packets to client...");
327 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
328 uint8_t *test_data
= BigBuf_get_addr();
331 uint32_t start_time
= end_time
= GetTickCount();
332 uint32_t bytes_transferred
= 0;
335 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
336 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
337 end_time
= GetTickCount();
338 bytes_transferred
+= USB_CMD_DATA_SIZE
;
342 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
343 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
344 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
345 1000 * bytes_transferred
/ (end_time
- start_time
));
350 * Prints runtime information about the PM3.
352 void SendStatus(void)
354 BigBuf_print_status();
356 printConfig(); //LF Sampling config
359 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL
);
360 Dbprintf(" ToSendMax........%d",ToSendMax
);
361 Dbprintf(" ToSendBit........%d",ToSendBit
);
363 cmd_send(CMD_ACK
,1,0,0,0,0);
366 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
370 void StandAloneMode()
372 DbpString("Stand-alone mode! No PC necessary.");
373 // Oooh pretty -- notify user we're in elite samy mode now
375 LED(LED_ORANGE
, 200);
377 LED(LED_ORANGE
, 200);
379 LED(LED_ORANGE
, 200);
381 LED(LED_ORANGE
, 200);
390 #ifdef WITH_ISO14443a_StandAlone
391 void StandAloneMode14a()
394 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
397 int playing
= 0, iGotoRecord
= 0, iGotoClone
= 0;
398 int cardRead
[OPTS
] = {0};
399 uint8_t readUID
[10] = {0};
400 uint32_t uid_1st
[OPTS
]={0};
401 uint32_t uid_2nd
[OPTS
]={0};
402 uint32_t uid_tmp1
= 0;
403 uint32_t uid_tmp2
= 0;
404 iso14a_card_select_t hi14a_card
[OPTS
];
406 LED(selected
+ 1, 0);
414 if (iGotoRecord
== 1 || cardRead
[selected
] == 0)
418 LED(selected
+ 1, 0);
422 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
423 /* need this delay to prevent catching some weird data */
425 /* Code for reading from 14a tag */
426 uint8_t uid
[10] ={0};
428 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
433 if (BUTTON_PRESS()) {
434 if (cardRead
[selected
]) {
435 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
438 else if (cardRead
[(selected
+1)%OPTS
]) {
439 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
440 selected
= (selected
+1)%OPTS
;
441 break; // playing = 1;
444 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
448 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
452 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
453 memcpy(readUID
,uid
,10*sizeof(uint8_t));
454 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
455 // Set UID byte order
456 for (int i
=0; i
<4; i
++)
458 dst
= (uint8_t *)&uid_tmp2
;
459 for (int i
=0; i
<4; i
++)
461 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
462 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
466 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
467 uid_1st
[selected
] = (uid_tmp1
)>>8;
468 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
471 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
472 uid_1st
[selected
] = uid_tmp1
;
473 uid_2nd
[selected
] = uid_tmp2
;
479 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
480 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
483 LED(LED_ORANGE
, 200);
485 LED(LED_ORANGE
, 200);
488 LED(selected
+ 1, 0);
490 // Next state is replay:
493 cardRead
[selected
] = 1;
495 /* MF Classic UID clone */
496 else if (iGotoClone
==1)
500 LED(selected
+ 1, 0);
501 LED(LED_ORANGE
, 250);
505 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
507 // wait for button to be released
508 while(BUTTON_PRESS())
510 // Delay cloning until card is in place
513 Dbprintf("Starting clone. [Bank: %u]", selected
);
514 // need this delay to prevent catching some weird data
516 // Begin clone function here:
517 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
518 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
519 memcpy(c.d.asBytes, data, 16);
522 Block read is similar:
523 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
524 We need to imitate that call with blockNo 0 to set a uid.
526 The get and set commands are handled in this file:
527 // Work with "magic Chinese" card
528 case CMD_MIFARE_CSETBLOCK:
529 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
531 case CMD_MIFARE_CGETBLOCK:
532 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
535 mfCSetUID provides example logic for UID set workflow:
536 -Read block0 from card in field with MifareCGetBlock()
537 -Configure new values without replacing reserved bytes
538 memcpy(block0, uid, 4); // Copy UID bytes from byte array
540 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
541 Bytes 5-7 are reserved SAK and ATQA for mifare classic
542 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
544 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
545 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
546 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
547 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
548 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
552 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
553 memcpy(newBlock0
,oldBlock0
,16);
554 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
556 newBlock0
[0] = uid_1st
[selected
]>>24;
557 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
558 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
559 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
560 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
561 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
562 MifareCSetBlock(0, 0xFF,0, newBlock0
);
563 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
564 if (memcmp(testBlock0
,newBlock0
,16)==0)
566 DbpString("Cloned successfull!");
567 cardRead
[selected
] = 0; // Only if the card was cloned successfully should we clear it
570 selected
= (selected
+1) % OPTS
;
573 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
578 LED(selected
+ 1, 0);
581 // Change where to record (or begin playing)
582 else if (playing
==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
585 LED(selected
+ 1, 0);
587 // Begin transmitting
591 DbpString("Playing");
594 int button_action
= BUTTON_HELD(1000);
595 if (button_action
== 0) { // No button action, proceed with sim
596 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
597 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
598 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
599 DbpString("Mifare Classic");
600 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
602 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
603 DbpString("Mifare Ultralight");
604 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
606 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
607 DbpString("Mifare DESFire");
608 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
611 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
612 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
615 else if (button_action
== BUTTON_SINGLE_CLICK
) {
616 selected
= (selected
+ 1) % OPTS
;
617 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
621 else if (button_action
== BUTTON_HOLD
) {
622 Dbprintf("Playtime over. Begin cloning...");
629 /* We pressed a button so ignore it here with a delay */
632 LED(selected
+ 1, 0);
635 while(BUTTON_PRESS())
641 // samy's sniff and repeat routine
645 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
647 int high
[OPTS
], low
[OPTS
];
652 // Turn on selected LED
653 LED(selected
+ 1, 0);
660 // Was our button held down or pressed?
661 int button_pressed
= BUTTON_HELD(1000);
664 // Button was held for a second, begin recording
665 if (button_pressed
> 0 && cardRead
== 0)
668 LED(selected
+ 1, 0);
672 DbpString("Starting recording");
674 // wait for button to be released
675 while(BUTTON_PRESS())
678 /* need this delay to prevent catching some weird data */
681 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
682 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
685 LED(selected
+ 1, 0);
686 // Finished recording
688 // If we were previously playing, set playing off
689 // so next button push begins playing what we recorded
696 else if (button_pressed
> 0 && cardRead
== 1)
699 LED(selected
+ 1, 0);
703 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
705 // wait for button to be released
706 while(BUTTON_PRESS())
709 /* need this delay to prevent catching some weird data */
712 CopyHIDtoT55x7(0, high
[selected
], low
[selected
], 0);
713 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
716 LED(selected
+ 1, 0);
717 // Finished recording
719 // If we were previously playing, set playing off
720 // so next button push begins playing what we recorded
727 // Change where to record (or begin playing)
728 else if (button_pressed
)
730 // Next option if we were previously playing
732 selected
= (selected
+ 1) % OPTS
;
736 LED(selected
+ 1, 0);
738 // Begin transmitting
742 DbpString("Playing");
743 // wait for button to be released
744 while(BUTTON_PRESS())
746 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
747 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
748 DbpString("Done playing");
749 if (BUTTON_HELD(1000) > 0)
751 DbpString("Exiting");
756 /* We pressed a button so ignore it here with a delay */
759 // when done, we're done playing, move to next option
760 selected
= (selected
+ 1) % OPTS
;
763 LED(selected
+ 1, 0);
766 while(BUTTON_PRESS())
775 Listen and detect an external reader. Determine the best location
779 Inside the ListenReaderField() function, there is two mode.
780 By default, when you call the function, you will enter mode 1.
781 If you press the PM3 button one time, you will enter mode 2.
782 If you press the PM3 button a second time, you will exit the function.
784 DESCRIPTION OF MODE 1:
785 This mode just listens for an external reader field and lights up green
786 for HF and/or red for LF. This is the original mode of the detectreader
789 DESCRIPTION OF MODE 2:
790 This mode will visually represent, using the LEDs, the actual strength of the
791 current compared to the maximum current detected. Basically, once you know
792 what kind of external reader is present, it will help you spot the best location to place
793 your antenna. You will probably not get some good results if there is a LF and a HF reader
794 at the same place! :-)
798 static const char LIGHT_SCHEME
[] = {
799 0x0, /* ---- | No field detected */
800 0x1, /* X--- | 14% of maximum current detected */
801 0x2, /* -X-- | 29% of maximum current detected */
802 0x4, /* --X- | 43% of maximum current detected */
803 0x8, /* ---X | 57% of maximum current detected */
804 0xC, /* --XX | 71% of maximum current detected */
805 0xE, /* -XXX | 86% of maximum current detected */
806 0xF, /* XXXX | 100% of maximum current detected */
808 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
810 void ListenReaderField(int limit
)
812 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_max
;
813 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_max
;
814 int mode
=1, display_val
, display_max
, i
;
818 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
821 // switch off FPGA - we don't want to measure our own signal
822 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
823 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
827 lf_av
= lf_max
= AvgAdc(ADC_CHAN_LF
);
829 if(limit
!= HF_ONLY
) {
830 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE
* lf_av
) >> 10);
834 hf_av
= hf_max
= AvgAdc(ADC_CHAN_HF
);
836 if (limit
!= LF_ONLY
) {
837 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE
* hf_av
) >> 10);
842 if (BUTTON_PRESS()) {
847 DbpString("Signal Strength Mode");
851 DbpString("Stopped");
859 if (limit
!= HF_ONLY
) {
861 if (ABS(lf_av
- lf_baseline
) > REPORT_CHANGE
)
867 lf_av_new
= AvgAdc(ADC_CHAN_LF
);
868 // see if there's a significant change
869 if(ABS(lf_av
- lf_av_new
) > REPORT_CHANGE
) {
870 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE
* lf_av_new
) >> 10);
877 if (limit
!= LF_ONLY
) {
879 if (ABS(hf_av
- hf_baseline
) > REPORT_CHANGE
)
885 hf_av_new
= AvgAdc(ADC_CHAN_HF
);
886 // see if there's a significant change
887 if(ABS(hf_av
- hf_av_new
) > REPORT_CHANGE
) {
888 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE
* hf_av_new
) >> 10);
896 if (limit
== LF_ONLY
) {
898 display_max
= lf_max
;
899 } else if (limit
== HF_ONLY
) {
901 display_max
= hf_max
;
902 } else { /* Pick one at random */
903 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
905 display_max
= hf_max
;
908 display_max
= lf_max
;
911 for (i
=0; i
<LIGHT_LEN
; i
++) {
912 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
913 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
914 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
915 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
916 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
924 void UsbPacketReceived(uint8_t *packet
, int len
)
926 UsbCommand
*c
= (UsbCommand
*)packet
;
928 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
932 case CMD_SET_LF_SAMPLING_CONFIG
:
933 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
935 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
936 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
938 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
939 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
941 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
942 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
944 case CMD_HID_DEMOD_FSK
:
945 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 1);
947 case CMD_HID_SIM_TAG
:
948 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1);
950 case CMD_FSK_SIM_TAG
:
951 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
953 case CMD_ASK_SIM_TAG
:
954 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
956 case CMD_PSK_SIM_TAG
:
957 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
959 case CMD_HID_CLONE_TAG
:
960 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
962 case CMD_IO_DEMOD_FSK
:
963 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
965 case CMD_IO_CLONE_TAG
:
966 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
968 case CMD_EM410X_DEMOD
:
969 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
971 case CMD_EM410X_WRITE_TAG
:
972 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
974 case CMD_READ_TI_TYPE
:
977 case CMD_WRITE_TI_TYPE
:
978 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
980 case CMD_SIMULATE_TAG_125K
:
982 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
985 case CMD_LF_SIMULATE_BIDIR
:
986 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
988 case CMD_INDALA_CLONE_TAG
:
989 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
991 case CMD_INDALA_CLONE_TAG_L
:
992 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
994 case CMD_T55XX_READ_BLOCK
:
995 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
997 case CMD_T55XX_WRITE_BLOCK
:
998 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1000 case CMD_T55XX_WAKEUP
:
1001 T55xxWakeUp(c
->arg
[0]);
1003 case CMD_T55XX_RESET_READ
:
1006 case CMD_PCF7931_READ
:
1009 case CMD_PCF7931_WRITE
:
1010 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1012 case CMD_EM4X_READ_WORD
:
1013 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1015 case CMD_EM4X_WRITE_WORD
:
1016 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1018 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1019 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1021 case CMD_VIKING_CLONE_TAG
:
1022 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1030 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1031 SnoopHitag(c
->arg
[0]);
1033 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1034 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1036 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1037 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1039 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1040 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1042 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1043 check_challenges((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1045 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1046 ReadHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1048 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1049 if ((hitag_function
)c
->arg
[0] < 10) {
1050 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1052 else if ((hitag_function
)c
->arg
[0] >= 10) {
1053 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1058 #ifdef WITH_ISO15693
1059 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1060 AcquireRawAdcSamplesIso15693();
1062 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
1063 RecordRawAdcSamplesIso15693();
1066 case CMD_ISO_15693_COMMAND
:
1067 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1070 case CMD_ISO_15693_FIND_AFI
:
1071 BruteforceIso15693Afi(c
->arg
[0]);
1074 case CMD_ISO_15693_DEBUG
:
1075 SetDebugIso15693(c
->arg
[0]);
1078 case CMD_READER_ISO_15693
:
1079 ReaderIso15693(c
->arg
[0]);
1081 case CMD_SIMTAG_ISO_15693
:
1082 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1087 case CMD_SIMULATE_TAG_LEGIC_RF
:
1088 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1091 case CMD_WRITER_LEGIC_RF
:
1092 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1095 case CMD_READER_LEGIC_RF
:
1096 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1100 #ifdef WITH_ISO14443b
1101 case CMD_READ_SRI512_TAG
:
1102 ReadSTMemoryIso14443b(0x0F);
1104 case CMD_READ_SRIX4K_TAG
:
1105 ReadSTMemoryIso14443b(0x7F);
1107 case CMD_SNOOP_ISO_14443B
:
1110 case CMD_SIMULATE_TAG_ISO_14443B
:
1111 SimulateIso14443bTag();
1113 case CMD_ISO_14443B_COMMAND
:
1114 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1118 #ifdef WITH_ISO14443a
1119 case CMD_SNOOP_ISO_14443a
:
1120 SnoopIso14443a(c
->arg
[0]);
1122 case CMD_READER_ISO_14443a
:
1125 case CMD_SIMULATE_TAG_ISO_14443a
:
1126 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1129 case CMD_EPA_PACE_COLLECT_NONCE
:
1130 EPA_PACE_Collect_Nonce(c
);
1132 case CMD_EPA_PACE_REPLAY
:
1136 case CMD_READER_MIFARE
:
1137 ReaderMifare(c
->arg
[0]);
1139 case CMD_MIFARE_READBL
:
1140 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1142 case CMD_MIFAREU_READBL
:
1143 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1145 case CMD_MIFAREUC_AUTH
:
1146 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1148 case CMD_MIFAREU_READCARD
:
1149 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1151 case CMD_MIFAREUC_SETPWD
:
1152 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1154 case CMD_MIFARE_READSC
:
1155 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1157 case CMD_MIFARE_WRITEBL
:
1158 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1160 //case CMD_MIFAREU_WRITEBL_COMPAT:
1161 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1163 case CMD_MIFAREU_WRITEBL
:
1164 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1166 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1167 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1169 case CMD_MIFARE_NESTED
:
1170 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1172 case CMD_MIFARE_CHKKEYS
:
1173 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1175 case CMD_SIMULATE_MIFARE_CARD
:
1176 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1180 case CMD_MIFARE_SET_DBGMODE
:
1181 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1183 case CMD_MIFARE_EML_MEMCLR
:
1184 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1186 case CMD_MIFARE_EML_MEMSET
:
1187 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1189 case CMD_MIFARE_EML_MEMGET
:
1190 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1192 case CMD_MIFARE_EML_CARDLOAD
:
1193 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1196 // Work with "magic Chinese" card
1197 case CMD_MIFARE_CWIPE
:
1198 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1200 case CMD_MIFARE_CSETBLOCK
:
1201 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1203 case CMD_MIFARE_CGETBLOCK
:
1204 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1206 case CMD_MIFARE_CIDENT
:
1211 case CMD_MIFARE_SNIFFER
:
1212 SniffMifare(c
->arg
[0]);
1218 // Makes use of ISO14443a FPGA Firmware
1219 case CMD_SNOOP_ICLASS
:
1222 case CMD_SIMULATE_TAG_ICLASS
:
1223 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1225 case CMD_READER_ICLASS
:
1226 ReaderIClass(c
->arg
[0]);
1228 case CMD_READER_ICLASS_REPLAY
:
1229 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1231 case CMD_ICLASS_EML_MEMSET
:
1232 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1234 case CMD_ICLASS_WRITEBLOCK
:
1235 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1237 case CMD_ICLASS_READCHECK
: // auth step 1
1238 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1240 case CMD_ICLASS_READBLOCK
:
1241 iClass_ReadBlk(c
->arg
[0]);
1243 case CMD_ICLASS_AUTHENTICATION
: //check
1244 iClass_Authentication(c
->d
.asBytes
);
1246 case CMD_ICLASS_DUMP
:
1247 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1249 case CMD_ICLASS_CLONE
:
1250 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1254 case CMD_HF_SNIFFER
:
1255 HfSnoop(c
->arg
[0], c
->arg
[1]);
1259 case CMD_BUFF_CLEAR
:
1263 case CMD_MEASURE_ANTENNA_TUNING
:
1264 MeasureAntennaTuning(c
->arg
[0]);
1267 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1268 MeasureAntennaTuningHf();
1271 case CMD_LISTEN_READER_FIELD
:
1272 ListenReaderField(c
->arg
[0]);
1275 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1276 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1278 LED_D_OFF(); // LED D indicates field ON or OFF
1281 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1284 uint8_t *BigBuf
= BigBuf_get_addr();
1285 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1286 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1287 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1289 // Trigger a finish downloading signal with an ACK frame
1290 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1294 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1295 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1296 // to be able to use this one for uploading data to device
1297 // arg1 = 0 upload for LF usage
1298 // 1 upload for HF usage
1300 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1302 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1304 uint8_t *b
= BigBuf_get_addr();
1305 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1306 cmd_send(CMD_ACK
,0,0,0,0,0);
1313 case CMD_SET_LF_DIVISOR
:
1314 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1315 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1318 case CMD_SET_ADC_MUX
:
1320 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1321 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1322 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1323 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1334 cmd_send(CMD_ACK
,0,0,0,0,0);
1344 case CMD_SETUP_WRITE
:
1345 case CMD_FINISH_WRITE
:
1346 case CMD_HARDWARE_RESET
:
1350 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1352 // We're going to reset, and the bootrom will take control.
1356 case CMD_START_FLASH
:
1357 if(common_area
.flags
.bootrom_present
) {
1358 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1361 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1365 case CMD_DEVICE_INFO
: {
1366 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1367 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1368 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1372 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1377 void __attribute__((noreturn
)) AppMain(void)
1381 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1382 /* Initialize common area */
1383 memset(&common_area
, 0, sizeof(common_area
));
1384 common_area
.magic
= COMMON_AREA_MAGIC
;
1385 common_area
.version
= 1;
1387 common_area
.flags
.osimage_present
= 1;
1397 // The FPGA gets its clock from us from PCK0 output, so set that up.
1398 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1399 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1400 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1401 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1402 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1403 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1404 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1407 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1409 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1412 LOW(GPIO_MUXSEL_HIPKD
);
1413 LOW(GPIO_MUXSEL_LOPKD
);
1414 LOW(GPIO_MUXSEL_HIRAW
);
1415 LOW(GPIO_MUXSEL_LORAW
);
1417 // Load the FPGA image, which we have stored in our flash.
1418 // (the HF version by default)
1419 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1427 byte_t rx
[sizeof(UsbCommand
)];
1432 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1434 UsbPacketReceived(rx
,rx_len
);
1440 #ifndef WITH_ISO14443a_StandAlone
1441 if (BUTTON_HELD(1000) > 0)
1445 #ifdef WITH_ISO14443a
1446 #ifdef WITH_ISO14443a_StandAlone
1447 if (BUTTON_HELD(1000) > 0)
1448 StandAloneMode14a();