]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
8c4b45f57ea7f1adb5ed0aa7396ce5b713096d94
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26 #include "lfsampling.h"
27 #include "BigBuf.h"
28 #include "mifareutil.h"
29 #ifdef WITH_LCD
30 #include "LCD.h"
31 #endif
32
33 // Craig Young - 14a stand-alone code
34 #ifdef WITH_ISO14443a_StandAlone
35 #include "iso14443a.h"
36 #endif
37
38 #define abs(x) ( ((x)<0) ? -(x) : (x) )
39
40 //=============================================================================
41 // A buffer where we can queue things up to be sent through the FPGA, for
42 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
43 // is the order in which they go out on the wire.
44 //=============================================================================
45
46 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
47 uint8_t ToSend[TOSEND_BUFFER_SIZE];
48 int ToSendMax = 0;
49 static int ToSendBit;
50 struct common_area common_area __attribute__((section(".commonarea")));
51
52 void ToSendReset(void)
53 {
54 ToSendMax = -1;
55 ToSendBit = 8;
56 }
57
58 void ToSendStuffBit(int b)
59 {
60 if(ToSendBit >= 8) {
61 ToSendMax++;
62 ToSend[ToSendMax] = 0;
63 ToSendBit = 0;
64 }
65
66 if(b) {
67 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
68 }
69
70 ToSendBit++;
71
72 if(ToSendMax >= sizeof(ToSend)) {
73 ToSendBit = 0;
74 DbpString("ToSendStuffBit overflowed!");
75 }
76 }
77
78 //=============================================================================
79 // Debug print functions, to go out over USB, to the usual PC-side client.
80 //=============================================================================
81
82 void DbpString(char *str)
83 {
84 byte_t len = strlen(str);
85 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
86 }
87
88 #if 0
89 void DbpIntegers(int x1, int x2, int x3)
90 {
91 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
92 }
93 #endif
94
95 void Dbprintf(const char *fmt, ...) {
96 // should probably limit size here; oh well, let's just use a big buffer
97 char output_string[128];
98 va_list ap;
99
100 va_start(ap, fmt);
101 kvsprintf(fmt, output_string, 10, ap);
102 va_end(ap);
103
104 DbpString(output_string);
105 }
106
107 // prints HEX & ASCII
108 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
109 int l=0,i;
110 char ascii[9];
111
112 while (len>0) {
113 if (len>8) l=8;
114 else l=len;
115
116 memcpy(ascii,d,l);
117 ascii[l]=0;
118
119 // filter safe ascii
120 for (i=0;i<l;i++)
121 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
122
123 if (bAsci) {
124 Dbprintf("%-8s %*D",ascii,l,d," ");
125 } else {
126 Dbprintf("%*D",l,d," ");
127 }
128
129 len-=8;
130 d+=8;
131 }
132 }
133
134 //-----------------------------------------------------------------------------
135 // Read an ADC channel and block till it completes, then return the result
136 // in ADC units (0 to 1023). Also a routine to average 32 samples and
137 // return that.
138 //-----------------------------------------------------------------------------
139 static int ReadAdc(int ch)
140 {
141 uint32_t d;
142
143 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
144 AT91C_BASE_ADC->ADC_MR =
145 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
146 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
147 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
148
149 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
150 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
151 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
152 //
153 // The maths are:
154 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
155 //
156 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
157 //
158 // Note: with the "historic" values in the comments above, the error was 34% !!!
159
160 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
161
162 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
163
164 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
165 ;
166 d = AT91C_BASE_ADC->ADC_CDR[ch];
167
168 return d;
169 }
170
171 int AvgAdc(int ch) // was static - merlok
172 {
173 int i;
174 int a = 0;
175
176 for(i = 0; i < 32; i++) {
177 a += ReadAdc(ch);
178 }
179
180 return (a + 15) >> 5;
181 }
182
183 void MeasureAntennaTuning(void)
184 {
185 uint8_t LF_Results[256];
186 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
187 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
188
189 LED_B_ON();
190
191 /*
192 * Sweeps the useful LF range of the proxmark from
193 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
194 * read the voltage in the antenna, the result left
195 * in the buffer is a graph which should clearly show
196 * the resonating frequency of your LF antenna
197 * ( hopefully around 95 if it is tuned to 125kHz!)
198 */
199
200 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
202 for (i=255; i>=19; i--) {
203 WDT_HIT();
204 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
205 SpinDelay(20);
206 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
207 if (i==95) vLf125 = adcval; // voltage at 125Khz
208 if (i==89) vLf134 = adcval; // voltage at 134Khz
209
210 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
211 if(LF_Results[i] > peak) {
212 peakv = adcval;
213 peak = LF_Results[i];
214 peakf = i;
215 //ptr = i;
216 }
217 }
218
219 for (i=18; i >= 0; i--) LF_Results[i] = 0;
220
221 LED_A_ON();
222 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
223 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
224 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
225 SpinDelay(20);
226 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
227
228 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
230 LED_A_OFF();
231 LED_B_OFF();
232 return;
233 }
234
235 void MeasureAntennaTuningHf(void)
236 {
237 int vHf = 0; // in mV
238
239 DbpString("Measuring HF antenna, press button to exit");
240
241 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
242 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
243 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
244
245 for (;;) {
246 SpinDelay(20);
247 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
248
249 Dbprintf("%d mV",vHf);
250 if (BUTTON_PRESS()) break;
251 }
252 DbpString("cancelled");
253
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
255
256 }
257
258
259 void ReadMem(int addr)
260 {
261 const uint8_t *data = ((uint8_t *)addr);
262
263 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
264 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
265 }
266
267 /* osimage version information is linked in */
268 extern struct version_information version_information;
269 /* bootrom version information is pointed to from _bootphase1_version_pointer */
270 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
271 void SendVersion(void)
272 {
273 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
274 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
275
276 /* Try to find the bootrom version information. Expect to find a pointer at
277 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
278 * pointer, then use it.
279 */
280 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
281 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
282 strcat(VersionString, "bootrom version information appears invalid\n");
283 } else {
284 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
285 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
286 }
287
288 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
289 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
290
291 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
292 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
294 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
295
296 // Send Chip ID and used flash memory
297 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
298 uint32_t compressed_data_section_size = common_area.arg1;
299 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
300 }
301
302 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
303 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
304 void printUSBSpeed(void)
305 {
306 Dbprintf("USB Speed:");
307 Dbprintf(" Sending USB packets to client...");
308
309 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
310 uint8_t *test_data = BigBuf_get_addr();
311 uint32_t end_time;
312
313 uint32_t start_time = end_time = GetTickCount();
314 uint32_t bytes_transferred = 0;
315
316 LED_B_ON();
317 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
318 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
319 end_time = GetTickCount();
320 bytes_transferred += USB_CMD_DATA_SIZE;
321 }
322 LED_B_OFF();
323
324 Dbprintf(" Time elapsed: %dms", end_time - start_time);
325 Dbprintf(" Bytes transferred: %d", bytes_transferred);
326 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
327 1000 * bytes_transferred / (end_time - start_time));
328
329 }
330
331 /**
332 * Prints runtime information about the PM3.
333 **/
334 void SendStatus(void)
335 {
336 BigBuf_print_status();
337 Fpga_print_status();
338 printConfig(); //LF Sampling config
339 printUSBSpeed();
340 Dbprintf("Various");
341 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
342 Dbprintf(" ToSendMax..........%d", ToSendMax);
343 Dbprintf(" ToSendBit..........%d", ToSendBit);
344 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
345
346 cmd_send(CMD_ACK,1,0,0,0,0);
347 }
348
349 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
350
351 #define OPTS 2
352
353 void StandAloneMode()
354 {
355 DbpString("Stand-alone mode! No PC necessary.");
356 // Oooh pretty -- notify user we're in elite samy mode now
357 LED(LED_RED, 200);
358 LED(LED_ORANGE, 200);
359 LED(LED_GREEN, 200);
360 LED(LED_ORANGE, 200);
361 LED(LED_RED, 200);
362 LED(LED_ORANGE, 200);
363 LED(LED_GREEN, 200);
364 LED(LED_ORANGE, 200);
365 LED(LED_RED, 200);
366
367 }
368
369 #endif
370
371
372
373 #ifdef WITH_ISO14443a_StandAlone
374 void StandAloneMode14a()
375 {
376 StandAloneMode();
377 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
378
379 int selected = 0;
380 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
381 int cardRead[OPTS] = {0};
382 uint8_t readUID[10] = {0};
383 uint32_t uid_1st[OPTS]={0};
384 uint32_t uid_2nd[OPTS]={0};
385 uint32_t uid_tmp1 = 0;
386 uint32_t uid_tmp2 = 0;
387 iso14a_card_select_t hi14a_card[OPTS];
388
389 LED(selected + 1, 0);
390
391 for (;;)
392 {
393 usb_poll();
394 WDT_HIT();
395 SpinDelay(300);
396
397 if (iGotoRecord == 1 || cardRead[selected] == 0)
398 {
399 iGotoRecord = 0;
400 LEDsoff();
401 LED(selected + 1, 0);
402 LED(LED_RED2, 0);
403
404 // record
405 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
406 /* need this delay to prevent catching some weird data */
407 SpinDelay(500);
408 /* Code for reading from 14a tag */
409 uint8_t uid[10] ={0};
410 uint32_t cuid;
411 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
412
413 for ( ; ; )
414 {
415 WDT_HIT();
416 if (BUTTON_PRESS()) {
417 if (cardRead[selected]) {
418 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
419 break;
420 }
421 else if (cardRead[(selected+1)%OPTS]) {
422 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
423 selected = (selected+1)%OPTS;
424 break; // playing = 1;
425 }
426 else {
427 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
428 SpinDelay(300);
429 }
430 }
431 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid))
432 continue;
433 else
434 {
435 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
436 memcpy(readUID,uid,10*sizeof(uint8_t));
437 uint8_t *dst = (uint8_t *)&uid_tmp1;
438 // Set UID byte order
439 for (int i=0; i<4; i++)
440 dst[i] = uid[3-i];
441 dst = (uint8_t *)&uid_tmp2;
442 for (int i=0; i<4; i++)
443 dst[i] = uid[7-i];
444 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
445 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
446 }
447 else {
448 if (uid_tmp2) {
449 Dbprintf("Bank[%d] received a 7-byte UID",selected);
450 uid_1st[selected] = (uid_tmp1)>>8;
451 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
452 }
453 else {
454 Dbprintf("Bank[%d] received a 4-byte UID",selected);
455 uid_1st[selected] = uid_tmp1;
456 uid_2nd[selected] = uid_tmp2;
457 }
458 break;
459 }
460 }
461 }
462 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
463 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
464 LEDsoff();
465 LED(LED_GREEN, 200);
466 LED(LED_ORANGE, 200);
467 LED(LED_GREEN, 200);
468 LED(LED_ORANGE, 200);
469
470 LEDsoff();
471 LED(selected + 1, 0);
472
473 // Next state is replay:
474 playing = 1;
475
476 cardRead[selected] = 1;
477 }
478 /* MF Classic UID clone */
479 else if (iGotoClone==1)
480 {
481 iGotoClone=0;
482 LEDsoff();
483 LED(selected + 1, 0);
484 LED(LED_ORANGE, 250);
485
486
487 // record
488 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
489
490 // wait for button to be released
491 while(BUTTON_PRESS())
492 {
493 // Delay cloning until card is in place
494 WDT_HIT();
495 }
496 Dbprintf("Starting clone. [Bank: %u]", selected);
497 // need this delay to prevent catching some weird data
498 SpinDelay(500);
499 // Begin clone function here:
500 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
501 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
502 memcpy(c.d.asBytes, data, 16);
503 SendCommand(&c);
504
505 Block read is similar:
506 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
507 We need to imitate that call with blockNo 0 to set a uid.
508
509 The get and set commands are handled in this file:
510 // Work with "magic Chinese" card
511 case CMD_MIFARE_CSETBLOCK:
512 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
513 break;
514 case CMD_MIFARE_CGETBLOCK:
515 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
516 break;
517
518 mfCSetUID provides example logic for UID set workflow:
519 -Read block0 from card in field with MifareCGetBlock()
520 -Configure new values without replacing reserved bytes
521 memcpy(block0, uid, 4); // Copy UID bytes from byte array
522 // Mifare UID BCC
523 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
524 Bytes 5-7 are reserved SAK and ATQA for mifare classic
525 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
526 */
527 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
528 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
529 MifareCGetBlock(0x3F, 1, 0, oldBlock0);
530 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
531 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
532 playing = 1;
533 }
534 else {
535 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
536 memcpy(newBlock0,oldBlock0,16);
537 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
538
539 newBlock0[0] = uid_1st[selected]>>24;
540 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
541 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
542 newBlock0[3] = 0xFF & (uid_1st[selected]);
543 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
544 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
545 MifareCSetBlock(0, 0xFF,0, newBlock0);
546 MifareCGetBlock(0x3F, 1, 0, testBlock0);
547 if (memcmp(testBlock0,newBlock0,16)==0)
548 {
549 DbpString("Cloned successfull!");
550 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
551 playing = 0;
552 iGotoRecord = 1;
553 selected = (selected + 1) % OPTS;
554 }
555 else {
556 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
557 playing = 1;
558 }
559 }
560 LEDsoff();
561 LED(selected + 1, 0);
562
563 }
564 // Change where to record (or begin playing)
565 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
566 {
567 LEDsoff();
568 LED(selected + 1, 0);
569
570 // Begin transmitting
571 if (playing)
572 {
573 LED(LED_GREEN, 0);
574 DbpString("Playing");
575 for ( ; ; ) {
576 WDT_HIT();
577 int button_action = BUTTON_HELD(1000);
578 if (button_action == 0) { // No button action, proceed with sim
579 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
580 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
581 num_to_bytes(uid_1st[selected], 3, data);
582 num_to_bytes(uid_2nd[selected], 4, data);
583
584 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
585 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
586 DbpString("Mifare Classic");
587 SimulateIso14443aTag(1, flags, data); // Mifare Classic
588 }
589 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
590 DbpString("Mifare Ultralight");
591 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
592 }
593 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
594 DbpString("Mifare DESFire");
595 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
596 }
597 else {
598 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
599 SimulateIso14443aTag(1, flags, data);
600 }
601 }
602 else if (button_action == BUTTON_SINGLE_CLICK) {
603 selected = (selected + 1) % OPTS;
604 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
605 iGotoRecord = 1;
606 break;
607 }
608 else if (button_action == BUTTON_HOLD) {
609 Dbprintf("Playtime over. Begin cloning...");
610 iGotoClone = 1;
611 break;
612 }
613 WDT_HIT();
614 }
615
616 /* We pressed a button so ignore it here with a delay */
617 SpinDelay(300);
618 LEDsoff();
619 LED(selected + 1, 0);
620 }
621 else
622 while(BUTTON_PRESS())
623 WDT_HIT();
624 }
625 }
626 }
627 #elif WITH_LF
628 // samy's sniff and repeat routine
629 void SamyRun()
630 {
631 StandAloneMode();
632 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
633
634 int high[OPTS], low[OPTS];
635 int selected = 0;
636 int playing = 0;
637 int cardRead = 0;
638
639 // Turn on selected LED
640 LED(selected + 1, 0);
641
642 for (;;)
643 {
644 usb_poll();
645 WDT_HIT();
646
647 // Was our button held down or pressed?
648 int button_pressed = BUTTON_HELD(1000);
649 SpinDelay(300);
650
651 // Button was held for a second, begin recording
652 if (button_pressed > 0 && cardRead == 0)
653 {
654 LEDsoff();
655 LED(selected + 1, 0);
656 LED(LED_RED2, 0);
657
658 // record
659 DbpString("Starting recording");
660
661 // wait for button to be released
662 while(BUTTON_PRESS())
663 WDT_HIT();
664
665 /* need this delay to prevent catching some weird data */
666 SpinDelay(500);
667
668 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
669 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
670
671 LEDsoff();
672 LED(selected + 1, 0);
673 // Finished recording
674
675 // If we were previously playing, set playing off
676 // so next button push begins playing what we recorded
677 playing = 0;
678
679 cardRead = 1;
680
681 }
682
683 else if (button_pressed > 0 && cardRead == 1)
684 {
685 LEDsoff();
686 LED(selected + 1, 0);
687 LED(LED_ORANGE, 0);
688
689 // record
690 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
691
692 // wait for button to be released
693 while(BUTTON_PRESS())
694 WDT_HIT();
695
696 /* need this delay to prevent catching some weird data */
697 SpinDelay(500);
698
699 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
700 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
701
702 LEDsoff();
703 LED(selected + 1, 0);
704 // Finished recording
705
706 // If we were previously playing, set playing off
707 // so next button push begins playing what we recorded
708 playing = 0;
709
710 cardRead = 0;
711
712 }
713
714 // Change where to record (or begin playing)
715 else if (button_pressed)
716 {
717 // Next option if we were previously playing
718 if (playing)
719 selected = (selected + 1) % OPTS;
720 playing = !playing;
721
722 LEDsoff();
723 LED(selected + 1, 0);
724
725 // Begin transmitting
726 if (playing)
727 {
728 LED(LED_GREEN, 0);
729 DbpString("Playing");
730 // wait for button to be released
731 while(BUTTON_PRESS())
732 WDT_HIT();
733 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
734 CmdHIDsimTAG(high[selected], low[selected], 0);
735 DbpString("Done playing");
736 if (BUTTON_HELD(1000) > 0)
737 {
738 DbpString("Exiting");
739 LEDsoff();
740 return;
741 }
742
743 /* We pressed a button so ignore it here with a delay */
744 SpinDelay(300);
745
746 // when done, we're done playing, move to next option
747 selected = (selected + 1) % OPTS;
748 playing = !playing;
749 LEDsoff();
750 LED(selected + 1, 0);
751 }
752 else
753 while(BUTTON_PRESS())
754 WDT_HIT();
755 }
756 }
757 }
758
759 #endif
760 /*
761 OBJECTIVE
762 Listen and detect an external reader. Determine the best location
763 for the antenna.
764
765 INSTRUCTIONS:
766 Inside the ListenReaderField() function, there is two mode.
767 By default, when you call the function, you will enter mode 1.
768 If you press the PM3 button one time, you will enter mode 2.
769 If you press the PM3 button a second time, you will exit the function.
770
771 DESCRIPTION OF MODE 1:
772 This mode just listens for an external reader field and lights up green
773 for HF and/or red for LF. This is the original mode of the detectreader
774 function.
775
776 DESCRIPTION OF MODE 2:
777 This mode will visually represent, using the LEDs, the actual strength of the
778 current compared to the maximum current detected. Basically, once you know
779 what kind of external reader is present, it will help you spot the best location to place
780 your antenna. You will probably not get some good results if there is a LF and a HF reader
781 at the same place! :-)
782
783 LIGHT SCHEME USED:
784 */
785 static const char LIGHT_SCHEME[] = {
786 0x0, /* ---- | No field detected */
787 0x1, /* X--- | 14% of maximum current detected */
788 0x2, /* -X-- | 29% of maximum current detected */
789 0x4, /* --X- | 43% of maximum current detected */
790 0x8, /* ---X | 57% of maximum current detected */
791 0xC, /* --XX | 71% of maximum current detected */
792 0xE, /* -XXX | 86% of maximum current detected */
793 0xF, /* XXXX | 100% of maximum current detected */
794 };
795 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
796
797 void ListenReaderField(int limit)
798 {
799 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
800 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
801 int mode=1, display_val, display_max, i;
802
803 #define LF_ONLY 1
804 #define HF_ONLY 2
805 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
806
807
808 // switch off FPGA - we don't want to measure our own signal
809 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
810 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
811
812 LEDsoff();
813
814 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
815
816 if(limit != HF_ONLY) {
817 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
818 lf_baseline = lf_av;
819 }
820
821 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
822
823 if (limit != LF_ONLY) {
824 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
825 hf_baseline = hf_av;
826 }
827
828 for(;;) {
829 if (BUTTON_PRESS()) {
830 SpinDelay(500);
831 switch (mode) {
832 case 1:
833 mode=2;
834 DbpString("Signal Strength Mode");
835 break;
836 case 2:
837 default:
838 DbpString("Stopped");
839 LEDsoff();
840 return;
841 break;
842 }
843 }
844 WDT_HIT();
845
846 if (limit != HF_ONLY) {
847 if(mode == 1) {
848 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
849 LED_D_ON();
850 else
851 LED_D_OFF();
852 }
853
854 lf_av_new = AvgAdc(ADC_CHAN_LF);
855 // see if there's a significant change
856 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
857 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
858 lf_av = lf_av_new;
859 if (lf_av > lf_max)
860 lf_max = lf_av;
861 }
862 }
863
864 if (limit != LF_ONLY) {
865 if (mode == 1){
866 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
867 LED_B_ON();
868 else
869 LED_B_OFF();
870 }
871
872 hf_av_new = AvgAdc(ADC_CHAN_HF);
873 // see if there's a significant change
874 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
875 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
876 hf_av = hf_av_new;
877 if (hf_av > hf_max)
878 hf_max = hf_av;
879 }
880 }
881
882 if(mode == 2) {
883 if (limit == LF_ONLY) {
884 display_val = lf_av;
885 display_max = lf_max;
886 } else if (limit == HF_ONLY) {
887 display_val = hf_av;
888 display_max = hf_max;
889 } else { /* Pick one at random */
890 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
891 display_val = hf_av;
892 display_max = hf_max;
893 } else {
894 display_val = lf_av;
895 display_max = lf_max;
896 }
897 }
898 for (i=0; i<LIGHT_LEN; i++) {
899 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
900 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
901 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
902 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
903 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
904 break;
905 }
906 }
907 }
908 }
909 }
910
911 void UsbPacketReceived(uint8_t *packet, int len)
912 {
913 UsbCommand *c = (UsbCommand *)packet;
914
915 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
916
917 switch(c->cmd) {
918 #ifdef WITH_LF
919 case CMD_SET_LF_SAMPLING_CONFIG:
920 setSamplingConfig((sample_config *) c->d.asBytes);
921 break;
922 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
923 cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
924 break;
925 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
926 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
927 break;
928 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
929 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
930 break;
931 case CMD_HID_DEMOD_FSK:
932 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
933 break;
934 case CMD_HID_SIM_TAG:
935 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
936 break;
937 case CMD_FSK_SIM_TAG:
938 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
939 break;
940 case CMD_ASK_SIM_TAG:
941 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
942 break;
943 case CMD_PSK_SIM_TAG:
944 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
945 break;
946 case CMD_HID_CLONE_TAG:
947 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
948 break;
949 case CMD_IO_DEMOD_FSK:
950 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
951 break;
952 case CMD_IO_CLONE_TAG:
953 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
954 break;
955 case CMD_EM410X_DEMOD:
956 CmdEM410xdemod(c->arg[0], 0, 0, 1);
957 break;
958 case CMD_EM410X_WRITE_TAG:
959 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
960 break;
961 case CMD_READ_TI_TYPE:
962 ReadTItag();
963 break;
964 case CMD_WRITE_TI_TYPE:
965 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
966 break;
967 case CMD_SIMULATE_TAG_125K:
968 LED_A_ON();
969 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
970 LED_A_OFF();
971 break;
972 case CMD_LF_SIMULATE_BIDIR:
973 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
974 break;
975 case CMD_INDALA_CLONE_TAG:
976 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
977 break;
978 case CMD_INDALA_CLONE_TAG_L:
979 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
980 break;
981 case CMD_T55XX_READ_BLOCK:
982 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
983 break;
984 case CMD_T55XX_WRITE_BLOCK:
985 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
986 cmd_send(CMD_ACK,0,0,0,0,0);
987 break;
988 case CMD_T55XX_READ_TRACE:
989 T55xxReadTrace();
990 break;
991 case CMD_PCF7931_READ:
992 ReadPCF7931();
993 cmd_send(CMD_ACK,0,0,0,0,0);
994 break;
995 case CMD_EM4X_READ_WORD:
996 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
997 break;
998 case CMD_EM4X_WRITE_WORD:
999 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
1000 break;
1001 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1002 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
1003 break;
1004 case CMD_VIKING_CLONE_TAG:
1005 CopyViKingtoT55x7(c->arg[0],c->arg[1]);
1006 break;
1007
1008
1009 #endif
1010
1011 #ifdef WITH_HITAG
1012 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1013 SnoopHitag(c->arg[0]);
1014 break;
1015 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1016 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1017 break;
1018 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1019 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1020 break;
1021 #endif
1022
1023 #ifdef WITH_ISO15693
1024 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1025 AcquireRawAdcSamplesIso15693();
1026 break;
1027 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1028 RecordRawAdcSamplesIso15693();
1029 break;
1030
1031 case CMD_ISO_15693_COMMAND:
1032 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1033 break;
1034
1035 case CMD_ISO_15693_FIND_AFI:
1036 BruteforceIso15693Afi(c->arg[0]);
1037 break;
1038
1039 case CMD_ISO_15693_DEBUG:
1040 SetDebugIso15693(c->arg[0]);
1041 break;
1042
1043 case CMD_READER_ISO_15693:
1044 ReaderIso15693(c->arg[0]);
1045 break;
1046 case CMD_SIMTAG_ISO_15693:
1047 SimTagIso15693(c->arg[0], c->d.asBytes);
1048 break;
1049 #endif
1050
1051 #ifdef WITH_LEGICRF
1052 case CMD_SIMULATE_TAG_LEGIC_RF:
1053 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1054 break;
1055
1056 case CMD_WRITER_LEGIC_RF:
1057 LegicRfWriter(c->arg[1], c->arg[0]);
1058 break;
1059
1060 case CMD_READER_LEGIC_RF:
1061 LegicRfReader(c->arg[0], c->arg[1]);
1062 break;
1063 #endif
1064
1065 #ifdef WITH_ISO14443b
1066 case CMD_READ_SRI512_TAG:
1067 ReadSTMemoryIso14443b(0x0F);
1068 break;
1069 case CMD_READ_SRIX4K_TAG:
1070 ReadSTMemoryIso14443b(0x7F);
1071 break;
1072 case CMD_SNOOP_ISO_14443B:
1073 SnoopIso14443b();
1074 break;
1075 case CMD_SIMULATE_TAG_ISO_14443B:
1076 SimulateIso14443bTag();
1077 break;
1078 case CMD_ISO_14443B_COMMAND:
1079 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1080 break;
1081 #endif
1082
1083 #ifdef WITH_ISO14443a
1084 case CMD_SNOOP_ISO_14443a:
1085 SniffIso14443a(c->arg[0]);
1086 break;
1087 case CMD_READER_ISO_14443a:
1088 ReaderIso14443a(c);
1089 break;
1090 case CMD_SIMULATE_TAG_ISO_14443a:
1091 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1092 break;
1093
1094 case CMD_EPA_PACE_COLLECT_NONCE:
1095 EPA_PACE_Collect_Nonce(c);
1096 break;
1097 case CMD_EPA_PACE_REPLAY:
1098 EPA_PACE_Replay(c);
1099 break;
1100
1101 case CMD_READER_MIFARE:
1102 ReaderMifare(c->arg[0]);
1103 break;
1104 case CMD_MIFARE_READBL:
1105 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1106 break;
1107 case CMD_MIFAREU_READBL:
1108 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1109 break;
1110 case CMD_MIFAREUC_AUTH:
1111 MifareUC_Auth(c->arg[0],c->d.asBytes);
1112 break;
1113 case CMD_MIFAREU_READCARD:
1114 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1115 break;
1116 case CMD_MIFAREUC_SETPWD:
1117 MifareUSetPwd(c->arg[0], c->d.asBytes);
1118 break;
1119 case CMD_MIFARE_READSC:
1120 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1121 break;
1122 case CMD_MIFARE_WRITEBL:
1123 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1124 break;
1125 //case CMD_MIFAREU_WRITEBL_COMPAT:
1126 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1127 //break;
1128 case CMD_MIFAREU_WRITEBL:
1129 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1130 break;
1131 case CMD_MIFARE_NESTED:
1132 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1133 break;
1134 case CMD_MIFARE_CHKKEYS:
1135 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1136 break;
1137 case CMD_SIMULATE_MIFARE_CARD:
1138 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1139 break;
1140
1141 // emulator
1142 case CMD_MIFARE_SET_DBGMODE:
1143 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1144 break;
1145 case CMD_MIFARE_EML_MEMCLR:
1146 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1147 break;
1148 case CMD_MIFARE_EML_MEMSET:
1149 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1150 break;
1151 case CMD_MIFARE_EML_MEMGET:
1152 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1153 break;
1154 case CMD_MIFARE_EML_CARDLOAD:
1155 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1156 break;
1157
1158 // Work with "magic Chinese" card
1159 case CMD_MIFARE_CSETBLOCK:
1160 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1161 break;
1162 case CMD_MIFARE_CGETBLOCK:
1163 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1164 break;
1165 case CMD_MIFARE_CIDENT:
1166 MifareCIdent();
1167 break;
1168
1169 // mifare sniffer
1170 case CMD_MIFARE_SNIFFER:
1171 SniffMifare(c->arg[0]);
1172 break;
1173
1174 //mifare desfire
1175 case CMD_MIFARE_DESFIRE_READBL: break;
1176 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1177 case CMD_MIFARE_DESFIRE_AUTH1:
1178 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1179 break;
1180 case CMD_MIFARE_DESFIRE_AUTH2:
1181 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1182 break;
1183 case CMD_MIFARE_DES_READER:
1184 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1185 break;
1186 case CMD_MIFARE_DESFIRE_INFO:
1187 MifareDesfireGetInformation();
1188 break;
1189 case CMD_MIFARE_DESFIRE:
1190 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1191 break;
1192
1193 case CMD_MIFARE_COLLECT_NONCES:
1194 MifareCollectNonces(c->arg[0], c->arg[1]);
1195 break;
1196 #endif
1197
1198 #ifdef WITH_ICLASS
1199 // Makes use of ISO14443a FPGA Firmware
1200 case CMD_SNOOP_ICLASS:
1201 SnoopIClass();
1202 break;
1203 case CMD_SIMULATE_TAG_ICLASS:
1204 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1205 break;
1206 case CMD_READER_ICLASS:
1207 ReaderIClass(c->arg[0]);
1208 break;
1209 case CMD_READER_ICLASS_REPLAY:
1210 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1211 break;
1212 case CMD_ICLASS_EML_MEMSET:
1213 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1214 break;
1215 #endif
1216
1217 case CMD_BUFF_CLEAR:
1218 BigBuf_Clear();
1219 break;
1220
1221 case CMD_MEASURE_ANTENNA_TUNING:
1222 MeasureAntennaTuning();
1223 break;
1224
1225 case CMD_MEASURE_ANTENNA_TUNING_HF:
1226 MeasureAntennaTuningHf();
1227 break;
1228
1229 case CMD_LISTEN_READER_FIELD:
1230 ListenReaderField(c->arg[0]);
1231 break;
1232
1233 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1234 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1235 SpinDelay(200);
1236 LED_D_OFF(); // LED D indicates field ON or OFF
1237 break;
1238
1239 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
1240
1241 LED_B_ON();
1242 uint8_t *BigBuf = BigBuf_get_addr();
1243 size_t len = 0;
1244 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1245 len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
1246 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1247 }
1248 // Trigger a finish downloading signal with an ACK frame
1249 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
1250 LED_B_OFF();
1251 break;
1252
1253 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1254 uint8_t *b = BigBuf_get_addr();
1255 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1256 cmd_send(CMD_ACK,0,0,0,0,0);
1257 break;
1258 }
1259 case CMD_READ_MEM:
1260 ReadMem(c->arg[0]);
1261 break;
1262
1263 case CMD_SET_LF_DIVISOR:
1264 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1265 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1266 break;
1267
1268 case CMD_SET_ADC_MUX:
1269 switch(c->arg[0]) {
1270 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1271 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1272 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1273 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1274 }
1275 break;
1276
1277 case CMD_VERSION:
1278 SendVersion();
1279 break;
1280 case CMD_STATUS:
1281 SendStatus();
1282 break;
1283 case CMD_PING:
1284 cmd_send(CMD_ACK,0,0,0,0,0);
1285 break;
1286 #ifdef WITH_LCD
1287 case CMD_LCD_RESET:
1288 LCDReset();
1289 break;
1290 case CMD_LCD:
1291 LCDSend(c->arg[0]);
1292 break;
1293 #endif
1294 case CMD_SETUP_WRITE:
1295 case CMD_FINISH_WRITE:
1296 case CMD_HARDWARE_RESET:
1297 usb_disable();
1298 SpinDelay(2000);
1299 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1300 for(;;) {
1301 // We're going to reset, and the bootrom will take control.
1302 }
1303 break;
1304
1305 case CMD_START_FLASH:
1306 if(common_area.flags.bootrom_present) {
1307 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1308 }
1309 usb_disable();
1310 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1311 for(;;);
1312 break;
1313
1314 case CMD_DEVICE_INFO: {
1315 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1316 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1317 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1318 break;
1319 }
1320 default:
1321 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1322 break;
1323 }
1324 }
1325
1326 void __attribute__((noreturn)) AppMain(void)
1327 {
1328 SpinDelay(100);
1329 clear_trace();
1330 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1331 /* Initialize common area */
1332 memset(&common_area, 0, sizeof(common_area));
1333 common_area.magic = COMMON_AREA_MAGIC;
1334 common_area.version = 1;
1335 }
1336 common_area.flags.osimage_present = 1;
1337
1338 LED_D_OFF();
1339 LED_C_OFF();
1340 LED_B_OFF();
1341 LED_A_OFF();
1342
1343 // Init USB device
1344 usb_enable();
1345
1346 // The FPGA gets its clock from us from PCK0 output, so set that up.
1347 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1348 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1349 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1350 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1351 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1352 AT91C_PMC_PRES_CLK_4;
1353 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1354
1355 // Reset SPI
1356 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1357 // Reset SSC
1358 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1359
1360 // Load the FPGA image, which we have stored in our flash.
1361 // (the HF version by default)
1362 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1363
1364 StartTickCount();
1365
1366 #ifdef WITH_LCD
1367 LCDInit();
1368 #endif
1369
1370 byte_t rx[sizeof(UsbCommand)];
1371 size_t rx_len;
1372
1373 for(;;) {
1374 if (usb_poll()) {
1375 rx_len = usb_read(rx,sizeof(UsbCommand));
1376 if (rx_len) {
1377 UsbPacketReceived(rx,rx_len);
1378 }
1379 }
1380 WDT_HIT();
1381
1382 #ifdef WITH_LF
1383 #ifndef WITH_ISO14443a_StandAlone
1384 if (BUTTON_HELD(1000) > 0)
1385 SamyRun();
1386 #endif
1387 #endif
1388 #ifdef WITH_ISO14443a
1389 #ifdef WITH_ISO14443a_StandAlone
1390 if (BUTTON_HELD(1000) > 0)
1391 StandAloneMode14a();
1392 #endif
1393 #endif
1394 }
1395 }
Impressum, Datenschutz