1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 // Modified by Greg Jones, Jan 2009
4 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
5 // Modified by piwi, Oct 2018
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support ISO 15693. This includes both the reader software and
12 // the `fake tag' modes.
13 //-----------------------------------------------------------------------------
15 // The ISO 15693 describes two transmission modes from reader to tag, and four
16 // transmission modes from tag to reader. As of Oct 2018 this code supports
17 // both reader modes and the high speed variant with one subcarrier from card to reader.
18 // As long as the card fully support ISO 15693 this is no problem, since the
19 // reader chooses both data rates, but some non-standard tags do not.
20 // For card simulation, the code supports both high and low speed modes with one subcarrier.
22 // VCD (reader) -> VICC (tag)
24 // data rate: 1,66 kbit/s (fc/8192)
25 // used for long range
27 // data rate: 26,48 kbit/s (fc/512)
28 // used for short range, high speed
30 // VICC (tag) -> VCD (reader)
32 // ASK / one subcarrier (423,75 khz)
33 // FSK / two subcarriers (423,75 khz && 484,28 khz)
34 // Data Rates / Modes:
35 // low ASK: 6,62 kbit/s
36 // low FSK: 6.67 kbit/s
37 // high ASK: 26,48 kbit/s
38 // high FSK: 26,69 kbit/s
39 //-----------------------------------------------------------------------------
43 // *) UID is always used "transmission order" (LSB), which is reverse to display order
45 // TODO / BUGS / ISSUES:
46 // *) signal decoding is unable to detect collisions.
47 // *) add anti-collision support for inventory-commands
48 // *) read security status of a block
49 // *) sniffing and simulation do not support two subcarrier modes.
50 // *) remove or refactor code under "deprecated"
51 // *) document all the functions
55 #include "proxmark3.h"
59 #include "iso15693tools.h"
60 #include "protocols.h"
63 #include "fpgaloader.h"
65 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
69 ///////////////////////////////////////////////////////////////////////
70 // ISO 15693 Part 2 - Air Interface
71 // This section basically contains transmission and receiving of bits
72 ///////////////////////////////////////////////////////////////////////
75 #define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2
76 #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
77 #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
79 // ---------------------------
81 // ---------------------------
83 // prepare data using "1 out of 4" code for later transmission
84 // resulting data rate is 26.48 kbit/s (fc/512)
86 // n ... length of data
87 static void CodeIso15693AsReader(uint8_t *cmd
, int n
)
93 // Give it a bit of slack at the beginning
94 for(i
= 0; i
< 24; i
++) {
107 for(i
= 0; i
< n
; i
++) {
108 for(j
= 0; j
< 8; j
+= 2) {
109 int these
= (cmd
[i
] >> j
) & 3;
160 // Fill remainder of last byte with 1
161 for(i
= 0; i
< 4; i
++) {
168 // encode data using "1 out of 256" scheme
169 // data rate is 1,66 kbit/s (fc/8192)
170 // is designed for more robust communication over longer distances
171 static void CodeIso15693AsReader256(uint8_t *cmd
, int n
)
177 // Give it a bit of slack at the beginning
178 for(i
= 0; i
< 24; i
++) {
192 for(i
= 0; i
< n
; i
++) {
193 for (j
= 0; j
<=255; j
++) {
209 // Fill remainder of last byte with 1
210 for(i
= 0; i
< 4; i
++) {
218 // static uint8_t encode4Bits(const uint8_t b) {
219 // uint8_t c = b & 0xF;
220 // // OTA, the least significant bits first
221 // // The columns are
222 // // 1 - Bit value to send
223 // // 2 - Reversed (big-endian)
224 // // 3 - Manchester Encoded
229 // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
230 // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
231 // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
232 // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
233 // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
234 // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
235 // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
236 // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
237 // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
238 // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
239 // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
240 // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
241 // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
242 // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
243 // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
244 // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
249 static const uint8_t encode_4bits
[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 };
251 void CodeIso15693AsTag(uint8_t *cmd
, size_t len
) {
253 * SOF comprises 3 parts;
254 * * An unmodulated time of 56.64 us
255 * * 24 pulses of 423.75 kHz (fc/32)
256 * * A logic 1, which starts with an unmodulated time of 18.88us
257 * followed by 8 pulses of 423.75kHz (fc/32)
259 * EOF comprises 3 parts:
260 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
262 * - 24 pulses of fc/32
263 * - An unmodulated time of 56.64 us
265 * A logic 0 starts with 8 pulses of fc/32
266 * followed by an unmodulated time of 256/fc (~18,88us).
268 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
269 * 8 pulses of fc/32 (also 18.88us)
271 * A bit here becomes 8 pulses of fc/32. Therefore:
272 * The SOF can be written as 00011101 = 0x1D
273 * The EOF can be written as 10111000 = 0xb8
282 ToSend
[++ToSendMax
] = 0x1D; // 00011101
285 for (int i
= 0; i
< len
; i
++) {
286 ToSend
[++ToSendMax
] = encode_4bits
[cmd
[i
] & 0xF];
287 ToSend
[++ToSendMax
] = encode_4bits
[cmd
[i
] >> 4];
291 ToSend
[++ToSendMax
] = 0xB8; // 10111000
297 // Transmit the command (to the tag) that was placed in cmd[].
298 static void TransmitTo15693Tag(const uint8_t *cmd
, int len
, uint32_t start_time
)
300 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SEND_FULL_MOD
);
301 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
303 while (GetCountSspClk() < start_time
) ;
306 for(int c
= 0; c
< len
; c
++) {
307 uint8_t data
= cmd
[c
];
308 for (int i
= 0; i
< 8; i
++) {
309 uint16_t send_word
= (data
& 0x80) ? 0x0000 : 0xffff;
310 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
311 AT91C_BASE_SSC
->SSC_THR
= send_word
;
312 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
313 AT91C_BASE_SSC
->SSC_THR
= send_word
;
322 //-----------------------------------------------------------------------------
323 // Transmit the tag response (to the reader) that was placed in cmd[].
324 //-----------------------------------------------------------------------------
325 void TransmitTo15693Reader(const uint8_t *cmd
, size_t len
, uint32_t *start_time
, uint32_t slot_time
, bool slow
) {
326 // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
327 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_424K
);
329 uint32_t modulation_start_time
= *start_time
+ 3 * 8; // no need to transfer the unmodulated start of SOF
331 while (GetCountSspClk() > (modulation_start_time
& 0xfffffff8) + 3) { // we will miss the intended time
333 modulation_start_time
+= slot_time
; // use next available slot
335 modulation_start_time
= (modulation_start_time
& 0xfffffff8) + 8; // next possible time
339 while (GetCountSspClk() < (modulation_start_time
& 0xfffffff8))
342 uint8_t shift_delay
= modulation_start_time
& 0x00000007;
344 *start_time
= modulation_start_time
- 3 * 8;
347 uint8_t bits_to_shift
= 0x00;
348 uint8_t bits_to_send
= 0x00;
349 for (size_t c
= 0; c
< len
; c
++) {
350 for (int i
= (c
==0?4:7); i
>= 0; i
--) {
351 uint8_t cmd_bits
= ((cmd
[c
] >> i
) & 0x01) ? 0xff : 0x00;
352 for (int j
= 0; j
< (slow
?4:1); ) {
353 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
354 bits_to_send
= bits_to_shift
<< (8 - shift_delay
) | cmd_bits
>> shift_delay
;
355 AT91C_BASE_SSC
->SSC_THR
= bits_to_send
;
356 bits_to_shift
= cmd_bits
;
363 // send the remaining bits, padded with 0:
364 bits_to_send
= bits_to_shift
<< (8 - shift_delay
);
366 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
367 AT91C_BASE_SSC
->SSC_THR
= bits_to_send
;
375 //=============================================================================
376 // An ISO 15693 decoder for tag responses (one subcarrier only).
377 // Uses cross correlation to identify each bit and EOF.
378 // This function is called 8 times per bit (every 2 subcarrier cycles).
379 // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
380 // i.e. function is called every 4,72us
382 // LED C -> ON once we have received the SOF and are expecting the rest.
383 // LED C -> OFF once we have received EOF or are unsynced
385 // Returns: true if we received a EOF
386 // false if we are still waiting for some more
387 //=============================================================================
389 #define NOISE_THRESHOLD 160 // don't try to correlate noise
391 typedef struct DecodeTag
{
395 STATE_TAG_SOF_HIGH_END
,
396 STATE_TAG_RECEIVING_DATA
,
415 static int inline __attribute__((always_inline
)) Handle15693SamplesFromTag(uint16_t amplitude
, DecodeTag_t
*DecodeTag
)
417 switch(DecodeTag
->state
) {
418 case STATE_TAG_SOF_LOW
:
419 // waiting for 12 times low (11 times low is accepted as well)
420 if (amplitude
< NOISE_THRESHOLD
) {
421 DecodeTag
->posCount
++;
423 if (DecodeTag
->posCount
> 10) {
424 DecodeTag
->posCount
= 1;
426 DecodeTag
->state
= STATE_TAG_SOF_HIGH
;
428 DecodeTag
->posCount
= 0;
433 case STATE_TAG_SOF_HIGH
:
434 // waiting for 10 times high. Take average over the last 8
435 if (amplitude
> NOISE_THRESHOLD
) {
436 DecodeTag
->posCount
++;
437 if (DecodeTag
->posCount
> 2) {
438 DecodeTag
->sum1
+= amplitude
; // keep track of average high value
440 if (DecodeTag
->posCount
== 10) {
441 DecodeTag
->sum1
>>= 4; // calculate half of average high value (8 samples)
442 DecodeTag
->state
= STATE_TAG_SOF_HIGH_END
;
444 } else { // high phase was too short
445 DecodeTag
->posCount
= 1;
446 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
450 case STATE_TAG_SOF_HIGH_END
:
451 // waiting for a falling edge
452 if (amplitude
< DecodeTag
->sum1
) { // signal drops below 50% average high: a falling edge
453 DecodeTag
->lastBit
= SOF_PART1
; // detected 1st part of SOF (12 samples low and 12 samples high)
454 DecodeTag
->shiftReg
= 0;
455 DecodeTag
->bitCount
= 0;
457 DecodeTag
->sum1
= amplitude
;
459 DecodeTag
->posCount
= 2;
460 DecodeTag
->state
= STATE_TAG_RECEIVING_DATA
;
463 DecodeTag
->posCount
++;
464 if (DecodeTag
->posCount
> 13) { // high phase too long
465 DecodeTag
->posCount
= 0;
466 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
472 case STATE_TAG_RECEIVING_DATA
:
473 if (DecodeTag
->posCount
== 1) {
477 if (DecodeTag
->posCount
<= 4) {
478 DecodeTag
->sum1
+= amplitude
;
480 DecodeTag
->sum2
+= amplitude
;
482 if (DecodeTag
->posCount
== 8) {
483 int32_t corr_1
= DecodeTag
->sum2
- DecodeTag
->sum1
;
484 int32_t corr_0
= -corr_1
;
485 int32_t corr_EOF
= (DecodeTag
->sum1
+ DecodeTag
->sum2
) / 2;
486 if (corr_EOF
> corr_0
&& corr_EOF
> corr_1
) {
487 if (DecodeTag
->lastBit
== LOGIC0
) { // this was already part of EOF
488 DecodeTag
->state
= STATE_TAG_EOF
;
490 DecodeTag
->posCount
= 0;
491 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
494 } else if (corr_1
> corr_0
) {
496 if (DecodeTag
->lastBit
== SOF_PART1
) { // still part of SOF
497 DecodeTag
->lastBit
= SOF_PART2
; // SOF completed
499 DecodeTag
->lastBit
= LOGIC1
;
500 DecodeTag
->shiftReg
>>= 1;
501 DecodeTag
->shiftReg
|= 0x80;
502 DecodeTag
->bitCount
++;
503 if (DecodeTag
->bitCount
== 8) {
504 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
506 if (DecodeTag
->len
> DecodeTag
->max_len
) {
507 // buffer overflow, give up
508 DecodeTag
->posCount
= 0;
509 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
512 DecodeTag
->bitCount
= 0;
513 DecodeTag
->shiftReg
= 0;
518 if (DecodeTag
->lastBit
== SOF_PART1
) { // incomplete SOF
519 DecodeTag
->posCount
= 0;
520 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
523 DecodeTag
->lastBit
= LOGIC0
;
524 DecodeTag
->shiftReg
>>= 1;
525 DecodeTag
->bitCount
++;
526 if (DecodeTag
->bitCount
== 8) {
527 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
529 if (DecodeTag
->len
> DecodeTag
->max_len
) {
530 // buffer overflow, give up
531 DecodeTag
->posCount
= 0;
532 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
535 DecodeTag
->bitCount
= 0;
536 DecodeTag
->shiftReg
= 0;
540 DecodeTag
->posCount
= 0;
542 DecodeTag
->posCount
++;
546 if (DecodeTag
->posCount
== 1) {
550 if (DecodeTag
->posCount
<= 4) {
551 DecodeTag
->sum1
+= amplitude
;
553 DecodeTag
->sum2
+= amplitude
;
555 if (DecodeTag
->posCount
== 8) {
556 int32_t corr_1
= DecodeTag
->sum2
- DecodeTag
->sum1
;
557 int32_t corr_0
= -corr_1
;
558 int32_t corr_EOF
= (DecodeTag
->sum1
+ DecodeTag
->sum2
) / 2;
559 if (corr_EOF
> corr_0
|| corr_1
> corr_0
) {
560 DecodeTag
->posCount
= 0;
561 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
568 DecodeTag
->posCount
++;
577 static void DecodeTagInit(DecodeTag_t
*DecodeTag
, uint8_t *data
, uint16_t max_len
)
579 DecodeTag
->posCount
= 0;
580 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
581 DecodeTag
->output
= data
;
582 DecodeTag
->max_len
= max_len
;
586 static void DecodeTagReset(DecodeTag_t
*DecodeTag
)
588 DecodeTag
->posCount
= 0;
589 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
594 * Receive and decode the tag response, also log to tracebuffer
596 static int GetIso15693AnswerFromTag(uint8_t* response
, uint16_t max_len
, int timeout
)
599 bool gotFrame
= false;
601 uint16_t *dmaBuf
= (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE
*sizeof(uint16_t));
603 // the Decoder data structure
604 DecodeTag_t DecodeTag
= { 0 };
605 DecodeTagInit(&DecodeTag
, response
, max_len
);
607 // wait for last transfer to complete
608 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
610 // And put the FPGA in the appropriate mode
611 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
613 // Setup and start DMA.
614 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
615 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
616 uint16_t *upTo
= dmaBuf
;
619 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
621 if (behindBy
== 0) continue;
623 uint16_t tagdata
= *upTo
++;
625 if(upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
626 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
627 if(behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
628 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
632 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
633 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
634 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
639 if (Handle15693SamplesFromTag(tagdata
, &DecodeTag
)) {
644 if (samples
> timeout
&& DecodeTag
.state
< STATE_TAG_RECEIVING_DATA
) {
654 if (DEBUG
) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
655 samples
, gotFrame
, DecodeTag
.state
, DecodeTag
.len
, DecodeTag
.bitCount
, DecodeTag
.posCount
);
657 if (DecodeTag
.len
> 0) {
658 LogTrace(DecodeTag
.output
, DecodeTag
.len
, 0, 0, NULL
, false);
661 return DecodeTag
.len
;
665 //=============================================================================
666 // An ISO15693 decoder for reader commands.
668 // This function is called 4 times per bit (every 2 subcarrier cycles).
669 // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
671 // LED B -> ON once we have received the SOF and are expecting the rest.
672 // LED B -> OFF once we have received EOF or are in error state or unsynced
674 // Returns: true if we received a EOF
675 // false if we are still waiting for some more
676 //=============================================================================
678 typedef struct DecodeReader
{
680 STATE_READER_UNSYNCD
,
681 STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
,
682 STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
,
683 STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
,
684 STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
,
685 STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
,
686 STATE_READER_RECEIVE_DATA_1_OUT_OF_4
,
687 STATE_READER_RECEIVE_DATA_1_OUT_OF_256
703 static void DecodeReaderInit(DecodeReader_t
* DecodeReader
, uint8_t *data
, uint16_t max_len
)
705 DecodeReader
->output
= data
;
706 DecodeReader
->byteCountMax
= max_len
;
707 DecodeReader
->state
= STATE_READER_UNSYNCD
;
708 DecodeReader
->byteCount
= 0;
709 DecodeReader
->bitCount
= 0;
710 DecodeReader
->posCount
= 1;
711 DecodeReader
->shiftReg
= 0;
715 static void DecodeReaderReset(DecodeReader_t
* DecodeReader
)
717 DecodeReader
->state
= STATE_READER_UNSYNCD
;
721 static int inline __attribute__((always_inline
)) Handle15693SampleFromReader(uint8_t bit
, DecodeReader_t
*restrict DecodeReader
)
723 switch (DecodeReader
->state
) {
724 case STATE_READER_UNSYNCD
:
725 // wait for unmodulated carrier
727 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
731 case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
:
733 // we went low, so this could be the beginning of a SOF
734 DecodeReader
->posCount
= 1;
735 DecodeReader
->state
= STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
;
739 case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
:
740 DecodeReader
->posCount
++;
741 if (bit
) { // detected rising edge
742 if (DecodeReader
->posCount
< 4) { // rising edge too early (nominally expected at 5)
743 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
745 DecodeReader
->state
= STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
;
748 if (DecodeReader
->posCount
> 5) { // stayed low for too long
749 DecodeReaderReset(DecodeReader
);
751 // do nothing, keep waiting
756 case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
:
757 DecodeReader
->posCount
++;
758 if (!bit
) { // detected a falling edge
759 if (DecodeReader
->posCount
< 20) { // falling edge too early (nominally expected at 21 earliest)
760 DecodeReaderReset(DecodeReader
);
761 } else if (DecodeReader
->posCount
< 23) { // SOF for 1 out of 4 coding
762 DecodeReader
->Coding
= CODING_1_OUT_OF_4
;
763 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
764 } else if (DecodeReader
->posCount
< 28) { // falling edge too early (nominally expected at 29 latest)
765 DecodeReaderReset(DecodeReader
);
766 } else { // SOF for 1 out of 256 coding
767 DecodeReader
->Coding
= CODING_1_OUT_OF_256
;
768 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
771 if (DecodeReader
->posCount
> 29) { // stayed high for too long
772 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
774 // do nothing, keep waiting
779 case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
:
780 DecodeReader
->posCount
++;
781 if (bit
) { // detected rising edge
782 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
783 if (DecodeReader
->posCount
< 32) { // rising edge too early (nominally expected at 33)
784 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
786 DecodeReader
->posCount
= 1;
787 DecodeReader
->bitCount
= 0;
788 DecodeReader
->byteCount
= 0;
789 DecodeReader
->sum1
= 1;
790 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_256
;
793 } else { // CODING_1_OUT_OF_4
794 if (DecodeReader
->posCount
< 24) { // rising edge too early (nominally expected at 25)
795 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
797 DecodeReader
->posCount
= 1;
798 DecodeReader
->state
= STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
;
802 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
803 if (DecodeReader
->posCount
> 34) { // signal stayed low for too long
804 DecodeReaderReset(DecodeReader
);
806 // do nothing, keep waiting
808 } else { // CODING_1_OUT_OF_4
809 if (DecodeReader
->posCount
> 26) { // signal stayed low for too long
810 DecodeReaderReset(DecodeReader
);
812 // do nothing, keep waiting
818 case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
:
819 DecodeReader
->posCount
++;
821 if (DecodeReader
->posCount
== 9) {
822 DecodeReader
->posCount
= 1;
823 DecodeReader
->bitCount
= 0;
824 DecodeReader
->byteCount
= 0;
825 DecodeReader
->sum1
= 1;
826 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_4
;
829 // do nothing, keep waiting
831 } else { // unexpected falling edge
832 DecodeReaderReset(DecodeReader
);
836 case STATE_READER_RECEIVE_DATA_1_OUT_OF_4
:
838 DecodeReader
->posCount
++;
839 if (DecodeReader
->posCount
== 1) {
840 DecodeReader
->sum1
= bit
;
841 } else if (DecodeReader
->posCount
<= 4) {
842 DecodeReader
->sum1
+= bit
;
843 } else if (DecodeReader
->posCount
== 5) {
844 DecodeReader
->sum2
= bit
;
846 DecodeReader
->sum2
+= bit
;
848 if (DecodeReader
->posCount
== 8) {
849 DecodeReader
->posCount
= 0;
850 if (DecodeReader
->sum1
<= 1 && DecodeReader
->sum2
>= 3) { // EOF
851 LED_B_OFF(); // Finished receiving
852 DecodeReaderReset(DecodeReader
);
853 if (DecodeReader
->byteCount
!= 0) {
857 if (DecodeReader
->sum1
>= 3 && DecodeReader
->sum2
<= 1) { // detected a 2bit position
858 DecodeReader
->shiftReg
>>= 2;
859 DecodeReader
->shiftReg
|= (DecodeReader
->bitCount
<< 6);
861 if (DecodeReader
->bitCount
== 15) { // we have a full byte
862 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
863 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
864 // buffer overflow, give up
866 DecodeReaderReset(DecodeReader
);
868 DecodeReader
->bitCount
= 0;
869 DecodeReader
->shiftReg
= 0;
871 DecodeReader
->bitCount
++;
876 case STATE_READER_RECEIVE_DATA_1_OUT_OF_256
:
878 DecodeReader
->posCount
++;
879 if (DecodeReader
->posCount
== 1) {
880 DecodeReader
->sum1
= bit
;
881 } else if (DecodeReader
->posCount
<= 4) {
882 DecodeReader
->sum1
+= bit
;
883 } else if (DecodeReader
->posCount
== 5) {
884 DecodeReader
->sum2
= bit
;
886 DecodeReader
->sum2
+= bit
;
888 if (DecodeReader
->posCount
== 8) {
889 DecodeReader
->posCount
= 0;
890 if (DecodeReader
->sum1
<= 1 && DecodeReader
->sum2
>= 3) { // EOF
891 LED_B_OFF(); // Finished receiving
892 DecodeReaderReset(DecodeReader
);
893 if (DecodeReader
->byteCount
!= 0) {
897 if (DecodeReader
->sum1
>= 3 && DecodeReader
->sum2
<= 1) { // detected the bit position
898 DecodeReader
->shiftReg
= DecodeReader
->bitCount
;
900 if (DecodeReader
->bitCount
== 255) { // we have a full byte
901 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
902 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
903 // buffer overflow, give up
905 DecodeReaderReset(DecodeReader
);
908 DecodeReader
->bitCount
++;
914 DecodeReaderReset(DecodeReader
);
922 //-----------------------------------------------------------------------------
923 // Receive a command (from the reader to us, where we are the simulated tag),
924 // and store it in the given buffer, up to the given maximum length. Keeps
925 // spinning, waiting for a well-framed command, until either we get one
926 // (returns len) or someone presses the pushbutton on the board (returns -1).
928 // Assume that we're called with the SSC (to the FPGA) and ADC path set
930 //-----------------------------------------------------------------------------
932 int GetIso15693CommandFromReader(uint8_t *received
, size_t max_len
, uint32_t *eof_time
) {
934 bool gotFrame
= false;
937 uint8_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
939 // the decoder data structure
940 DecodeReader_t DecodeReader
= {0};
941 DecodeReaderInit(&DecodeReader
, received
, max_len
);
943 // wait for last transfer to complete
944 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
947 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
949 // clear receive register and wait for next transfer
950 uint32_t temp
= AT91C_BASE_SSC
->SSC_RHR
;
952 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)) ;
954 uint32_t dma_start_time
= GetCountSspClk() & 0xfffffff8;
956 // Setup and start DMA.
957 FpgaSetupSscDma(dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
958 uint8_t *upTo
= dmaBuf
;
961 uint16_t behindBy
= ((uint8_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
963 if (behindBy
== 0) continue;
966 if (upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
967 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
968 if (behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
969 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
973 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
974 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
975 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
978 for (int i
= 7; i
>= 0; i
--) {
979 if (Handle15693SampleFromReader((b
>> i
) & 0x01, &DecodeReader
)) {
980 *eof_time
= dma_start_time
+ samples
- DELAY_READER_TO_ARM_SIM
; // end of EOF
991 if (BUTTON_PRESS()) {
992 DecodeReader
.byteCount
= -1;
1001 if (DEBUG
) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
1002 samples
, gotFrame
, DecodeReader
.state
, DecodeReader
.byteCount
, DecodeReader
.bitCount
, DecodeReader
.posCount
);
1004 if (DecodeReader
.byteCount
> 0) {
1005 uint32_t sof_time
= *eof_time
1006 - DecodeReader
.byteCount
* (DecodeReader
.Coding
==CODING_1_OUT_OF_4
?128:2048) // time for byte transfers
1007 - 32 // time for SOF transfer
1008 - 16; // time for EOF transfer
1009 LogTrace(DecodeReader
.output
, DecodeReader
.byteCount
, sof_time
, *eof_time
, NULL
, true);
1012 return DecodeReader
.byteCount
;
1016 // Encode (into the ToSend buffers) an identify request, which is the first
1017 // thing that you must send to a tag to get a response.
1018 static void BuildIdentifyRequest(void)
1023 // one sub-carrier, inventory, 1 slot, fast rate
1024 // AFI is at bit 5 (1<<4) when doing an INVENTORY
1025 cmd
[0] = (1 << 2) | (1 << 5) | (1 << 1);
1026 // inventory command code
1031 crc
= Iso15693Crc(cmd
, 3);
1032 cmd
[3] = crc
& 0xff;
1035 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1039 //-----------------------------------------------------------------------------
1040 // Start to read an ISO 15693 tag. We send an identify request, then wait
1041 // for the response. The response is not demodulated, just left in the buffer
1042 // so that it can be downloaded to a PC and processed there.
1043 //-----------------------------------------------------------------------------
1044 void AcquireRawAdcSamplesIso15693(void)
1049 uint8_t *dest
= BigBuf_get_addr();
1051 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1052 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1053 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1054 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1056 BuildIdentifyRequest();
1058 // Give the tags time to energize
1062 // Now send the command
1063 TransmitTo15693Tag(ToSend
, ToSendMax
, 0);
1065 // wait for last transfer to complete
1066 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
)) ;
1068 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
1070 for(int c
= 0; c
< 4000; ) {
1071 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1072 uint16_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1077 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1082 void SnoopIso15693(void)
1085 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1091 // The DMA buffer, used to stream samples from the FPGA
1092 uint16_t* dmaBuf
= (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE
*sizeof(uint16_t));
1095 // Count of samples received so far, so that we can include timing
1096 // information in the trace buffer.
1099 DecodeTag_t DecodeTag
= {0};
1100 uint8_t response
[ISO15693_MAX_RESPONSE_LENGTH
];
1101 DecodeTagInit(&DecodeTag
, response
, sizeof(response
));
1103 DecodeReader_t DecodeReader
= {0};;
1104 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1105 DecodeReaderInit(&DecodeReader
, cmd
, sizeof(cmd
));
1107 // Print some debug information about the buffer sizes
1109 Dbprintf("Snooping buffers initialized:");
1110 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1111 Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH
);
1112 Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH
);
1113 Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE
* sizeof(uint16_t));
1115 Dbprintf("Snoop started. Press PM3 Button to stop.");
1117 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SNOOP_AMPLITUDE
);
1118 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1120 // Setup for the DMA.
1121 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1123 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1125 bool TagIsActive
= false;
1126 bool ReaderIsActive
= false;
1127 bool ExpectTagAnswer
= false;
1129 // And now we loop, receiving samples.
1131 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
1133 if (behindBy
== 0) continue;
1135 uint16_t snoopdata
= *upTo
++;
1137 if(upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1138 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
1139 if(behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
1140 Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy
, samples
);
1143 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1144 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1145 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
1147 if(BUTTON_PRESS()) {
1148 DbpString("Snoop stopped.");
1155 if (!TagIsActive
) { // no need to try decoding reader data if the tag is sending
1156 if (Handle15693SampleFromReader(snoopdata
& 0x02, &DecodeReader
)) {
1157 FpgaDisableSscDma();
1158 ExpectTagAnswer
= true;
1159 LogTrace(DecodeReader
.output
, DecodeReader
.byteCount
, samples
, samples
, NULL
, true);
1160 /* And ready to receive another command. */
1161 DecodeReaderReset(&DecodeReader
);
1162 /* And also reset the demod code, which might have been */
1163 /* false-triggered by the commands from the reader. */
1164 DecodeTagReset(&DecodeTag
);
1166 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1168 if (Handle15693SampleFromReader(snoopdata
& 0x01, &DecodeReader
)) {
1169 FpgaDisableSscDma();
1170 ExpectTagAnswer
= true;
1171 LogTrace(DecodeReader
.output
, DecodeReader
.byteCount
, samples
, samples
, NULL
, true);
1172 /* And ready to receive another command. */
1173 DecodeReaderReset(&DecodeReader
);
1174 /* And also reset the demod code, which might have been */
1175 /* false-triggered by the commands from the reader. */
1176 DecodeTagReset(&DecodeTag
);
1178 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1180 ReaderIsActive
= (DecodeReader
.state
>= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
);
1183 if (!ReaderIsActive
&& ExpectTagAnswer
) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
1184 if (Handle15693SamplesFromTag(snoopdata
>> 2, &DecodeTag
)) {
1185 FpgaDisableSscDma();
1186 //Use samples as a time measurement
1187 LogTrace(DecodeTag
.output
, DecodeTag
.len
, samples
, samples
, NULL
, false);
1188 // And ready to receive another response.
1189 DecodeTagReset(&DecodeTag
);
1190 DecodeReaderReset(&DecodeReader
);
1191 ExpectTagAnswer
= false;
1193 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1195 TagIsActive
= (DecodeTag
.state
>= STATE_TAG_RECEIVING_DATA
);
1200 FpgaDisableSscDma();
1205 DbpString("Snoop statistics:");
1206 Dbprintf(" ExpectTagAnswer: %d", ExpectTagAnswer
);
1207 Dbprintf(" DecodeTag State: %d", DecodeTag
.state
);
1208 Dbprintf(" DecodeTag byteCnt: %d", DecodeTag
.len
);
1209 Dbprintf(" DecodeReader State: %d", DecodeReader
.state
);
1210 Dbprintf(" DecodeReader byteCnt: %d", DecodeReader
.byteCount
);
1211 Dbprintf(" Trace length: %d", BigBuf_get_traceLen());
1215 // Initialize the proxmark as iso15k reader
1216 static void Iso15693InitReader() {
1217 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1221 // Start from off (no field generated)
1223 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1226 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1227 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1229 // Give the tags time to energize
1231 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1235 ///////////////////////////////////////////////////////////////////////
1236 // ISO 15693 Part 3 - Air Interface
1237 // This section basically contains transmission and receiving of bits
1238 ///////////////////////////////////////////////////////////////////////
1241 // uid is in transmission order (which is reverse of display order)
1242 static void BuildReadBlockRequest(uint8_t *uid
, uint8_t blockNumber
)
1247 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1248 // followed by the block data
1249 cmd
[0] = ISO15693_REQ_OPTION
| ISO15693_REQ_ADDRESS
| ISO15693_REQ_DATARATE_HIGH
;
1250 // READ BLOCK command code
1251 cmd
[1] = ISO15693_READBLOCK
;
1252 // UID may be optionally specified here
1261 cmd
[9] = uid
[7]; // 0xe0; // always e0 (not exactly unique)
1262 // Block number to read
1263 cmd
[10] = blockNumber
;
1265 crc
= Iso15693Crc(cmd
, 11); // the crc needs to be calculated over 11 bytes
1266 cmd
[11] = crc
& 0xff;
1269 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1273 // Now the VICC>VCD responses when we are simulating a tag
1274 static void BuildInventoryResponse(uint8_t *uid
)
1280 cmd
[0] = 0; // No error, no protocol format extension
1281 cmd
[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
1283 cmd
[2] = uid
[7]; //0x32;
1284 cmd
[3] = uid
[6]; //0x4b;
1285 cmd
[4] = uid
[5]; //0x03;
1286 cmd
[5] = uid
[4]; //0x01;
1287 cmd
[6] = uid
[3]; //0x00;
1288 cmd
[7] = uid
[2]; //0x10;
1289 cmd
[8] = uid
[1]; //0x05;
1290 cmd
[9] = uid
[0]; //0xe0;
1292 crc
= Iso15693Crc(cmd
, 10);
1293 cmd
[10] = crc
& 0xff;
1296 CodeIso15693AsTag(cmd
, sizeof(cmd
));
1299 // Universal Method for sending to and recv bytes from a tag
1300 // init ... should we initialize the reader?
1301 // speed ... 0 low speed, 1 hi speed
1302 // *recv will contain the tag's answer
1303 // return: lenght of received data
1304 int SendDataTag(uint8_t *send
, int sendlen
, bool init
, int speed
, uint8_t *recv
, uint16_t max_recv_len
, uint32_t start_time
) {
1310 if (init
) Iso15693InitReader();
1315 // low speed (1 out of 256)
1316 CodeIso15693AsReader256(send
, sendlen
);
1318 // high speed (1 out of 4)
1319 CodeIso15693AsReader(send
, sendlen
);
1322 TransmitTo15693Tag(ToSend
, ToSendMax
, start_time
);
1324 // Now wait for a response
1326 answerLen
= GetIso15693AnswerFromTag(recv
, max_recv_len
, DELAY_ISO15693_VCD_TO_VICC_READER
* 2);
1335 // --------------------------------------------------------------------
1337 // --------------------------------------------------------------------
1339 // Decodes a message from a tag and displays its metadata and content
1340 #define DBD15STATLEN 48
1341 void DbdecodeIso15693Answer(int len
, uint8_t *d
) {
1342 char status
[DBD15STATLEN
+1]={0};
1346 if (d
[0] & ISO15693_RES_EXT
)
1347 strncat(status
,"ProtExt ", DBD15STATLEN
);
1348 if (d
[0] & ISO15693_RES_ERROR
) {
1350 strncat(status
,"Error ", DBD15STATLEN
);
1353 strncat(status
,"01:notSupp", DBD15STATLEN
);
1356 strncat(status
,"02:notRecog", DBD15STATLEN
);
1359 strncat(status
,"03:optNotSupp", DBD15STATLEN
);
1362 strncat(status
,"0f:noInfo", DBD15STATLEN
);
1365 strncat(status
,"10:doesn'tExist", DBD15STATLEN
);
1368 strncat(status
,"11:lockAgain", DBD15STATLEN
);
1371 strncat(status
,"12:locked", DBD15STATLEN
);
1374 strncat(status
,"13:progErr", DBD15STATLEN
);
1377 strncat(status
,"14:lockErr", DBD15STATLEN
);
1380 strncat(status
,"unknownErr", DBD15STATLEN
);
1382 strncat(status
," ", DBD15STATLEN
);
1384 strncat(status
,"NoErr ", DBD15STATLEN
);
1387 crc
=Iso15693Crc(d
,len
-2);
1388 if ( (( crc
& 0xff ) == d
[len
-2]) && (( crc
>> 8 ) == d
[len
-1]) )
1389 strncat(status
,"CrcOK",DBD15STATLEN
);
1391 strncat(status
,"CrcFail!",DBD15STATLEN
);
1393 Dbprintf("%s",status
);
1399 ///////////////////////////////////////////////////////////////////////
1400 // Functions called via USB/Client
1401 ///////////////////////////////////////////////////////////////////////
1403 void SetDebugIso15693(uint32_t debug
) {
1405 Dbprintf("Iso15693 Debug is now %s",DEBUG
?"on":"off");
1410 //---------------------------------------------------------------------------------------
1411 // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
1412 // all demodulation performed in arm rather than host. - greg
1413 //---------------------------------------------------------------------------------------
1414 void ReaderIso15693(uint32_t parameter
)
1422 uint8_t TagUID
[8] = {0x00};
1424 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1426 uint8_t answer
[ISO15693_MAX_RESPONSE_LENGTH
];
1428 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1430 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1432 // Start from off (no field generated)
1433 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1436 // Give the tags time to energize
1438 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1443 // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
1444 // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
1446 // Now send the IDENTIFY command
1447 BuildIdentifyRequest();
1448 TransmitTo15693Tag(ToSend
, ToSendMax
, 0);
1450 // Now wait for a response
1451 answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2) ;
1452 uint32_t start_time
= GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER
;
1454 if (answerLen
>=12) // we should do a better check than this
1456 TagUID
[0] = answer
[2];
1457 TagUID
[1] = answer
[3];
1458 TagUID
[2] = answer
[4];
1459 TagUID
[3] = answer
[5];
1460 TagUID
[4] = answer
[6];
1461 TagUID
[5] = answer
[7];
1462 TagUID
[6] = answer
[8]; // IC Manufacturer code
1463 TagUID
[7] = answer
[9]; // always E0
1467 Dbprintf("%d octets read from IDENTIFY request:", answerLen
);
1468 DbdecodeIso15693Answer(answerLen
, answer
);
1469 Dbhexdump(answerLen
, answer
, false);
1472 if (answerLen
>= 12)
1473 Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
1474 TagUID
[7],TagUID
[6],TagUID
[5],TagUID
[4],
1475 TagUID
[3],TagUID
[2],TagUID
[1],TagUID
[0]);
1478 // Dbprintf("%d octets read from SELECT request:", answerLen2);
1479 // DbdecodeIso15693Answer(answerLen2,answer2);
1480 // Dbhexdump(answerLen2,answer2,true);
1482 // Dbprintf("%d octets read from XXX request:", answerLen3);
1483 // DbdecodeIso15693Answer(answerLen3,answer3);
1484 // Dbhexdump(answerLen3,answer3,true);
1487 if (answerLen
>= 12 && DEBUG
) {
1488 for (int i
= 0; i
< 32; i
++) { // sanity check, assume max 32 pages
1489 BuildReadBlockRequest(TagUID
, i
);
1490 TransmitTo15693Tag(ToSend
, ToSendMax
, start_time
);
1491 int answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2);
1492 start_time
= GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER
;
1493 if (answerLen
> 0) {
1494 Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i
, answerLen
);
1495 DbdecodeIso15693Answer(answerLen
, answer
);
1496 Dbhexdump(answerLen
, answer
, false);
1497 if ( *((uint32_t*) answer
) == 0x07160101 ) break; // exit on NoPageErr
1502 // for the time being, switch field off to protect rdv4.0
1503 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1504 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1511 // Simulate an ISO15693 TAG.
1512 // For Inventory command: print command and send Inventory Response with given UID
1513 // TODO: interpret other reader commands and send appropriate response
1514 void SimTagIso15693(uint32_t parameter
, uint8_t *uid
)
1519 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1520 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1521 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1522 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1526 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1528 // Build a suitable response to the reader INVENTORY command
1529 BuildInventoryResponse(uid
);
1532 while (!BUTTON_PRESS()) {
1533 uint32_t eof_time
= 0, start_time
= 0;
1534 int cmd_len
= GetIso15693CommandFromReader(cmd
, sizeof(cmd
), &eof_time
);
1536 if ((cmd_len
>= 5) && (cmd
[0] & ISO15693_REQ_INVENTORY
) && (cmd
[1] == ISO15693_INVENTORY
)) { // TODO: check more flags
1537 bool slow
= !(cmd
[0] & ISO15693_REQ_DATARATE_HIGH
);
1538 start_time
= eof_time
+ DELAY_ISO15693_VCD_TO_VICC_SIM
- DELAY_ARM_TO_READER_SIM
;
1539 TransmitTo15693Reader(ToSend
, ToSendMax
, &start_time
, 0, slow
);
1542 Dbprintf("%d bytes read from reader:", cmd_len
);
1543 Dbhexdump(cmd_len
, cmd
, false);
1546 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1551 // Since there is no standardized way of reading the AFI out of a tag, we will brute force it
1552 // (some manufactures offer a way to read the AFI, though)
1553 void BruteforceIso15693Afi(uint32_t speed
)
1559 uint8_t recv
[ISO15693_MAX_RESPONSE_LENGTH
];
1561 int datalen
=0, recvlen
=0;
1563 Iso15693InitReader();
1566 // first without AFI
1567 // Tags should respond without AFI and with AFI=0 even when AFI is active
1569 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_SLOT1
;
1570 data
[1] = ISO15693_INVENTORY
;
1571 data
[2] = 0; // mask length
1572 datalen
= Iso15693AddCrc(data
,3);
1573 recvlen
= SendDataTag(data
, datalen
, false, speed
, recv
, sizeof(recv
), 0);
1574 uint32_t start_time
= GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER
;
1577 Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL
, &recv
[2]));
1582 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_AFI
| ISO15693_REQINV_SLOT1
;
1583 data
[1] = ISO15693_INVENTORY
;
1585 data
[3] = 0; // mask length
1587 for (int i
= 0; i
< 256; i
++) {
1589 datalen
= Iso15693AddCrc(data
,4);
1590 recvlen
= SendDataTag(data
, datalen
, false, speed
, recv
, sizeof(recv
), start_time
);
1591 start_time
= GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER
;
1593 if (recvlen
>= 12) {
1594 Dbprintf("AFI=%i UID=%s", i
, Iso15693sprintUID(NULL
, &recv
[2]));
1597 Dbprintf("AFI Bruteforcing done.");
1599 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1603 // Allows to directly send commands to the tag via the client
1604 void DirectTag15693Command(uint32_t datalen
, uint32_t speed
, uint32_t recv
, uint8_t data
[]) {
1607 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1613 Dbhexdump(datalen
, data
, false);
1616 recvlen
= SendDataTag(data
, datalen
, true, speed
, (recv
?recvbuf
:NULL
), sizeof(recvbuf
), 0);
1621 Dbhexdump(recvlen
, recvbuf
, false);
1622 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1625 cmd_send(CMD_ACK
, recvlen
>ISO15693_MAX_RESPONSE_LENGTH
?ISO15693_MAX_RESPONSE_LENGTH
:recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1629 // for the time being, switch field off to protect rdv4.0
1630 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1631 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1637 //-----------------------------------------------------------------------------
1638 // Work with "magic Chinese" card.
1640 //-----------------------------------------------------------------------------
1642 // Set the UID to the tag (based on Iceman work).
1643 void SetTag15693Uid(uint8_t *uid
)
1645 uint8_t cmd
[4][9] = {0x00};
1650 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1654 // Command 1 : 02213E00000000
1663 // Command 2 : 02213F69960000
1672 // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
1681 // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
1690 for (int i
=0; i
<4; i
++) {
1692 crc
= Iso15693Crc(cmd
[i
], 7);
1693 cmd
[i
][7] = crc
& 0xff;
1694 cmd
[i
][8] = crc
>> 8;
1698 Dbhexdump(sizeof(cmd
[i
]), cmd
[i
], false);
1701 recvlen
= SendDataTag(cmd
[i
], sizeof(cmd
[i
]), true, 1, recvbuf
, sizeof(recvbuf
), 0);
1705 Dbhexdump(recvlen
, recvbuf
, false);
1706 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1709 cmd_send(CMD_ACK
, recvlen
>ISO15693_MAX_RESPONSE_LENGTH
?ISO15693_MAX_RESPONSE_LENGTH
:recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1719 // --------------------------------------------------------------------
1720 // -- Misc & deprecated functions
1721 // --------------------------------------------------------------------
1725 // do not use; has a fix UID
1726 static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
1731 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1732 // followed by the block data
1733 // one sub-carrier, inventory, 1 slot, fast rate
1734 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1735 // System Information command code
1737 // UID may be optionally specified here
1746 cmd[9]= 0xe0; // always e0 (not exactly unique)
1748 crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
1749 cmd[10] = crc & 0xff;
1752 CodeIso15693AsReader(cmd, sizeof(cmd));
1756 // do not use; has a fix UID
1757 static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
1762 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1763 // followed by the block data
1764 // one sub-carrier, inventory, 1 slot, fast rate
1765 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1766 // READ Multi BLOCK command code
1768 // UID may be optionally specified here
1777 cmd[9]= 0xe0; // always e0 (not exactly unique)
1778 // First Block number to read
1780 // Number of Blocks to read
1781 cmd[11] = 0x2f; // read quite a few
1783 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1784 cmd[12] = crc & 0xff;
1787 CodeIso15693AsReader(cmd, sizeof(cmd));
1790 // do not use; has a fix UID
1791 static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
1796 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1797 // followed by the block data
1798 // one sub-carrier, inventory, 1 slot, fast rate
1799 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1800 // READ BLOCK command code
1802 // UID may be optionally specified here
1811 cmd[9]= 0xe0; // always e0 (not exactly unique)
1817 // cmd[13] = 0x00; //Now the CRC
1818 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1819 cmd[12] = crc & 0xff;
1822 CodeIso15693AsReader(cmd, sizeof(cmd));
1825 // do not use; has a fix UID
1826 static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
1831 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1832 // followed by the block data
1833 // one sub-carrier, inventory, 1 slot, fast rate
1834 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1835 // READ BLOCK command code
1837 // UID may be optionally specified here
1846 cmd[9]= 0xe0; // always e0 (not exactly unique)
1848 cmd[10] = 0x05; // for custom codes this must be manufacturer code
1852 // cmd[13] = 0x00; //Now the CRC
1853 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1854 cmd[12] = crc & 0xff;
1857 CodeIso15693AsReader(cmd, sizeof(cmd));