]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
8be02778d8809213400a52e8b52bf5933e0aed53
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "printf.h"
17 #include "string.h"
18
19 #include <stdarg.h>
20
21 #include "legicrf.h"
22
23 #ifdef WITH_LCD
24 # include "fonts.h"
25 # include "LCD.h"
26 #endif
27
28 #define abs(x) ( ((x)<0) ? -(x) : (x) )
29
30 //=============================================================================
31 // A buffer where we can queue things up to be sent through the FPGA, for
32 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
33 // is the order in which they go out on the wire.
34 //=============================================================================
35
36 uint8_t ToSend[512];
37 int ToSendMax;
38 static int ToSendBit;
39 struct common_area common_area __attribute__((section(".commonarea")));
40
41 void BufferClear(void)
42 {
43 memset(BigBuf,0,sizeof(BigBuf));
44 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
45 }
46
47 void ToSendReset(void)
48 {
49 ToSendMax = -1;
50 ToSendBit = 8;
51 }
52
53 void ToSendStuffBit(int b)
54 {
55 if(ToSendBit >= 8) {
56 ToSendMax++;
57 ToSend[ToSendMax] = 0;
58 ToSendBit = 0;
59 }
60
61 if(b) {
62 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
63 }
64
65 ToSendBit++;
66
67 if(ToSendBit >= sizeof(ToSend)) {
68 ToSendBit = 0;
69 DbpString("ToSendStuffBit overflowed!");
70 }
71 }
72
73 //=============================================================================
74 // Debug print functions, to go out over USB, to the usual PC-side client.
75 //=============================================================================
76
77 void DbpString(char *str)
78 {
79 /* this holds up stuff unless we're connected to usb */
80 if (!UsbConnected())
81 return;
82
83 UsbCommand c;
84 c.cmd = CMD_DEBUG_PRINT_STRING;
85 c.arg[0] = strlen(str);
86 if(c.arg[0] > sizeof(c.d.asBytes)) {
87 c.arg[0] = sizeof(c.d.asBytes);
88 }
89 memcpy(c.d.asBytes, str, c.arg[0]);
90
91 UsbSendPacket((uint8_t *)&c, sizeof(c));
92 // TODO fix USB so stupid things like this aren't req'd
93 SpinDelay(50);
94 }
95
96 #if 0
97 void DbpIntegers(int x1, int x2, int x3)
98 {
99 /* this holds up stuff unless we're connected to usb */
100 if (!UsbConnected())
101 return;
102
103 UsbCommand c;
104 c.cmd = CMD_DEBUG_PRINT_INTEGERS;
105 c.arg[0] = x1;
106 c.arg[1] = x2;
107 c.arg[2] = x3;
108
109 UsbSendPacket((uint8_t *)&c, sizeof(c));
110 // XXX
111 SpinDelay(50);
112 }
113 #endif
114
115 void Dbprintf(const char *fmt, ...) {
116 // should probably limit size here; oh well, let's just use a big buffer
117 char output_string[128];
118 va_list ap;
119
120 va_start(ap, fmt);
121 kvsprintf(fmt, output_string, 10, ap);
122 va_end(ap);
123
124 DbpString(output_string);
125 }
126
127 // prints HEX & ASCII
128 void Dbhexdump(int len, uint8_t *d) {
129 int l=0,i;
130 char ascii[9];
131
132 while (len>0) {
133 if (len>8) l=8;
134 else l=len;
135
136 memcpy(ascii,d,l);
137 ascii[l]=0;
138
139 // filter safe ascii
140 for (i=0;i<l;i++)
141 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
142
143 Dbprintf("%-8s %*D",ascii,l,d," ");
144
145 len-=8;
146 d+=8;
147 }
148 }
149
150 //-----------------------------------------------------------------------------
151 // Read an ADC channel and block till it completes, then return the result
152 // in ADC units (0 to 1023). Also a routine to average 32 samples and
153 // return that.
154 //-----------------------------------------------------------------------------
155 static int ReadAdc(int ch)
156 {
157 uint32_t d;
158
159 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
160 AT91C_BASE_ADC->ADC_MR =
161 ADC_MODE_PRESCALE(32) |
162 ADC_MODE_STARTUP_TIME(16) |
163 ADC_MODE_SAMPLE_HOLD_TIME(8);
164 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
165
166 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
167 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
168 ;
169 d = AT91C_BASE_ADC->ADC_CDR[ch];
170
171 return d;
172 }
173
174 static int AvgAdc(int ch)
175 {
176 int i;
177 int a = 0;
178
179 for(i = 0; i < 32; i++) {
180 a += ReadAdc(ch);
181 }
182
183 return (a + 15) >> 5;
184 }
185
186 void MeasureAntennaTuning(void)
187 {
188 uint8_t *dest = (uint8_t *)BigBuf;
189 int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;
190 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
191
192 UsbCommand c;
193
194 DbpString("Measuring antenna characteristics, please wait.");
195 memset(BigBuf,0,sizeof(BigBuf));
196
197 /*
198 * Sweeps the useful LF range of the proxmark from
199 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
200 * read the voltage in the antenna, the result left
201 * in the buffer is a graph which should clearly show
202 * the resonating frequency of your LF antenna
203 * ( hopefully around 95 if it is tuned to 125kHz!)
204 */
205 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
206 for (i=255; i>19; i--) {
207 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
208 SpinDelay(20);
209 // Vref = 3.3V, and a 10000:240 voltage divider on the input
210 // can measure voltages up to 137500 mV
211 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
212 if (i==95) vLf125 = adcval; // voltage at 125Khz
213 if (i==89) vLf134 = adcval; // voltage at 134Khz
214
215 dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes
216 if(dest[i] > peak) {
217 peakv = adcval;
218 peak = dest[i];
219 peakf = i;
220 ptr = i;
221 }
222 }
223
224 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
225 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
226 SpinDelay(20);
227 // Vref = 3300mV, and an 10:1 voltage divider on the input
228 // can measure voltages up to 33000 mV
229 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
230
231 c.cmd = CMD_MEASURED_ANTENNA_TUNING;
232 c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
233 c.arg[1] = vHf;
234 c.arg[2] = peakf | (peakv << 16);
235 UsbSendPacket((uint8_t *)&c, sizeof(c));
236 }
237
238 void MeasureAntennaTuningHf(void)
239 {
240 int vHf = 0; // in mV
241
242 DbpString("Measuring HF antenna, press button to exit");
243
244 for (;;) {
245 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
246 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
247 SpinDelay(20);
248 // Vref = 3300mV, and an 10:1 voltage divider on the input
249 // can measure voltages up to 33000 mV
250 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
251
252 Dbprintf("%d mV",vHf);
253 if (BUTTON_PRESS()) break;
254 }
255 DbpString("cancelled");
256 }
257
258
259 void SimulateTagHfListen(void)
260 {
261 uint8_t *dest = (uint8_t *)BigBuf;
262 int n = sizeof(BigBuf);
263 uint8_t v = 0;
264 int i;
265 int p = 0;
266
267 // We're using this mode just so that I can test it out; the simulated
268 // tag mode would work just as well and be simpler.
269 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
270
271 // We need to listen to the high-frequency, peak-detected path.
272 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
273
274 FpgaSetupSsc();
275
276 i = 0;
277 for(;;) {
278 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
279 AT91C_BASE_SSC->SSC_THR = 0xff;
280 }
281 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
282 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
283
284 v <<= 1;
285 if(r & 1) {
286 v |= 1;
287 }
288 p++;
289
290 if(p >= 8) {
291 dest[i] = v;
292 v = 0;
293 p = 0;
294 i++;
295
296 if(i >= n) {
297 break;
298 }
299 }
300 }
301 }
302 DbpString("simulate tag (now type bitsamples)");
303 }
304
305 void ReadMem(int addr)
306 {
307 const uint8_t *data = ((uint8_t *)addr);
308
309 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
310 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
311 }
312
313 /* osimage version information is linked in */
314 extern struct version_information version_information;
315 /* bootrom version information is pointed to from _bootphase1_version_pointer */
316 extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
317 void SendVersion(void)
318 {
319 char temp[48]; /* Limited data payload in USB packets */
320 DbpString("Prox/RFID mark3 RFID instrument");
321
322 /* Try to find the bootrom version information. Expect to find a pointer at
323 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
324 * pointer, then use it.
325 */
326 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
327 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
328 DbpString("bootrom version information appears invalid");
329 } else {
330 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
331 DbpString(temp);
332 }
333
334 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
335 DbpString(temp);
336
337 FpgaGatherVersion(temp, sizeof(temp));
338 DbpString(temp);
339 }
340
341 #ifdef WITH_LF
342 // samy's sniff and repeat routine
343 void SamyRun()
344 {
345 DbpString("Stand-alone mode! No PC necessary.");
346
347 // 3 possible options? no just 2 for now
348 #define OPTS 2
349
350 int high[OPTS], low[OPTS];
351
352 // Oooh pretty -- notify user we're in elite samy mode now
353 LED(LED_RED, 200);
354 LED(LED_ORANGE, 200);
355 LED(LED_GREEN, 200);
356 LED(LED_ORANGE, 200);
357 LED(LED_RED, 200);
358 LED(LED_ORANGE, 200);
359 LED(LED_GREEN, 200);
360 LED(LED_ORANGE, 200);
361 LED(LED_RED, 200);
362
363 int selected = 0;
364 int playing = 0;
365
366 // Turn on selected LED
367 LED(selected + 1, 0);
368
369 for (;;)
370 {
371 UsbPoll(FALSE);
372 WDT_HIT();
373
374 // Was our button held down or pressed?
375 int button_pressed = BUTTON_HELD(1000);
376 SpinDelay(300);
377
378 // Button was held for a second, begin recording
379 if (button_pressed > 0)
380 {
381 LEDsoff();
382 LED(selected + 1, 0);
383 LED(LED_RED2, 0);
384
385 // record
386 DbpString("Starting recording");
387
388 // wait for button to be released
389 while(BUTTON_PRESS())
390 WDT_HIT();
391
392 /* need this delay to prevent catching some weird data */
393 SpinDelay(500);
394
395 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
396 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
397
398 LEDsoff();
399 LED(selected + 1, 0);
400 // Finished recording
401
402 // If we were previously playing, set playing off
403 // so next button push begins playing what we recorded
404 playing = 0;
405 }
406
407 // Change where to record (or begin playing)
408 else if (button_pressed)
409 {
410 // Next option if we were previously playing
411 if (playing)
412 selected = (selected + 1) % OPTS;
413 playing = !playing;
414
415 LEDsoff();
416 LED(selected + 1, 0);
417
418 // Begin transmitting
419 if (playing)
420 {
421 LED(LED_GREEN, 0);
422 DbpString("Playing");
423 // wait for button to be released
424 while(BUTTON_PRESS())
425 WDT_HIT();
426 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
427 CmdHIDsimTAG(high[selected], low[selected], 0);
428 DbpString("Done playing");
429 if (BUTTON_HELD(1000) > 0)
430 {
431 DbpString("Exiting");
432 LEDsoff();
433 return;
434 }
435
436 /* We pressed a button so ignore it here with a delay */
437 SpinDelay(300);
438
439 // when done, we're done playing, move to next option
440 selected = (selected + 1) % OPTS;
441 playing = !playing;
442 LEDsoff();
443 LED(selected + 1, 0);
444 }
445 else
446 while(BUTTON_PRESS())
447 WDT_HIT();
448 }
449 }
450 }
451 #endif
452
453 /*
454 OBJECTIVE
455 Listen and detect an external reader. Determine the best location
456 for the antenna.
457
458 INSTRUCTIONS:
459 Inside the ListenReaderField() function, there is two mode.
460 By default, when you call the function, you will enter mode 1.
461 If you press the PM3 button one time, you will enter mode 2.
462 If you press the PM3 button a second time, you will exit the function.
463
464 DESCRIPTION OF MODE 1:
465 This mode just listens for an external reader field and lights up green
466 for HF and/or red for LF. This is the original mode of the detectreader
467 function.
468
469 DESCRIPTION OF MODE 2:
470 This mode will visually represent, using the LEDs, the actual strength of the
471 current compared to the maximum current detected. Basically, once you know
472 what kind of external reader is present, it will help you spot the best location to place
473 your antenna. You will probably not get some good results if there is a LF and a HF reader
474 at the same place! :-)
475
476 LIGHT SCHEME USED:
477 */
478 static const char LIGHT_SCHEME[] = {
479 0x0, /* ---- | No field detected */
480 0x1, /* X--- | 14% of maximum current detected */
481 0x2, /* -X-- | 29% of maximum current detected */
482 0x4, /* --X- | 43% of maximum current detected */
483 0x8, /* ---X | 57% of maximum current detected */
484 0xC, /* --XX | 71% of maximum current detected */
485 0xE, /* -XXX | 86% of maximum current detected */
486 0xF, /* XXXX | 100% of maximum current detected */
487 };
488 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
489
490 void ListenReaderField(int limit)
491 {
492 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
493 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
494 int mode=1, display_val, display_max, i;
495
496 #define LF_ONLY 1
497 #define HF_ONLY 2
498
499 LEDsoff();
500
501 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
502
503 if(limit != HF_ONLY) {
504 Dbprintf("LF 125/134 Baseline: %d", lf_av);
505 lf_baseline = lf_av;
506 }
507
508 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
509
510 if (limit != LF_ONLY) {
511 Dbprintf("HF 13.56 Baseline: %d", hf_av);
512 hf_baseline = hf_av;
513 }
514
515 for(;;) {
516 if (BUTTON_PRESS()) {
517 SpinDelay(500);
518 switch (mode) {
519 case 1:
520 mode=2;
521 DbpString("Signal Strength Mode");
522 break;
523 case 2:
524 default:
525 DbpString("Stopped");
526 LEDsoff();
527 return;
528 break;
529 }
530 }
531 WDT_HIT();
532
533 if (limit != HF_ONLY) {
534 if(mode==1) {
535 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
536 else LED_D_OFF();
537 }
538
539 ++lf_count;
540 lf_av_new= ReadAdc(ADC_CHAN_LF);
541 // see if there's a significant change
542 if(abs(lf_av - lf_av_new) > 10) {
543 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
544 lf_av = lf_av_new;
545 if (lf_av > lf_max)
546 lf_max = lf_av;
547 lf_count= 0;
548 }
549 }
550
551 if (limit != LF_ONLY) {
552 if (mode == 1){
553 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
554 else LED_B_OFF();
555 }
556
557 ++hf_count;
558 hf_av_new= ReadAdc(ADC_CHAN_HF);
559 // see if there's a significant change
560 if(abs(hf_av - hf_av_new) > 10) {
561 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
562 hf_av = hf_av_new;
563 if (hf_av > hf_max)
564 hf_max = hf_av;
565 hf_count= 0;
566 }
567 }
568
569 if(mode == 2) {
570 if (limit == LF_ONLY) {
571 display_val = lf_av;
572 display_max = lf_max;
573 } else if (limit == HF_ONLY) {
574 display_val = hf_av;
575 display_max = hf_max;
576 } else { /* Pick one at random */
577 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
578 display_val = hf_av;
579 display_max = hf_max;
580 } else {
581 display_val = lf_av;
582 display_max = lf_max;
583 }
584 }
585 for (i=0; i<LIGHT_LEN; i++) {
586 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
587 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
588 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
589 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
590 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
591 break;
592 }
593 }
594 }
595 }
596 }
597
598 void UsbPacketReceived(uint8_t *packet, int len)
599 {
600 UsbCommand *c = (UsbCommand *)packet;
601 UsbCommand ack;
602 ack.cmd = CMD_ACK;
603
604 switch(c->cmd) {
605 #ifdef WITH_LF
606 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
607 AcquireRawAdcSamples125k(c->arg[0]);
608 UsbSendPacket((uint8_t*)&ack, sizeof(ack));
609 break;
610 #endif
611
612 #ifdef WITH_LF
613 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
614 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
615 break;
616 #endif
617
618 #ifdef WITH_ISO15693
619 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
620 AcquireRawAdcSamplesIso15693();
621 break;
622 #endif
623
624 #ifdef WITH_ISO15693
625 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
626 RecordRawAdcSamplesIso15693();
627 break;
628
629 case CMD_ISO_15693_COMMAND:
630 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
631 break;
632
633 case CMD_ISO_15693_FIND_AFI:
634 BruteforceIso15693Afi(c->arg[0]);
635 break;
636
637 case CMD_ISO_15693_DEBUG:
638 SetDebugIso15693(c->arg[0]);
639 break;
640
641 #endif
642 case CMD_BUFF_CLEAR:
643 BufferClear();
644 break;
645
646 #ifdef WITH_ISO15693
647 case CMD_READER_ISO_15693:
648 ReaderIso15693(c->arg[0]);
649 break;
650 #endif
651
652 case CMD_SIMULATE_TAG_LEGIC_RF:
653 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
654 break;
655
656 case CMD_WRITER_LEGIC_RF:
657 LegicRfWriter(c->arg[1], c->arg[0]);
658 break;
659
660 case CMD_READER_LEGIC_RF:
661 LegicRfReader(c->arg[0], c->arg[1]);
662 break;
663
664 #ifdef WITH_ISO15693
665 case CMD_SIMTAG_ISO_15693:
666 SimTagIso15693(c->arg[0]);
667 break;
668 #endif
669
670 #ifdef WITH_ISO14443b
671 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
672 AcquireRawAdcSamplesIso14443(c->arg[0]);
673 break;
674 #endif
675
676 #ifdef WITH_ISO14443b
677 case CMD_READ_SRI512_TAG:
678 ReadSRI512Iso14443(c->arg[0]);
679 break;
680 case CMD_READ_SRIX4K_TAG:
681 ReadSRIX4KIso14443(c->arg[0]);
682 break;
683 #endif
684
685 #ifdef WITH_ISO14443a
686 case CMD_READER_ISO_14443a:
687 ReaderIso14443a(c, &ack);
688 break;
689 #endif
690
691 #ifdef WITH_ISO14443a
692 case CMD_READER_MIFARE:
693 ReaderMifare(c->arg[0]);
694 break;
695 #endif
696
697 #ifdef WITH_ISO14443a
698 case CMD_MIFARE_READBL:
699 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
700 break;
701 case CMD_MIFARE_READSC:
702 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
703 break;
704 case CMD_MIFARE_WRITEBL:
705 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
706 break;
707 case CMD_MIFARE_NESTED:
708 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
709 break;
710 case CMD_SIMULATE_MIFARE_CARD:
711 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
712 break;
713
714 #endif
715
716 #ifdef WITH_ISO14443b
717 case CMD_SNOOP_ISO_14443:
718 SnoopIso14443();
719 break;
720 #endif
721
722 #ifdef WITH_ISO14443a
723 case CMD_SNOOP_ISO_14443a:
724 SnoopIso14443a();
725 break;
726 #endif
727
728 #ifdef WITH_ISO14443a
729 // Makes use of ISO14443a FPGA Firmware
730 case CMD_SNOOP_ICLASS:
731 SnoopIClass();
732 break;
733 #endif
734
735 case CMD_SIMULATE_TAG_HF_LISTEN:
736 SimulateTagHfListen();
737 break;
738
739 #ifdef WITH_ISO14443b
740 case CMD_SIMULATE_TAG_ISO_14443:
741 SimulateIso14443Tag();
742 break;
743 #endif
744
745 #ifdef WITH_ISO14443a
746 case CMD_SIMULATE_TAG_ISO_14443a:
747 SimulateIso14443aTag(c->arg[0], c->arg[1]); // ## Simulate iso14443a tag - pass tag type & UID
748 break;
749 #endif
750
751 case CMD_MEASURE_ANTENNA_TUNING:
752 MeasureAntennaTuning();
753 break;
754
755 case CMD_MEASURE_ANTENNA_TUNING_HF:
756 MeasureAntennaTuningHf();
757 break;
758
759 case CMD_LISTEN_READER_FIELD:
760 ListenReaderField(c->arg[0]);
761 break;
762
763 #ifdef WITH_LF
764 case CMD_HID_DEMOD_FSK:
765 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
766 break;
767 #endif
768
769 #ifdef WITH_LF
770 case CMD_HID_SIM_TAG:
771 CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
772 break;
773 #endif
774
775 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
776 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
777 SpinDelay(200);
778 LED_D_OFF(); // LED D indicates field ON or OFF
779 break;
780
781 #ifdef WITH_LF
782 case CMD_READ_TI_TYPE:
783 ReadTItag();
784 break;
785 #endif
786
787 #ifdef WITH_LF
788 case CMD_WRITE_TI_TYPE:
789 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
790 break;
791 #endif
792
793 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
794 UsbCommand n;
795 if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
796 n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
797 } else {
798 n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
799 }
800 n.arg[0] = c->arg[0];
801 memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(uint32_t));
802 LED_B_ON();
803 UsbSendPacket((uint8_t *)&n, sizeof(n));
804 LED_B_OFF();
805 break;
806 }
807
808 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
809 uint8_t *b = (uint8_t *)BigBuf;
810 memcpy(b+c->arg[0], c->d.asBytes, 48);
811 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
812 UsbSendPacket((uint8_t*)&ack, sizeof(ack));
813 break;
814 }
815
816 #ifdef WITH_LF
817 case CMD_SIMULATE_TAG_125K:
818 LED_A_ON();
819 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
820 LED_A_OFF();
821 break;
822 #endif
823
824 case CMD_READ_MEM:
825 ReadMem(c->arg[0]);
826 break;
827
828 case CMD_SET_LF_DIVISOR:
829 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
830 break;
831
832 case CMD_SET_ADC_MUX:
833 switch(c->arg[0]) {
834 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
835 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
836 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
837 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
838 }
839 break;
840
841 case CMD_VERSION:
842 SendVersion();
843 break;
844
845 #ifdef WITH_LF
846 case CMD_LF_SIMULATE_BIDIR:
847 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
848 break;
849 #endif
850
851 #ifdef WITH_LCD
852 case CMD_LCD_RESET:
853 LCDReset();
854 break;
855 case CMD_LCD:
856 LCDSend(c->arg[0]);
857 break;
858 #endif
859 case CMD_SETUP_WRITE:
860 case CMD_FINISH_WRITE:
861 case CMD_HARDWARE_RESET:
862 USB_D_PLUS_PULLUP_OFF();
863 SpinDelay(1000);
864 SpinDelay(1000);
865 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
866 for(;;) {
867 // We're going to reset, and the bootrom will take control.
868 }
869 break;
870
871 case CMD_START_FLASH:
872 if(common_area.flags.bootrom_present) {
873 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
874 }
875 USB_D_PLUS_PULLUP_OFF();
876 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
877 for(;;);
878 break;
879
880 case CMD_DEVICE_INFO: {
881 UsbCommand c;
882 c.cmd = CMD_DEVICE_INFO;
883 c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
884 if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
885 UsbSendPacket((uint8_t*)&c, sizeof(c));
886 }
887 break;
888 default:
889 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
890 break;
891 }
892 }
893
894 void __attribute__((noreturn)) AppMain(void)
895 {
896 SpinDelay(100);
897
898 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
899 /* Initialize common area */
900 memset(&common_area, 0, sizeof(common_area));
901 common_area.magic = COMMON_AREA_MAGIC;
902 common_area.version = 1;
903 }
904 common_area.flags.osimage_present = 1;
905
906 LED_D_OFF();
907 LED_C_OFF();
908 LED_B_OFF();
909 LED_A_OFF();
910
911 UsbStart();
912
913 // The FPGA gets its clock from us from PCK0 output, so set that up.
914 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
915 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
916 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
917 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
918 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
919 AT91C_PMC_PRES_CLK_4;
920 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
921
922 // Reset SPI
923 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
924 // Reset SSC
925 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
926
927 // Load the FPGA image, which we have stored in our flash.
928 FpgaDownloadAndGo();
929
930 #ifdef WITH_LCD
931
932 LCDInit();
933
934 // test text on different colored backgrounds
935 LCDString(" The quick brown fox ", (char *)&FONT6x8,1,1+8*0,WHITE ,BLACK );
936 LCDString(" jumped over the ", (char *)&FONT6x8,1,1+8*1,BLACK ,WHITE );
937 LCDString(" lazy dog. ", (char *)&FONT6x8,1,1+8*2,YELLOW ,RED );
938 LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8,1,1+8*3,RED ,GREEN );
939 LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE );
940 LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8,1,1+8*5,BLUE ,YELLOW);
941 LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8,1,1+8*6,BLACK ,CYAN );
942 LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
943
944 // color bands
945 LCDFill(0, 1+8* 8, 132, 8, BLACK);
946 LCDFill(0, 1+8* 9, 132, 8, WHITE);
947 LCDFill(0, 1+8*10, 132, 8, RED);
948 LCDFill(0, 1+8*11, 132, 8, GREEN);
949 LCDFill(0, 1+8*12, 132, 8, BLUE);
950 LCDFill(0, 1+8*13, 132, 8, YELLOW);
951 LCDFill(0, 1+8*14, 132, 8, CYAN);
952 LCDFill(0, 1+8*15, 132, 8, MAGENTA);
953
954 #endif
955
956 for(;;) {
957 UsbPoll(FALSE);
958 WDT_HIT();
959
960 #ifdef WITH_LF
961 if (BUTTON_HELD(1000) > 0)
962 SamyRun();
963 #endif
964 }
965 }
Impressum, Datenschutz