1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
42 struct common_area common_area
__attribute__((section(".commonarea")));
44 void BufferClear(void)
46 memset(BigBuf
,0,sizeof(BigBuf
));
47 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
)
60 ToSend
[ToSendMax
] = 0;
65 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
70 if(ToSendBit
>= sizeof(ToSend
)) {
72 DbpString("ToSendStuffBit overflowed!");
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
80 void DbpString(char *str
)
82 byte_t len
= strlen(str
);
83 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
84 // /* this holds up stuff unless we're connected to usb */
85 // if (!UsbConnected())
89 // c.cmd = CMD_DEBUG_PRINT_STRING;
90 // c.arg[0] = strlen(str);
91 // if(c.arg[0] > sizeof(c.d.asBytes)) {
92 // c.arg[0] = sizeof(c.d.asBytes);
94 // memcpy(c.d.asBytes, str, c.arg[0]);
96 // UsbSendPacket((uint8_t *)&c, sizeof(c));
97 // // TODO fix USB so stupid things like this aren't req'd
102 void DbpIntegers(int x1
, int x2
, int x3
)
104 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
105 // /* this holds up stuff unless we're connected to usb */
106 // if (!UsbConnected())
110 // c.cmd = CMD_DEBUG_PRINT_INTEGERS;
115 // UsbSendPacket((uint8_t *)&c, sizeof(c));
121 void Dbprintf(const char *fmt
, ...) {
122 // should probably limit size here; oh well, let's just use a big buffer
123 char output_string
[128];
127 kvsprintf(fmt
, output_string
, 10, ap
);
130 DbpString(output_string
);
133 // prints HEX & ASCII
134 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
147 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
150 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
152 Dbprintf("%*D",l
,d
," ");
160 //-----------------------------------------------------------------------------
161 // Read an ADC channel and block till it completes, then return the result
162 // in ADC units (0 to 1023). Also a routine to average 32 samples and
164 //-----------------------------------------------------------------------------
165 static int ReadAdc(int ch
)
169 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
170 AT91C_BASE_ADC
->ADC_MR
=
171 ADC_MODE_PRESCALE(32) |
172 ADC_MODE_STARTUP_TIME(16) |
173 ADC_MODE_SAMPLE_HOLD_TIME(8);
174 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
176 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
177 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
179 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
184 int AvgAdc(int ch
) // was static - merlok
189 for(i
= 0; i
< 32; i
++) {
193 return (a
+ 15) >> 5;
196 void MeasureAntennaTuning(void)
198 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
199 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
200 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
205 DbpString("Measuring antenna characteristics, please wait...");
206 memset(dest
,0,sizeof(FREE_BUFFER_SIZE
));
209 * Sweeps the useful LF range of the proxmark from
210 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
211 * read the voltage in the antenna, the result left
212 * in the buffer is a graph which should clearly show
213 * the resonating frequency of your LF antenna
214 * ( hopefully around 95 if it is tuned to 125kHz!)
217 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
218 for (i
=255; i
>19; i
--) {
220 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
222 // Vref = 3.3V, and a 10000:240 voltage divider on the input
223 // can measure voltages up to 137500 mV
224 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
225 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
226 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
228 dest
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
238 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
239 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
241 // Vref = 3300mV, and an 10:1 voltage divider on the input
242 // can measure voltages up to 33000 mV
243 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
245 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
246 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
248 // c.arg[2] = peakf | (peakv << 16);
250 DbpString("Measuring complete, sending report back to host");
251 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),0,0);
252 // UsbSendPacket((uint8_t *)&c, sizeof(c));
253 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void MeasureAntennaTuningHf(void)
261 int vHf
= 0; // in mV
263 DbpString("Measuring HF antenna, press button to exit");
266 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
267 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
269 // Vref = 3300mV, and an 10:1 voltage divider on the input
270 // can measure voltages up to 33000 mV
271 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
273 Dbprintf("%d mV",vHf
);
274 if (BUTTON_PRESS()) break;
276 DbpString("cancelled");
280 void SimulateTagHfListen(void)
282 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
287 // We're using this mode just so that I can test it out; the simulated
288 // tag mode would work just as well and be simpler.
289 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
291 // We need to listen to the high-frequency, peak-detected path.
292 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
298 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
299 AT91C_BASE_SSC
->SSC_THR
= 0xff;
301 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
302 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
316 if(i
>= FREE_BUFFER_SIZE
) {
322 DbpString("simulate tag (now type bitsamples)");
325 void ReadMem(int addr
)
327 const uint8_t *data
= ((uint8_t *)addr
);
329 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
330 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
333 /* osimage version information is linked in */
334 extern struct version_information version_information
;
335 /* bootrom version information is pointed to from _bootphase1_version_pointer */
336 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
337 void SendVersion(void)
339 char temp
[48]; /* Limited data payload in USB packets */
340 DbpString("Prox/RFID mark3 RFID instrument");
342 /* Try to find the bootrom version information. Expect to find a pointer at
343 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
344 * pointer, then use it.
346 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
347 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
348 DbpString("bootrom version information appears invalid");
350 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
354 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
357 FpgaGatherVersion(temp
, sizeof(temp
));
360 cmd_send(CMD_ACK
,*(AT91C_DBGU_CIDR
),0,0,NULL
,0);
364 // samy's sniff and repeat routine
367 DbpString("Stand-alone mode! No PC necessary.");
369 // 3 possible options? no just 2 for now
372 int high
[OPTS
], low
[OPTS
];
374 // Oooh pretty -- notify user we're in elite samy mode now
376 LED(LED_ORANGE
, 200);
378 LED(LED_ORANGE
, 200);
380 LED(LED_ORANGE
, 200);
382 LED(LED_ORANGE
, 200);
388 // Turn on selected LED
389 LED(selected
+ 1, 0);
397 // Was our button held down or pressed?
398 int button_pressed
= BUTTON_HELD(1000);
401 // Button was held for a second, begin recording
402 if (button_pressed
> 0)
405 LED(selected
+ 1, 0);
409 DbpString("Starting recording");
411 // wait for button to be released
412 while(BUTTON_PRESS())
415 /* need this delay to prevent catching some weird data */
418 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
419 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
422 LED(selected
+ 1, 0);
423 // Finished recording
425 // If we were previously playing, set playing off
426 // so next button push begins playing what we recorded
430 // Change where to record (or begin playing)
431 else if (button_pressed
)
433 // Next option if we were previously playing
435 selected
= (selected
+ 1) % OPTS
;
439 LED(selected
+ 1, 0);
441 // Begin transmitting
445 DbpString("Playing");
446 // wait for button to be released
447 while(BUTTON_PRESS())
449 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
450 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
451 DbpString("Done playing");
452 if (BUTTON_HELD(1000) > 0)
454 DbpString("Exiting");
459 /* We pressed a button so ignore it here with a delay */
462 // when done, we're done playing, move to next option
463 selected
= (selected
+ 1) % OPTS
;
466 LED(selected
+ 1, 0);
469 while(BUTTON_PRESS())
478 Listen and detect an external reader. Determine the best location
482 Inside the ListenReaderField() function, there is two mode.
483 By default, when you call the function, you will enter mode 1.
484 If you press the PM3 button one time, you will enter mode 2.
485 If you press the PM3 button a second time, you will exit the function.
487 DESCRIPTION OF MODE 1:
488 This mode just listens for an external reader field and lights up green
489 for HF and/or red for LF. This is the original mode of the detectreader
492 DESCRIPTION OF MODE 2:
493 This mode will visually represent, using the LEDs, the actual strength of the
494 current compared to the maximum current detected. Basically, once you know
495 what kind of external reader is present, it will help you spot the best location to place
496 your antenna. You will probably not get some good results if there is a LF and a HF reader
497 at the same place! :-)
501 static const char LIGHT_SCHEME
[] = {
502 0x0, /* ---- | No field detected */
503 0x1, /* X--- | 14% of maximum current detected */
504 0x2, /* -X-- | 29% of maximum current detected */
505 0x4, /* --X- | 43% of maximum current detected */
506 0x8, /* ---X | 57% of maximum current detected */
507 0xC, /* --XX | 71% of maximum current detected */
508 0xE, /* -XXX | 86% of maximum current detected */
509 0xF, /* XXXX | 100% of maximum current detected */
511 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
513 void ListenReaderField(int limit
)
515 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
516 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
517 int mode
=1, display_val
, display_max
, i
;
524 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
526 if(limit
!= HF_ONLY
) {
527 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
531 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
533 if (limit
!= LF_ONLY
) {
534 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
539 if (BUTTON_PRESS()) {
544 DbpString("Signal Strength Mode");
548 DbpString("Stopped");
556 if (limit
!= HF_ONLY
) {
558 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
563 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
564 // see if there's a significant change
565 if(abs(lf_av
- lf_av_new
) > 10) {
566 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
574 if (limit
!= LF_ONLY
) {
576 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
581 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
582 // see if there's a significant change
583 if(abs(hf_av
- hf_av_new
) > 10) {
584 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
593 if (limit
== LF_ONLY
) {
595 display_max
= lf_max
;
596 } else if (limit
== HF_ONLY
) {
598 display_max
= hf_max
;
599 } else { /* Pick one at random */
600 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
602 display_max
= hf_max
;
605 display_max
= lf_max
;
608 for (i
=0; i
<LIGHT_LEN
; i
++) {
609 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
610 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
611 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
612 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
613 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
621 void UsbPacketReceived(uint8_t *packet
, int len
)
623 UsbCommand
*c
= (UsbCommand
*)packet
;
625 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
629 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
630 AcquireRawAdcSamples125k(c
->arg
[0]);
631 cmd_send(CMD_ACK
,0,0,0,0,0);
633 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
634 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
636 case CMD_HID_DEMOD_FSK
:
637 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
639 case CMD_HID_SIM_TAG
:
640 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1); // Simulate HID tag by ID
642 case CMD_HID_CLONE_TAG
: // Clone HID tag by ID to T55x7
643 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
645 case CMD_IO_DEMOD_FSK
:
646 CmdIOdemodFSK(1, 0, 0, 1); // Demodulate IO tag
648 case CMD_IO_CLONE_TAG
: // Clone IO tag by ID to T55x7
649 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
[0]);
651 case CMD_EM410X_WRITE_TAG
:
652 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
654 case CMD_READ_TI_TYPE
:
657 case CMD_WRITE_TI_TYPE
:
658 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
660 case CMD_SIMULATE_TAG_125K
:
662 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
665 case CMD_LF_SIMULATE_BIDIR
:
666 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
668 case CMD_INDALA_CLONE_TAG
: // Clone Indala 64-bit tag by UID to T55x7
669 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
671 case CMD_INDALA_CLONE_TAG_L
: // Clone Indala 224-bit tag by UID to T55x7
672 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
674 case CMD_T55XX_READ_BLOCK
:
675 T55xxReadBlock(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
677 case CMD_T55XX_WRITE_BLOCK
:
678 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
680 case CMD_T55XX_READ_TRACE
: // Clone HID tag by ID to T55x7
683 case CMD_PCF7931_READ
: // Read PCF7931 tag
685 cmd_send(CMD_ACK
,0,0,0,0,0);
686 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
688 case CMD_EM4X_READ_WORD
:
689 EM4xReadWord(c
->arg
[1], c
->arg
[2],c
->d
.asBytes
[0]);
691 case CMD_EM4X_WRITE_WORD
:
692 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
697 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
698 SnoopHitag(c
->arg
[0]);
700 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
701 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
703 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
704 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
709 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
710 AcquireRawAdcSamplesIso15693();
712 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
713 RecordRawAdcSamplesIso15693();
716 case CMD_ISO_15693_COMMAND
:
717 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
720 case CMD_ISO_15693_FIND_AFI
:
721 BruteforceIso15693Afi(c
->arg
[0]);
724 case CMD_ISO_15693_DEBUG
:
725 SetDebugIso15693(c
->arg
[0]);
728 case CMD_READER_ISO_15693
:
729 ReaderIso15693(c
->arg
[0]);
731 case CMD_SIMTAG_ISO_15693
:
732 SimTagIso15693(c
->arg
[0]);
737 case CMD_SIMULATE_TAG_LEGIC_RF
:
738 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
741 case CMD_WRITER_LEGIC_RF
:
742 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
745 case CMD_READER_LEGIC_RF
:
746 LegicRfReader(c
->arg
[0], c
->arg
[1]);
750 #ifdef WITH_ISO14443b
751 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
752 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
754 case CMD_READ_SRI512_TAG
:
755 ReadSTMemoryIso14443(0x0F);
757 case CMD_READ_SRIX4K_TAG
:
758 ReadSTMemoryIso14443(0x7F);
760 case CMD_SNOOP_ISO_14443
:
763 case CMD_SIMULATE_TAG_ISO_14443
:
764 SimulateIso14443Tag();
766 case CMD_ISO_14443B_COMMAND
:
767 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
771 #ifdef WITH_ISO14443a
772 case CMD_SNOOP_ISO_14443a
:
773 SnoopIso14443a(c
->arg
[0]);
775 case CMD_READER_ISO_14443a
:
778 case CMD_SIMULATE_TAG_ISO_14443a
:
779 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
781 case CMD_EPA_PACE_COLLECT_NONCE
:
782 EPA_PACE_Collect_Nonce(c
);
785 case CMD_READER_MIFARE
:
786 ReaderMifare(c
->arg
[0]);
788 case CMD_MIFARE_READBL
:
789 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
791 case CMD_MIFAREU_READBL
:
792 MifareUReadBlock(c
->arg
[0],c
->d
.asBytes
);
794 case CMD_MIFAREU_READCARD
:
795 MifareUReadCard(c
->arg
[0],c
->d
.asBytes
);
797 case CMD_MIFARE_READSC
:
798 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
800 case CMD_MIFARE_WRITEBL
:
801 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
803 case CMD_MIFAREU_WRITEBL_COMPAT
:
804 MifareUWriteBlock(c
->arg
[0], c
->d
.asBytes
);
806 case CMD_MIFAREU_WRITEBL
:
807 MifareUWriteBlock_Special(c
->arg
[0], c
->d
.asBytes
);
809 case CMD_MIFARE_NESTED
:
810 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
812 case CMD_MIFARE_CHKKEYS
:
813 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
815 case CMD_SIMULATE_MIFARE_CARD
:
816 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
820 case CMD_MIFARE_SET_DBGMODE
:
821 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
823 case CMD_MIFARE_EML_MEMCLR
:
824 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
826 case CMD_MIFARE_EML_MEMSET
:
827 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
829 case CMD_MIFARE_EML_MEMGET
:
830 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
832 case CMD_MIFARE_EML_CARDLOAD
:
833 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
836 // Work with "magic Chinese" card
837 case CMD_MIFARE_EML_CSETBLOCK
:
838 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
840 case CMD_MIFARE_EML_CGETBLOCK
:
841 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
845 case CMD_MIFARE_SNIFFER
:
846 SniffMifare(c
->arg
[0]);
851 // Makes use of ISO14443a FPGA Firmware
852 case CMD_SNOOP_ICLASS
:
855 case CMD_SIMULATE_TAG_ICLASS
:
856 SimulateIClass(c
->arg
[0], c
->d
.asBytes
);
858 case CMD_READER_ICLASS
:
859 ReaderIClass(c
->arg
[0]);
863 case CMD_SIMULATE_TAG_HF_LISTEN
:
864 SimulateTagHfListen();
871 case CMD_MEASURE_ANTENNA_TUNING
:
872 MeasureAntennaTuning();
875 case CMD_MEASURE_ANTENNA_TUNING_HF
:
876 MeasureAntennaTuningHf();
879 case CMD_LISTEN_READER_FIELD
:
880 ListenReaderField(c
->arg
[0]);
883 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
884 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
886 LED_D_OFF(); // LED D indicates field ON or OFF
889 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
891 // if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
892 // n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
894 // n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
896 // n.arg[0] = c->arg[0];
897 // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
899 // usb_write((uint8_t *)&n, sizeof(n));
900 // UsbSendPacket((uint8_t *)&n, sizeof(n));
904 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
905 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
906 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
908 // Trigger a finish downloading signal with an ACK frame
909 cmd_send(CMD_ACK
,0,0,0,0,0);
913 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
914 uint8_t *b
= (uint8_t *)BigBuf
;
915 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, 48);
916 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
917 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
918 cmd_send(CMD_ACK
,0,0,0,0,0);
925 case CMD_SET_LF_DIVISOR
:
926 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
929 case CMD_SET_ADC_MUX
:
931 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
932 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
933 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
934 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
950 case CMD_SETUP_WRITE
:
951 case CMD_FINISH_WRITE
:
952 case CMD_HARDWARE_RESET
:
956 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
958 // We're going to reset, and the bootrom will take control.
962 case CMD_START_FLASH
:
963 if(common_area
.flags
.bootrom_present
) {
964 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
967 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
971 case CMD_DEVICE_INFO
: {
972 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
973 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
974 // UsbSendPacket((uint8_t*)&c, sizeof(c));
975 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
979 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
984 void __attribute__((noreturn
)) AppMain(void)
988 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
989 /* Initialize common area */
990 memset(&common_area
, 0, sizeof(common_area
));
991 common_area
.magic
= COMMON_AREA_MAGIC
;
992 common_area
.version
= 1;
994 common_area
.flags
.osimage_present
= 1;
1005 // The FPGA gets its clock from us from PCK0 output, so set that up.
1006 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1007 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1008 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1009 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1010 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1011 AT91C_PMC_PRES_CLK_4
;
1012 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1015 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1017 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1019 // Load the FPGA image, which we have stored in our flash.
1020 FpgaDownloadAndGo();
1028 byte_t rx
[sizeof(UsbCommand
)];
1033 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1035 UsbPacketReceived(rx
,rx_len
);
1043 if (BUTTON_HELD(1000) > 0)