]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso15693.c
888f6aaf0709fdba641a79009bf3fa47291026b8
[proxmark3-svn] / armsrc / iso15693.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 // Modified by Greg Jones, Jan 2009
4 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 15693. This includes both the reader software and
11 // the `fake tag' modes, but at the moment I've implemented only the reader
12 // stuff, and that barely.
13 // Modified to perform modulation onboard in arm rather than on PC
14 // Also added additional reader commands (SELECT, READ etc.)
15 //-----------------------------------------------------------------------------
16 // The ISO 15693 describes two transmission modes from reader to tag, and 4
17 // transmission modes from tag to reader. As of Mar 2010 this code only
18 // supports one of each: "1of4" mode from reader to tag, and the highspeed
19 // variant with one subcarrier from card to reader.
20 // As long, as the card fully support ISO 15693 this is no problem, since the
21 // reader chooses both data rates, but some non-standard tags do not. Further for
22 // the simulation to work, we will need to support all data rates.
23 //
24 // VCD (reader) -> VICC (tag)
25 // 1 out of 256:
26 // data rate: 1,66 kbit/s (fc/8192)
27 // used for long range
28 // 1 out of 4:
29 // data rate: 26,48 kbit/s (fc/512)
30 // used for short range, high speed
31 //
32 // VICC (tag) -> VCD (reader)
33 // Modulation:
34 // ASK / one subcarrier (423,75 khz)
35 // FSK / two subcarriers (423,75 khz && 484,28 khz)
36 // Data Rates / Modes:
37 // low ASK: 6,62 kbit/s
38 // low FSK: 6.67 kbit/s
39 // high ASK: 26,48 kbit/s
40 // high FSK: 26,69 kbit/s
41 //-----------------------------------------------------------------------------
42 // added "1 out of 256" mode (for VCD->PICC) - atrox 20100911
43
44
45 // Random Remarks:
46 // *) UID is always used "transmission order" (LSB), which is reverse to display order
47
48 // TODO / BUGS / ISSUES:
49 // *) writing to tags takes longer: we miss the answer from the tag in most cases
50 // -> tweak the read-timeout times
51 // *) signal decoding from the card is still a bit shaky.
52 // *) signal decoding is unable to detect collissions.
53 // *) add anti-collission support for inventory-commands
54 // *) read security status of a block
55 // *) sniffing and simulation do only support one transmission mode. need to support
56 // all 8 transmission combinations
57 // *) remove or refactor code under "depricated"
58 // *) document all the functions
59
60
61 #include "proxmark3.h"
62 #include "util.h"
63 #include "apps.h"
64 #include "string.h"
65 #include "iso15693tools.h"
66 #include "cmd.h"
67
68 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
69
70 ///////////////////////////////////////////////////////////////////////
71 // ISO 15693 Part 2 - Air Interface
72 // This section basicly contains transmission and receiving of bits
73 ///////////////////////////////////////////////////////////////////////
74
75 #define FrameSOF Iso15693FrameSOF
76 #define Logic0 Iso15693Logic0
77 #define Logic1 Iso15693Logic1
78 #define FrameEOF Iso15693FrameEOF
79
80 #define Crc(data,datalen) Iso15693Crc(data,datalen)
81 #define AddCrc(data,datalen) Iso15693AddCrc(data,datalen)
82 #define sprintUID(target,uid) Iso15693sprintUID(target,uid)
83
84 int DEBUG=0;
85
86
87 // ---------------------------
88 // Signal Processing
89 // ---------------------------
90
91 // prepare data using "1 out of 4" code for later transmission
92 // resulting data rate is 26,48 kbit/s (fc/512)
93 // cmd ... data
94 // n ... length of data
95 static void CodeIso15693AsReader(uint8_t *cmd, int n)
96 {
97 int i, j;
98
99 ToSendReset();
100
101 // Give it a bit of slack at the beginning
102 for(i = 0; i < 24; i++) {
103 ToSendStuffBit(1);
104 }
105
106 // SOF for 1of4
107 ToSendStuffBit(0);
108 ToSendStuffBit(1);
109 ToSendStuffBit(1);
110 ToSendStuffBit(1);
111 ToSendStuffBit(1);
112 ToSendStuffBit(0);
113 ToSendStuffBit(1);
114 ToSendStuffBit(1);
115 for(i = 0; i < n; i++) {
116 for(j = 0; j < 8; j += 2) {
117 int these = (cmd[i] >> j) & 3;
118 switch(these) {
119 case 0:
120 ToSendStuffBit(1);
121 ToSendStuffBit(0);
122 ToSendStuffBit(1);
123 ToSendStuffBit(1);
124 ToSendStuffBit(1);
125 ToSendStuffBit(1);
126 ToSendStuffBit(1);
127 ToSendStuffBit(1);
128 break;
129 case 1:
130 ToSendStuffBit(1);
131 ToSendStuffBit(1);
132 ToSendStuffBit(1);
133 ToSendStuffBit(0);
134 ToSendStuffBit(1);
135 ToSendStuffBit(1);
136 ToSendStuffBit(1);
137 ToSendStuffBit(1);
138 break;
139 case 2:
140 ToSendStuffBit(1);
141 ToSendStuffBit(1);
142 ToSendStuffBit(1);
143 ToSendStuffBit(1);
144 ToSendStuffBit(1);
145 ToSendStuffBit(0);
146 ToSendStuffBit(1);
147 ToSendStuffBit(1);
148 break;
149 case 3:
150 ToSendStuffBit(1);
151 ToSendStuffBit(1);
152 ToSendStuffBit(1);
153 ToSendStuffBit(1);
154 ToSendStuffBit(1);
155 ToSendStuffBit(1);
156 ToSendStuffBit(1);
157 ToSendStuffBit(0);
158 break;
159 }
160 }
161 }
162 // EOF
163 ToSendStuffBit(1);
164 ToSendStuffBit(1);
165 ToSendStuffBit(0);
166 ToSendStuffBit(1);
167
168 // And slack at the end, too.
169 for(i = 0; i < 24; i++) {
170 ToSendStuffBit(1);
171 }
172 }
173
174 // encode data using "1 out of 256" sheme
175 // data rate is 1,66 kbit/s (fc/8192)
176 // is designed for more robust communication over longer distances
177 static void CodeIso15693AsReader256(uint8_t *cmd, int n)
178 {
179 int i, j;
180
181 ToSendReset();
182
183 // Give it a bit of slack at the beginning
184 for(i = 0; i < 24; i++) {
185 ToSendStuffBit(1);
186 }
187
188 // SOF for 1of256
189 ToSendStuffBit(0);
190 ToSendStuffBit(1);
191 ToSendStuffBit(1);
192 ToSendStuffBit(1);
193 ToSendStuffBit(1);
194 ToSendStuffBit(1);
195 ToSendStuffBit(1);
196 ToSendStuffBit(0);
197
198 for(i = 0; i < n; i++) {
199 for (j = 0; j<=255; j++) {
200 if (cmd[i]==j) {
201 ToSendStuffBit(1);
202 ToSendStuffBit(0);
203 } else {
204 ToSendStuffBit(1);
205 ToSendStuffBit(1);
206 }
207 }
208 }
209 // EOF
210 ToSendStuffBit(1);
211 ToSendStuffBit(1);
212 ToSendStuffBit(0);
213 ToSendStuffBit(1);
214
215 // And slack at the end, too.
216 for(i = 0; i < 24; i++) {
217 ToSendStuffBit(1);
218 }
219 }
220
221
222 // Transmit the command (to the tag) that was placed in ToSend[].
223 static void TransmitTo15693Tag(const uint8_t *cmd, int len, int *samples, int *wait)
224 {
225 int c;
226
227 // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
228 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
229 if(*wait < 10) { *wait = 10; }
230
231 // for(c = 0; c < *wait;) {
232 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
233 // AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
234 // c++;
235 // }
236 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
237 // volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
238 // (void)r;
239 // }
240 // WDT_HIT();
241 // }
242
243 c = 0;
244 for(;;) {
245 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
246 AT91C_BASE_SSC->SSC_THR = cmd[c];
247 c++;
248 if(c >= len) {
249 break;
250 }
251 }
252 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
253 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
254 (void)r;
255 }
256 WDT_HIT();
257 }
258 *samples = (c + *wait) << 3;
259 }
260
261 //-----------------------------------------------------------------------------
262 // Transmit the command (to the reader) that was placed in ToSend[].
263 //-----------------------------------------------------------------------------
264 static void TransmitTo15693Reader(const uint8_t *cmd, int len, int *samples, int *wait)
265 {
266 int c = 0;
267 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
268 if(*wait < 10) { *wait = 10; }
269
270 for(;;) {
271 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
272 AT91C_BASE_SSC->SSC_THR = cmd[c];
273 c++;
274 if(c >= len) {
275 break;
276 }
277 }
278 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
279 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
280 (void)r;
281 }
282 WDT_HIT();
283 }
284 *samples = (c + *wait) << 3;
285 }
286
287
288 // Read from Tag
289 // Parameters:
290 // receivedResponse
291 // maxLen
292 // samples
293 // elapsed
294 // returns:
295 // number of decoded bytes
296 static int GetIso15693AnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed)
297 {
298 uint8_t *dest = BigBuf_get_addr();
299
300 int c = 0;
301 int getNext = FALSE;
302 int8_t prev = 0;
303
304 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
305 SpinDelay(100); // greg - experiment to get rid of some of the 0 byte/failed reads
306
307 for(;;) {
308 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
309 AT91C_BASE_SSC->SSC_THR = 0x43;
310
311 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
312 int8_t b;
313 b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
314
315 // The samples are correlations against I and Q versions of the
316 // tone that the tag AM-modulates, so every other sample is I,
317 // every other is Q. We just want power, so abs(I) + abs(Q) is
318 // close to what we want.
319 if(getNext) {
320 int8_t r;
321
322 r = ABS(b);
323
324 // if(b < 0) {
325 // r = -b;
326 // } else {
327 // r = b;
328 // }
329 // ABS(prev)
330 if(prev < 0) {
331 r -= prev;
332 } else {
333 r += prev;
334 }
335
336 dest[c++] = (uint8_t)r;
337
338 if(c >= 2000) {
339 break;
340 }
341 } else {
342 prev = b;
343 }
344
345 getNext = !getNext;
346 }
347 }
348
349 //////////////////////////////////////////
350 /////////// DEMODULATE ///////////////////
351 //////////////////////////////////////////
352
353 int i, j;
354 int max = 0, maxPos=0;
355
356 int skip = 4;
357
358 // if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL
359
360 // First, correlate for SOF
361 for(i = 0; i < 100; i++) {
362 int corr = 0;
363 for(j = 0; j < arraylen(FrameSOF); j += skip) {
364 corr += FrameSOF[j]*dest[i+(j/skip)];
365 }
366 if(corr > max) {
367 max = corr;
368 maxPos = i;
369 }
370 }
371 // DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));
372
373 int k = 0; // this will be our return value
374
375 // greg - If correlation is less than 1 then there's little point in continuing
376 if ((max/(arraylen(FrameSOF)/skip)) >= 1)
377 {
378
379 i = maxPos + arraylen(FrameSOF)/skip;
380
381 uint8_t outBuf[20];
382 memset(outBuf, 0, sizeof(outBuf));
383 uint8_t mask = 0x01;
384 for(;;) {
385 int corr0 = 0, corr1 = 0, corrEOF = 0;
386 for(j = 0; j < arraylen(Logic0); j += skip) {
387 corr0 += Logic0[j]*dest[i+(j/skip)];
388 }
389 for(j = 0; j < arraylen(Logic1); j += skip) {
390 corr1 += Logic1[j]*dest[i+(j/skip)];
391 }
392 for(j = 0; j < arraylen(FrameEOF); j += skip) {
393 corrEOF += FrameEOF[j]*dest[i+(j/skip)];
394 }
395 // Even things out by the length of the target waveform.
396 corr0 *= 4;
397 corr1 *= 4;
398
399 if(corrEOF > corr1 && corrEOF > corr0) {
400 // DbpString("EOF at %d", i);
401 break;
402 } else if(corr1 > corr0) {
403 i += arraylen(Logic1)/skip;
404 outBuf[k] |= mask;
405 } else {
406 i += arraylen(Logic0)/skip;
407 }
408 mask <<= 1;
409 if(mask == 0) {
410 k++;
411 mask = 0x01;
412 }
413 if((i+(int)arraylen(FrameEOF)) >= 2000) {
414 DbpString("ran off end!");
415 break;
416 }
417 }
418 if(mask != 0x01) { // this happens, when we miss the EOF
419 // TODO: for some reason this happens quite often
420 if (DEBUG) Dbprintf("error, uneven octet! (extra bits!) mask=%02x", mask);
421 if (mask<0x08) k--; // discard the last uneven octet;
422 // 0x08 is an assumption - but works quite often
423 }
424 // uint8_t str1 [8];
425 // itoa(k,str1);
426 // strncat(str1," octets read",8);
427
428 // DbpString( str1); // DbpString("%d octets", k);
429
430 // for(i = 0; i < k; i+=3) {
431 // //DbpString("# %2d: %02x ", i, outBuf[i]);
432 // DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);
433 // }
434
435 for(i = 0; i < k; i++) {
436 receivedResponse[i] = outBuf[i];
437 }
438 } // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip))
439 return k; // return the number of bytes demodulated
440
441 // DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));
442 }
443
444
445 // Now the GetISO15693 message from sniffing command
446 static int GetIso15693AnswerFromSniff(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed)
447 {
448 uint8_t *dest = BigBuf_get_addr();
449
450 int c = 0;
451 int getNext = FALSE;
452 int8_t prev = 0;
453
454 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
455 SpinDelay(100); // greg - experiment to get rid of some of the 0 byte/failed reads
456
457 for(;;) {
458 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
459 AT91C_BASE_SSC->SSC_THR = 0x43;
460
461 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
462 int8_t b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
463
464 // The samples are correlations against I and Q versions of the
465 // tone that the tag AM-modulates, so every other sample is I,
466 // every other is Q. We just want power, so abs(I) + abs(Q) is
467 // close to what we want.
468 if(getNext) {
469 int8_t r;
470
471 r = ABS(b);
472 // if(b < 0) {
473 // r = -b;
474 // } else {
475 // r = b;
476 // }
477 if(prev < 0) {
478 r -= prev;
479 } else {
480 r += prev;
481 }
482
483 dest[c++] = (uint8_t)r;
484
485 if(c >= 20000) {
486 break;
487 }
488 } else {
489 prev = b;
490 }
491
492 getNext = !getNext;
493 }
494 }
495
496 //////////////////////////////////////////
497 /////////// DEMODULATE ///////////////////
498 //////////////////////////////////////////
499
500 int i, j;
501 int max = 0, maxPos=0;
502
503 int skip = 4;
504
505 // if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL
506
507 // First, correlate for SOF
508 for(i = 0; i < 19000; i++) {
509 int corr = 0;
510 for(j = 0; j < arraylen(FrameSOF); j += skip) {
511 corr += FrameSOF[j]*dest[i+(j/skip)];
512 }
513 if(corr > max) {
514 max = corr;
515 maxPos = i;
516 }
517 }
518 // DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip));
519
520 int k = 0; // this will be our return value
521
522 // greg - If correlation is less than 1 then there's little point in continuing
523 if ((max/(arraylen(FrameSOF)/skip)) >= 1) // THIS SHOULD BE 1
524 {
525
526 i = maxPos + arraylen(FrameSOF)/skip;
527
528 uint8_t outBuf[20];
529 memset(outBuf, 0, sizeof(outBuf));
530 uint8_t mask = 0x01;
531 for(;;) {
532 int corr0 = 0, corr1 = 0, corrEOF = 0;
533 for(j = 0; j < arraylen(Logic0); j += skip) {
534 corr0 += Logic0[j]*dest[i+(j/skip)];
535 }
536 for(j = 0; j < arraylen(Logic1); j += skip) {
537 corr1 += Logic1[j]*dest[i+(j/skip)];
538 }
539 for(j = 0; j < arraylen(FrameEOF); j += skip) {
540 corrEOF += FrameEOF[j]*dest[i+(j/skip)];
541 }
542 // Even things out by the length of the target waveform.
543 corr0 *= 4;
544 corr1 *= 4;
545
546 if(corrEOF > corr1 && corrEOF > corr0) {
547 // DbpString("EOF at %d", i);
548 break;
549 } else if(corr1 > corr0) {
550 i += arraylen(Logic1)/skip;
551 outBuf[k] |= mask;
552 } else {
553 i += arraylen(Logic0)/skip;
554 }
555 mask <<= 1;
556 if(mask == 0) {
557 k++;
558 mask = 0x01;
559 }
560 if((i+(int)arraylen(FrameEOF)) >= 2000) {
561 DbpString("ran off end!");
562 break;
563 }
564 }
565 if(mask != 0x01) {
566 DbpString("sniff: error, uneven octet! (discard extra bits!)");
567 /// DbpString(" mask=%02x", mask);
568 }
569 // uint8_t str1 [8];
570 // itoa(k,str1);
571 // strncat(str1," octets read",8);
572
573 // DbpString( str1); // DbpString("%d octets", k);
574
575 // for(i = 0; i < k; i+=3) {
576 // //DbpString("# %2d: %02x ", i, outBuf[i]);
577 // DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]);
578 // }
579
580 for(i = 0; i < k; i++) {
581 receivedResponse[i] = outBuf[i];
582 }
583 } // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip))
584 return k; // return the number of bytes demodulated
585
586 /// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2));
587 }
588
589
590 static void BuildIdentifyRequest(void);
591 //-----------------------------------------------------------------------------
592 // Start to read an ISO 15693 tag. We send an identify request, then wait
593 // for the response. The response is not demodulated, just left in the buffer
594 // so that it can be downloaded to a PC and processed there.
595 //-----------------------------------------------------------------------------
596 void AcquireRawAdcSamplesIso15693(void)
597 {
598 uint8_t *dest = BigBuf_get_addr();
599
600 int c = 0;
601 int getNext = 0;
602 int8_t prev = 0;
603
604 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
605 BuildIdentifyRequest();
606
607 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
608
609 // Give the tags time to energize
610 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
611 SpinDelay(100);
612
613 // Now send the command
614 FpgaSetupSsc();
615 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
616
617 c = 0;
618 for(;;) {
619 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
620 AT91C_BASE_SSC->SSC_THR = ToSend[c];
621 c++;
622 if(c == ToSendMax+3) {
623 break;
624 }
625 }
626 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
627 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
628 (void)r;
629 }
630 WDT_HIT();
631 }
632
633 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
634
635 c = 0;
636 getNext = FALSE;
637 for(;;) {
638 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
639 AT91C_BASE_SSC->SSC_THR = 0x43;
640 }
641 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
642 int8_t b;
643 b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
644
645 // The samples are correlations against I and Q versions of the
646 // tone that the tag AM-modulates, so every other sample is I,
647 // every other is Q. We just want power, so abs(I) + abs(Q) is
648 // close to what we want.
649 if(getNext) {
650 int8_t r;
651
652 if(b < 0) {
653 r = -b;
654 } else {
655 r = b;
656 }
657 if(prev < 0) {
658 r -= prev;
659 } else {
660 r += prev;
661 }
662
663 dest[c++] = (uint8_t)r;
664
665 if(c >= 2000) {
666 break;
667 }
668 } else {
669 prev = b;
670 }
671
672 getNext = !getNext;
673 }
674 }
675 }
676
677
678 void RecordRawAdcSamplesIso15693(void)
679 {
680 uint8_t *dest = BigBuf_get_addr();
681
682 int c = 0;
683 int getNext = 0;
684 int8_t prev = 0;
685
686 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
687 // Setup SSC
688 FpgaSetupSsc();
689
690 // Start from off (no field generated)
691 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
692 SpinDelay(200);
693
694 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
695
696 SpinDelay(100);
697
698 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
699
700 c = 0;
701 getNext = FALSE;
702 for(;;) {
703 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
704 AT91C_BASE_SSC->SSC_THR = 0x43;
705 }
706 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
707 int8_t b;
708 b = (int8_t)AT91C_BASE_SSC->SSC_RHR;
709
710 // The samples are correlations against I and Q versions of the
711 // tone that the tag AM-modulates, so every other sample is I,
712 // every other is Q. We just want power, so abs(I) + abs(Q) is
713 // close to what we want.
714 if(getNext) {
715 int8_t r;
716
717 if(b < 0) {
718 r = -b;
719 } else {
720 r = b;
721 }
722 if(prev < 0) {
723 r -= prev;
724 } else {
725 r += prev;
726 }
727
728 dest[c++] = (uint8_t)r;
729
730 if(c >= 7000) {
731 break;
732 }
733 } else {
734 prev = b;
735 }
736
737 getNext = !getNext;
738 WDT_HIT();
739 }
740 }
741 Dbprintf("fin record");
742 }
743
744
745 // Initialize the proxmark as iso15k reader
746 // (this might produces glitches that confuse some tags
747 void Iso15693InitReader() {
748 LED_A_ON();
749 LED_B_ON();
750 LED_C_OFF();
751 LED_D_OFF();
752
753 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
754 // Setup SSC
755 // FpgaSetupSsc();
756
757 // Start from off (no field generated)
758 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
759 SpinDelay(10);
760
761 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
762 FpgaSetupSsc();
763
764 // Give the tags time to energize
765 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
766 SpinDelay(250);
767
768 LED_A_ON();
769 LED_B_OFF();
770 LED_C_OFF();
771 LED_D_OFF();
772 }
773
774 ///////////////////////////////////////////////////////////////////////
775 // ISO 15693 Part 3 - Air Interface
776 // This section basicly contains transmission and receiving of bits
777 ///////////////////////////////////////////////////////////////////////
778
779 // Encode (into the ToSend buffers) an identify request, which is the first
780 // thing that you must send to a tag to get a response.
781 static void BuildIdentifyRequest(void)
782 {
783 uint8_t cmd[5];
784
785 uint16_t crc;
786 // one sub-carrier, inventory, 1 slot, fast rate
787 // AFI is at bit 5 (1<<4) when doing an INVENTORY
788 cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);
789 // inventory command code
790 cmd[1] = 0x01;
791 // no mask
792 cmd[2] = 0x00;
793 //Now the CRC
794 crc = Crc(cmd, 3);
795 cmd[3] = crc & 0xff;
796 cmd[4] = crc >> 8;
797
798 CodeIso15693AsReader(cmd, sizeof(cmd));
799 }
800
801 // uid is in transmission order (which is reverse of display order)
802 static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber )
803 {
804 uint8_t cmd[13];
805
806 uint16_t crc;
807 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
808 // followed by teh block data
809 // one sub-carrier, inventory, 1 slot, fast rate
810 cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit, ADDR bit, OPTION bit
811 // READ BLOCK command code
812 cmd[1] = 0x20;
813 // UID may be optionally specified here
814 // 64-bit UID
815 cmd[2] = uid[0];
816 cmd[3] = uid[1];
817 cmd[4] = uid[2];
818 cmd[5] = uid[3];
819 cmd[6] = uid[4];
820 cmd[7] = uid[5];
821 cmd[8] = uid[6];
822 cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique)
823 // Block number to read
824 cmd[10] = blockNumber;//0x00;
825 //Now the CRC
826 crc = Crc(cmd, 11); // the crc needs to be calculated over 12 bytes
827 cmd[11] = crc & 0xff;
828 cmd[12] = crc >> 8;
829
830 CodeIso15693AsReader(cmd, sizeof(cmd));
831 }
832
833 // Now the VICC>VCD responses when we are simulating a tag
834 static void BuildInventoryResponse( uint8_t *uid)
835 {
836 uint8_t cmd[12];
837
838 uint16_t crc;
839 // one sub-carrier, inventory, 1 slot, fast rate
840 // AFI is at bit 5 (1<<4) when doing an INVENTORY
841 //(1 << 2) | (1 << 5) | (1 << 1);
842 cmd[0] = 0; //
843 cmd[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
844 // 64-bit UID
845 cmd[2] = uid[7]; //0x32;
846 cmd[3] = uid[6]; //0x4b;
847 cmd[4] = uid[5]; //0x03;
848 cmd[5] = uid[4]; //0x01;
849 cmd[6] = uid[3]; //0x00;
850 cmd[7] = uid[2]; //0x10;
851 cmd[8] = uid[1]; //0x05;
852 cmd[9] = uid[0]; //0xe0;
853 //Now the CRC
854 crc = Crc(cmd, 10);
855 cmd[10] = crc & 0xff;
856 cmd[11] = crc >> 8;
857
858 CodeIso15693AsReader(cmd, sizeof(cmd));
859 }
860
861 // Universal Method for sending to and recv bytes from a tag
862 // init ... should we initialize the reader?
863 // speed ... 0 low speed, 1 hi speed
864 // **recv will return you a pointer to the received data
865 // If you do not need the answer use NULL for *recv[]
866 // return: lenght of received data
867 int SendDataTag(uint8_t *send, int sendlen, int init, int speed, uint8_t **recv) {
868
869 int samples = 0;
870 int tsamples = 0;
871 int wait = 0;
872 int elapsed = 0;
873
874 LED_A_ON();
875 LED_B_ON();
876 LED_C_OFF();
877 LED_D_OFF();
878
879 if (init) Iso15693InitReader();
880
881 int answerLen=0;
882 uint8_t *answer = BigBuf_get_addr() + 3660;
883 if (recv != NULL) memset(answer, 0, 100);
884
885 if (!speed) {
886 // low speed (1 out of 256)
887 CodeIso15693AsReader256(send, sendlen);
888 } else {
889 // high speed (1 out of 4)
890 CodeIso15693AsReader(send, sendlen);
891 }
892
893 LED_A_ON();
894 LED_B_OFF();
895
896 TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);
897 // Now wait for a response
898 if (recv!=NULL) {
899 LED_A_OFF();
900 LED_B_ON();
901 answerLen = GetIso15693AnswerFromTag(answer, 100, &samples, &elapsed) ;
902 *recv=answer;
903 }
904
905 LEDsoff();
906
907 return answerLen;
908 }
909
910
911 // --------------------------------------------------------------------
912 // Debug Functions
913 // --------------------------------------------------------------------
914
915 // Decodes a message from a tag and displays its metadata and content
916 #define DBD15STATLEN 48
917 void DbdecodeIso15693Answer(int len, uint8_t *d) {
918 char status[DBD15STATLEN+1]={0};
919 uint16_t crc;
920
921 if (len>3) {
922 if (d[0]&(1<<3))
923 strncat(status,"ProtExt ",DBD15STATLEN);
924 if (d[0]&1) {
925 // error
926 strncat(status,"Error ",DBD15STATLEN);
927 switch (d[1]) {
928 case 0x01:
929 strncat(status,"01:notSupp",DBD15STATLEN);
930 break;
931 case 0x02:
932 strncat(status,"02:notRecog",DBD15STATLEN);
933 break;
934 case 0x03:
935 strncat(status,"03:optNotSupp",DBD15STATLEN);
936 break;
937 case 0x0f:
938 strncat(status,"0f:noInfo",DBD15STATLEN);
939 break;
940 case 0x10:
941 strncat(status,"10:dontExist",DBD15STATLEN);
942 break;
943 case 0x11:
944 strncat(status,"11:lockAgain",DBD15STATLEN);
945 break;
946 case 0x12:
947 strncat(status,"12:locked",DBD15STATLEN);
948 break;
949 case 0x13:
950 strncat(status,"13:progErr",DBD15STATLEN);
951 break;
952 case 0x14:
953 strncat(status,"14:lockErr",DBD15STATLEN);
954 break;
955 default:
956 strncat(status,"unknownErr",DBD15STATLEN);
957 }
958 strncat(status," ",DBD15STATLEN);
959 } else {
960 strncat(status,"NoErr ",DBD15STATLEN);
961 }
962
963 crc=Crc(d,len-2);
964 if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) )
965 strncat(status,"CrcOK",DBD15STATLEN);
966 else
967 strncat(status,"CrcFail!",DBD15STATLEN);
968
969 Dbprintf("%s",status);
970 }
971 }
972
973
974
975 ///////////////////////////////////////////////////////////////////////
976 // Functions called via USB/Client
977 ///////////////////////////////////////////////////////////////////////
978
979 void SetDebugIso15693(uint32_t debug) {
980 DEBUG=debug;
981 Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off");
982 return;
983 }
984
985
986
987 //-----------------------------------------------------------------------------
988 // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector
989 // all demodulation performed in arm rather than host. - greg
990 //-----------------------------------------------------------------------------
991 void ReaderIso15693(uint32_t parameter)
992 {
993 LED_A_ON();
994 LED_B_ON();
995 LED_C_OFF();
996 LED_D_OFF();
997
998 int answerLen1 = 0;
999 int answerLen2 = 0;
1000 int answerLen3 = 0;
1001 int i = 0;
1002 int samples = 0;
1003 int tsamples = 0;
1004 int wait = 0;
1005 int elapsed = 0;
1006 uint8_t TagUID[8] = {0x00};
1007
1008 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1009
1010 uint8_t *answer1 = BigBuf_get_addr() + 3660;
1011 uint8_t *answer2 = BigBuf_get_addr() + 3760;
1012 uint8_t *answer3 = BigBuf_get_addr() + 3860;
1013 // Blank arrays
1014 memset(answer1, 0x00, 300);
1015
1016 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1017 // Setup SSC
1018 FpgaSetupSsc();
1019
1020 // Start from off (no field generated)
1021 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1022 SpinDelay(200);
1023
1024 // Give the tags time to energize
1025 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
1026 SpinDelay(200);
1027
1028 LED_A_ON();
1029 LED_B_OFF();
1030 LED_C_OFF();
1031 LED_D_OFF();
1032
1033 // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
1034 // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
1035
1036 // Now send the IDENTIFY command
1037 BuildIdentifyRequest();
1038
1039 TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);
1040
1041 // Now wait for a response
1042 answerLen1 = GetIso15693AnswerFromTag(answer1, 100, &samples, &elapsed) ;
1043
1044 if (answerLen1 >=12) // we should do a better check than this
1045 {
1046 TagUID[0] = answer1[2];
1047 TagUID[1] = answer1[3];
1048 TagUID[2] = answer1[4];
1049 TagUID[3] = answer1[5];
1050 TagUID[4] = answer1[6];
1051 TagUID[5] = answer1[7];
1052 TagUID[6] = answer1[8]; // IC Manufacturer code
1053 TagUID[7] = answer1[9]; // always E0
1054
1055 }
1056
1057 Dbprintf("%d octets read from IDENTIFY request:", answerLen1);
1058 DbdecodeIso15693Answer(answerLen1,answer1);
1059 Dbhexdump(answerLen1,answer1,true);
1060
1061 // UID is reverse
1062 if (answerLen1>=12)
1063 Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
1064 TagUID[7],TagUID[6],TagUID[5],TagUID[4],
1065 TagUID[3],TagUID[2],TagUID[1],TagUID[0]);
1066
1067
1068 Dbprintf("%d octets read from SELECT request:", answerLen2);
1069 DbdecodeIso15693Answer(answerLen2,answer2);
1070 Dbhexdump(answerLen2,answer2,true);
1071
1072 Dbprintf("%d octets read from XXX request:", answerLen3);
1073 DbdecodeIso15693Answer(answerLen3,answer3);
1074 Dbhexdump(answerLen3,answer3,true);
1075
1076 // read all pages
1077 if (answerLen1>=12 && DEBUG) {
1078 i=0;
1079 while (i<32) { // sanity check, assume max 32 pages
1080 BuildReadBlockRequest(TagUID,i);
1081 TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait);
1082 answerLen2 = GetIso15693AnswerFromTag(answer2, 100, &samples, &elapsed);
1083 if (answerLen2>0) {
1084 Dbprintf("READ SINGLE BLOCK %d returned %d octets:",i,answerLen2);
1085 DbdecodeIso15693Answer(answerLen2,answer2);
1086 Dbhexdump(answerLen2,answer2,true);
1087 if ( *((uint32_t*) answer2) == 0x07160101 ) break; // exit on NoPageErr
1088 }
1089 i++;
1090 }
1091 }
1092
1093 LED_A_OFF();
1094 LED_B_OFF();
1095 LED_C_OFF();
1096 LED_D_OFF();
1097 }
1098
1099 // Simulate an ISO15693 TAG, perform anti-collision and then print any reader commands
1100 // all demodulation performed in arm rather than host. - greg
1101 void SimTagIso15693(uint32_t parameter, uint8_t *uid)
1102 {
1103 LED_A_ON();
1104 LED_B_ON();
1105 LED_C_OFF();
1106 LED_D_OFF();
1107
1108 int answerLen1 = 0;
1109 int samples = 0;
1110 int tsamples = 0;
1111 int wait = 0;
1112 int elapsed = 0;
1113
1114 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1115
1116 uint8_t *buf = BigBuf_get_addr() + 3660;
1117 memset(buf, 0x00, 100);
1118
1119 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1120 FpgaSetupSsc();
1121
1122 // Start from off (no field generated)
1123 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1124 SpinDelay(200);
1125
1126 LED_A_OFF();
1127 LED_B_OFF();
1128 LED_C_ON();
1129 LED_D_OFF();
1130
1131 // Listen to reader
1132 answerLen1 = GetIso15693AnswerFromSniff(buf, 100, &samples, &elapsed) ;
1133
1134 if (answerLen1 >=1) // we should do a better check than this
1135 {
1136 // Build a suitable reponse to the reader INVENTORY cocmmand
1137 // not so obsvious, but in the call to BuildInventoryResponse, the command is copied to the global ToSend buffer used below.
1138
1139 BuildInventoryResponse(uid);
1140
1141 TransmitTo15693Reader(ToSend,ToSendMax, &tsamples, &wait);
1142 }
1143
1144 Dbprintf("%d octets read from reader command: %x %x %x %x %x %x %x %x %x", answerLen1,
1145 buf[0], buf[1], buf[2], buf[3],
1146 buf[4], buf[5], buf[6], buf[7], buf[8]);
1147
1148 Dbprintf("Simulationg uid: %x %x %x %x %x %x %x %x",
1149 uid[0], uid[1], uid[2], uid[3],
1150 uid[4], uid[5], uid[6], uid[7]);
1151
1152 LED_A_OFF();
1153 LED_B_OFF();
1154 LED_C_OFF();
1155 LED_D_OFF();
1156 }
1157
1158
1159 // Since there is no standardized way of reading the AFI out of a tag, we will brute force it
1160 // (some manufactures offer a way to read the AFI, though)
1161 void BruteforceIso15693Afi(uint32_t speed)
1162 {
1163 uint8_t data[20];
1164 uint8_t *recv=data;
1165 int datalen=0, recvlen=0;
1166
1167 Iso15693InitReader();
1168
1169 // first without AFI
1170 // Tags should respond wihtout AFI and with AFI=0 even when AFI is active
1171
1172 data[0]=ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH |
1173 ISO15_REQ_INVENTORY | ISO15_REQINV_SLOT1;
1174 data[1]=ISO15_CMD_INVENTORY;
1175 data[2]=0; // mask length
1176 datalen=AddCrc(data,3);
1177 recvlen=SendDataTag(data,datalen,0,speed,&recv);
1178 WDT_HIT();
1179 if (recvlen>=12) {
1180 Dbprintf("NoAFI UID=%s",sprintUID(NULL,&recv[2]));
1181 }
1182
1183 // now with AFI
1184
1185 data[0]=ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH |
1186 ISO15_REQ_INVENTORY | ISO15_REQINV_AFI | ISO15_REQINV_SLOT1;
1187 data[1]=ISO15_CMD_INVENTORY;
1188 data[2]=0; // AFI
1189 data[3]=0; // mask length
1190
1191 for (int i=0;i<256;i++) {
1192 data[2]=i & 0xFF;
1193 datalen=AddCrc(data,4);
1194 recvlen=SendDataTag(data,datalen,0,speed,&recv);
1195 WDT_HIT();
1196 if (recvlen>=12) {
1197 Dbprintf("AFI=%i UID=%s",i,sprintUID(NULL,&recv[2]));
1198 }
1199 }
1200 Dbprintf("AFI Bruteforcing done.");
1201
1202 }
1203
1204 // Allows to directly send commands to the tag via the client
1205 void DirectTag15693Command(uint32_t datalen,uint32_t speed, uint32_t recv, uint8_t data[]) {
1206
1207 int recvlen=0;
1208 uint8_t *recvbuf = BigBuf_get_addr();
1209 // UsbCommand n;
1210
1211 if (DEBUG) {
1212 Dbprintf("SEND");
1213 Dbhexdump(datalen,data,true);
1214 }
1215
1216 recvlen=SendDataTag(data,datalen,1,speed,(recv?&recvbuf:NULL));
1217
1218 if (recv) {
1219 LED_B_ON();
1220 cmd_send(CMD_ACK,recvlen>48?48:recvlen,0,0,recvbuf,48);
1221 LED_B_OFF();
1222
1223 if (DEBUG) {
1224 Dbprintf("RECV");
1225 DbdecodeIso15693Answer(recvlen,recvbuf);
1226 Dbhexdump(recvlen,recvbuf,true);
1227 }
1228 }
1229
1230 }
1231
1232
1233
1234
1235 // --------------------------------------------------------------------
1236 // -- Misc & deprecated functions
1237 // --------------------------------------------------------------------
1238
1239 /*
1240
1241 // do not use; has a fix UID
1242 static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
1243 {
1244 uint8_t cmd[12];
1245
1246 uint16_t crc;
1247 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
1248 // followed by teh block data
1249 // one sub-carrier, inventory, 1 slot, fast rate
1250 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1251 // System Information command code
1252 cmd[1] = 0x2B;
1253 // UID may be optionally specified here
1254 // 64-bit UID
1255 cmd[2] = 0x32;
1256 cmd[3]= 0x4b;
1257 cmd[4] = 0x03;
1258 cmd[5] = 0x01;
1259 cmd[6] = 0x00;
1260 cmd[7] = 0x10;
1261 cmd[8] = 0x05;
1262 cmd[9]= 0xe0; // always e0 (not exactly unique)
1263 //Now the CRC
1264 crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
1265 cmd[10] = crc & 0xff;
1266 cmd[11] = crc >> 8;
1267
1268 CodeIso15693AsReader(cmd, sizeof(cmd));
1269 }
1270
1271
1272 // do not use; has a fix UID
1273 static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
1274 {
1275 uint8_t cmd[14];
1276
1277 uint16_t crc;
1278 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
1279 // followed by teh block data
1280 // one sub-carrier, inventory, 1 slot, fast rate
1281 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1282 // READ Multi BLOCK command code
1283 cmd[1] = 0x23;
1284 // UID may be optionally specified here
1285 // 64-bit UID
1286 cmd[2] = 0x32;
1287 cmd[3]= 0x4b;
1288 cmd[4] = 0x03;
1289 cmd[5] = 0x01;
1290 cmd[6] = 0x00;
1291 cmd[7] = 0x10;
1292 cmd[8] = 0x05;
1293 cmd[9]= 0xe0; // always e0 (not exactly unique)
1294 // First Block number to read
1295 cmd[10] = 0x00;
1296 // Number of Blocks to read
1297 cmd[11] = 0x2f; // read quite a few
1298 //Now the CRC
1299 crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1300 cmd[12] = crc & 0xff;
1301 cmd[13] = crc >> 8;
1302
1303 CodeIso15693AsReader(cmd, sizeof(cmd));
1304 }
1305
1306 // do not use; has a fix UID
1307 static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
1308 {
1309 uint8_t cmd[14];
1310
1311 uint16_t crc;
1312 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
1313 // followed by teh block data
1314 // one sub-carrier, inventory, 1 slot, fast rate
1315 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1316 // READ BLOCK command code
1317 cmd[1] = CmdCode;
1318 // UID may be optionally specified here
1319 // 64-bit UID
1320 cmd[2] = 0x32;
1321 cmd[3]= 0x4b;
1322 cmd[4] = 0x03;
1323 cmd[5] = 0x01;
1324 cmd[6] = 0x00;
1325 cmd[7] = 0x10;
1326 cmd[8] = 0x05;
1327 cmd[9]= 0xe0; // always e0 (not exactly unique)
1328 // Parameter
1329 cmd[10] = 0x00;
1330 cmd[11] = 0x0a;
1331
1332 // cmd[12] = 0x00;
1333 // cmd[13] = 0x00; //Now the CRC
1334 crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1335 cmd[12] = crc & 0xff;
1336 cmd[13] = crc >> 8;
1337
1338 CodeIso15693AsReader(cmd, sizeof(cmd));
1339 }
1340
1341 // do not use; has a fix UID
1342 static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
1343 {
1344 uint8_t cmd[14];
1345
1346 uint16_t crc;
1347 // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
1348 // followed by teh block data
1349 // one sub-carrier, inventory, 1 slot, fast rate
1350 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1351 // READ BLOCK command code
1352 cmd[1] = CmdCode;
1353 // UID may be optionally specified here
1354 // 64-bit UID
1355 cmd[2] = 0x32;
1356 cmd[3]= 0x4b;
1357 cmd[4] = 0x03;
1358 cmd[5] = 0x01;
1359 cmd[6] = 0x00;
1360 cmd[7] = 0x10;
1361 cmd[8] = 0x05;
1362 cmd[9]= 0xe0; // always e0 (not exactly unique)
1363 // Parameter
1364 cmd[10] = 0x05; // for custom codes this must be manufcturer code
1365 cmd[11] = 0x00;
1366
1367 // cmd[12] = 0x00;
1368 // cmd[13] = 0x00; //Now the CRC
1369 crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1370 cmd[12] = crc & 0xff;
1371 cmd[13] = crc >> 8;
1372
1373 CodeIso15693AsReader(cmd, sizeof(cmd));
1374 }
1375
1376
1377
1378
1379 */
1380
1381
Impressum, Datenschutz