1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
13 #include "proxmark3.h"
19 #include "iso14443crc.h"
20 #include "iso14443a.h"
22 #include "mifareutil.h"
24 static uint32_t iso14a_timeout
;
25 uint8_t *trace
= (uint8_t *) BigBuf
+TRACE_OFFSET
;
30 // the block number for the ISO14443-4 PCB
31 static uint8_t iso14_pcb_blocknum
= 0;
36 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
37 #define REQUEST_GUARD_TIME (7000/16 + 1)
38 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
39 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
40 // bool LastCommandWasRequest = FALSE;
43 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
45 // When the PM acts as reader and is receiving tag data, it takes
46 // 3 ticks delay in the AD converter
47 // 16 ticks until the modulation detector completes and sets curbit
48 // 8 ticks until bit_to_arm is assigned from curbit
49 // 8*16 ticks for the transfer from FPGA to ARM
50 // 4*16 ticks until we measure the time
51 // - 8*16 ticks because we measure the time of the previous transfer
52 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
54 // When the PM acts as a reader and is sending, it takes
55 // 4*16 ticks until we can write data to the sending hold register
56 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
57 // 8 ticks until the first transfer starts
58 // 8 ticks later the FPGA samples the data
59 // 1 tick to assign mod_sig_coil
60 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
62 // When the PM acts as tag and is receiving it takes
63 // 2 ticks delay in the RF part (for the first falling edge),
64 // 3 ticks for the A/D conversion,
65 // 8 ticks on average until the start of the SSC transfer,
66 // 8 ticks until the SSC samples the first data
67 // 7*16 ticks to complete the transfer from FPGA to ARM
68 // 8 ticks until the next ssp_clk rising edge
69 // 4*16 ticks until we measure the time
70 // - 8*16 ticks because we measure the time of the previous transfer
71 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
73 // The FPGA will report its internal sending delay in
74 uint16_t FpgaSendQueueDelay
;
75 // the 5 first bits are the number of bits buffered in mod_sig_buf
76 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
77 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
79 // When the PM acts as tag and is sending, it takes
80 // 4*16 ticks until we can write data to the sending hold register
81 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
82 // 8 ticks until the first transfer starts
83 // 8 ticks later the FPGA samples the data
84 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
85 // + 1 tick to assign mod_sig_coil
86 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
88 // When the PM acts as sniffer and is receiving tag data, it takes
89 // 3 ticks A/D conversion
90 // 14 ticks to complete the modulation detection
91 // 8 ticks (on average) until the result is stored in to_arm
92 // + the delays in transferring data - which is the same for
93 // sniffing reader and tag data and therefore not relevant
94 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
96 // When the PM acts as sniffer and is receiving reader data, it takes
97 // 2 ticks delay in analogue RF receiver (for the falling edge of the
98 // start bit, which marks the start of the communication)
99 // 3 ticks A/D conversion
100 // 8 ticks on average until the data is stored in to_arm.
101 // + the delays in transferring data - which is the same for
102 // sniffing reader and tag data and therefore not relevant
103 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
105 //variables used for timing purposes:
106 //these are in ssp_clk cycles:
107 uint32_t NextTransferTime
;
108 uint32_t LastTimeProxToAirStart
;
109 uint32_t LastProxToAirDuration
;
113 // CARD TO READER - manchester
114 // Sequence D: 11110000 modulation with subcarrier during first half
115 // Sequence E: 00001111 modulation with subcarrier during second half
116 // Sequence F: 00000000 no modulation with subcarrier
117 // READER TO CARD - miller
118 // Sequence X: 00001100 drop after half a period
119 // Sequence Y: 00000000 no drop
120 // Sequence Z: 11000000 drop at start
128 const uint8_t OddByteParity
[256] = {
129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
142 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
143 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
144 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
148 void iso14a_set_trigger(bool enable
) {
152 void iso14a_clear_trace() {
153 memset(trace
, 0x44, TRACE_SIZE
);
157 void iso14a_set_tracing(bool enable
) {
161 void iso14a_set_timeout(uint32_t timeout
) {
162 iso14a_timeout
= timeout
;
165 //-----------------------------------------------------------------------------
166 // Generate the parity value for a byte sequence
168 //-----------------------------------------------------------------------------
169 byte_t
oddparity (const byte_t bt
)
171 return OddByteParity
[bt
];
174 uint32_t GetParity(const uint8_t * pbtCmd
, int iLen
)
179 // Generate the parity bits
180 for (i
= 0; i
< iLen
; i
++) {
181 // and save them to a 32Bit word
182 dwPar
|= ((OddByteParity
[pbtCmd
[i
]]) << i
);
187 void AppendCrc14443a(uint8_t* data
, int len
)
189 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
192 // The function LogTrace() is also used by the iClass implementation in iClass.c
193 bool RAMFUNC
LogTrace(const uint8_t * btBytes
, uint8_t iLen
, uint32_t timestamp
, uint32_t dwParity
, bool readerToTag
)
195 // Return when trace is full
196 if (traceLen
+ sizeof(timestamp
) + sizeof(dwParity
) + iLen
>= TRACE_SIZE
) {
197 tracing
= FALSE
; // don't trace any more
201 // Trace the random, i'm curious
202 trace
[traceLen
++] = ((timestamp
>> 0) & 0xff);
203 trace
[traceLen
++] = ((timestamp
>> 8) & 0xff);
204 trace
[traceLen
++] = ((timestamp
>> 16) & 0xff);
205 trace
[traceLen
++] = ((timestamp
>> 24) & 0xff);
208 trace
[traceLen
- 1] |= 0x80;
210 trace
[traceLen
++] = ((dwParity
>> 0) & 0xff);
211 trace
[traceLen
++] = ((dwParity
>> 8) & 0xff);
212 trace
[traceLen
++] = ((dwParity
>> 16) & 0xff);
213 trace
[traceLen
++] = ((dwParity
>> 24) & 0xff);
214 trace
[traceLen
++] = iLen
;
215 if (btBytes
!= NULL
&& iLen
!= 0) {
216 memcpy(trace
+ traceLen
, btBytes
, iLen
);
222 //=============================================================================
223 // ISO 14443 Type A - Miller decoder
224 //=============================================================================
226 // This decoder is used when the PM3 acts as a tag.
227 // The reader will generate "pauses" by temporarily switching of the field.
228 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
229 // The FPGA does a comparison with a threshold and would deliver e.g.:
230 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
231 // The Miller decoder needs to identify the following sequences:
232 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
233 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
234 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
235 // Note 1: the bitstream may start at any time. We therefore need to sync.
236 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
237 //-----------------------------------------------------------------------------
240 // Lookup-Table to decide if 4 raw bits are a modulation.
241 // We accept two or three consecutive "0" in any position with the rest "1"
242 const bool Mod_Miller_LUT
[] = {
243 TRUE
, TRUE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
, FALSE
,
244 TRUE
, TRUE
, FALSE
, FALSE
, TRUE
, FALSE
, FALSE
, FALSE
246 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
247 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
251 Uart
.state
= STATE_UNSYNCD
;
253 Uart
.len
= 0; // number of decoded data bytes
254 Uart
.shiftReg
= 0; // shiftreg to hold decoded data bits
255 Uart
.parityBits
= 0; //
256 Uart
.twoBits
= 0x0000; // buffer for 2 Bits
263 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
264 static RAMFUNC
bool MillerDecoding(uint8_t bit
, uint32_t non_real_time
)
267 Uart
.twoBits
= (Uart
.twoBits
<< 8) | bit
;
269 if (Uart
.state
== STATE_UNSYNCD
) { // not yet synced
270 if (Uart
.highCnt
< 7) { // wait for a stable unmodulated signal
271 if (Uart
.twoBits
== 0xffff) {
277 Uart
.syncBit
= 0xFFFF; // not set
278 // look for 00xx1111 (the start bit)
279 if ((Uart
.twoBits
& 0x6780) == 0x0780) Uart
.syncBit
= 7;
280 else if ((Uart
.twoBits
& 0x33C0) == 0x03C0) Uart
.syncBit
= 6;
281 else if ((Uart
.twoBits
& 0x19E0) == 0x01E0) Uart
.syncBit
= 5;
282 else if ((Uart
.twoBits
& 0x0CF0) == 0x00F0) Uart
.syncBit
= 4;
283 else if ((Uart
.twoBits
& 0x0678) == 0x0078) Uart
.syncBit
= 3;
284 else if ((Uart
.twoBits
& 0x033C) == 0x003C) Uart
.syncBit
= 2;
285 else if ((Uart
.twoBits
& 0x019E) == 0x001E) Uart
.syncBit
= 1;
286 else if ((Uart
.twoBits
& 0x00CF) == 0x000F) Uart
.syncBit
= 0;
287 if (Uart
.syncBit
!= 0xFFFF) {
288 Uart
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
289 Uart
.startTime
-= Uart
.syncBit
;
290 Uart
.endTime
= Uart
.startTime
;
291 Uart
.state
= STATE_START_OF_COMMUNICATION
;
297 if (IsMillerModulationNibble1(Uart
.twoBits
>> Uart
.syncBit
)) {
298 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation in both halves - error
301 } else { // Modulation in first half = Sequence Z = logic "0"
302 if (Uart
.state
== STATE_MILLER_X
) { // error - must not follow after X
307 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
308 Uart
.state
= STATE_MILLER_Z
;
309 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 6;
310 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
311 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
312 Uart
.parityBits
<<= 1; // make room for the parity bit
313 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
320 if (IsMillerModulationNibble2(Uart
.twoBits
>> Uart
.syncBit
)) { // Modulation second half = Sequence X = logic "1"
322 Uart
.shiftReg
= (Uart
.shiftReg
>> 1) | 0x100; // add a 1 to the shiftreg
323 Uart
.state
= STATE_MILLER_X
;
324 Uart
.endTime
= Uart
.startTime
+ 8*(9*Uart
.len
+ Uart
.bitCount
+ 1) - 2;
325 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
326 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
327 Uart
.parityBits
<<= 1; // make room for the new parity bit
328 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
332 } else { // no modulation in both halves - Sequence Y
333 if (Uart
.state
== STATE_MILLER_Z
|| Uart
.state
== STATE_MILLER_Y
) { // Y after logic "0" - End of Communication
334 Uart
.state
= STATE_UNSYNCD
;
335 if(Uart
.len
== 0 && Uart
.bitCount
> 0) { // if we decoded some bits
336 Uart
.shiftReg
>>= (9 - Uart
.bitCount
); // add them to the output
337 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
338 Uart
.parityBits
<<= 1; // no parity bit - add "0"
339 Uart
.bitCount
--; // last "0" was part of the EOC sequence
343 if (Uart
.state
== STATE_START_OF_COMMUNICATION
) { // error - must not follow directly after SOC
346 } else { // a logic "0"
348 Uart
.shiftReg
= (Uart
.shiftReg
>> 1); // add a 0 to the shiftreg
349 Uart
.state
= STATE_MILLER_Y
;
350 if(Uart
.bitCount
>= 9) { // if we decoded a full byte (including parity)
351 Uart
.output
[Uart
.len
++] = (Uart
.shiftReg
& 0xff);
352 Uart
.parityBits
<<= 1; // make room for the parity bit
353 Uart
.parityBits
|= ((Uart
.shiftReg
>> 8) & 0x01); // store parity bit
363 return FALSE
; // not finished yet, need more data
368 //=============================================================================
369 // ISO 14443 Type A - Manchester decoder
370 //=============================================================================
372 // This decoder is used when the PM3 acts as a reader.
373 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
374 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
375 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
376 // The Manchester decoder needs to identify the following sequences:
377 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
378 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
379 // 8 ticks unmodulated: Sequence F = end of communication
380 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
381 // Note 1: the bitstream may start at any time. We therefore need to sync.
382 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
385 // Lookup-Table to decide if 4 raw bits are a modulation.
386 // We accept three or four "1" in any position
387 const bool Mod_Manchester_LUT
[] = {
388 FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, FALSE
, TRUE
,
389 FALSE
, FALSE
, FALSE
, TRUE
, FALSE
, TRUE
, TRUE
, TRUE
392 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
393 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
398 Demod
.state
= DEMOD_UNSYNCD
;
399 Demod
.len
= 0; // number of decoded data bytes
400 Demod
.shiftReg
= 0; // shiftreg to hold decoded data bits
401 Demod
.parityBits
= 0; //
402 Demod
.collisionPos
= 0; // Position of collision bit
403 Demod
.twoBits
= 0xffff; // buffer for 2 Bits
409 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
410 static RAMFUNC
int ManchesterDecoding(uint8_t bit
, uint16_t offset
, uint32_t non_real_time
)
413 Demod
.twoBits
= (Demod
.twoBits
<< 8) | bit
;
415 if (Demod
.state
== DEMOD_UNSYNCD
) {
417 if (Demod
.highCnt
< 2) { // wait for a stable unmodulated signal
418 if (Demod
.twoBits
== 0x0000) {
424 Demod
.syncBit
= 0xFFFF; // not set
425 if ((Demod
.twoBits
& 0x7700) == 0x7000) Demod
.syncBit
= 7;
426 else if ((Demod
.twoBits
& 0x3B80) == 0x3800) Demod
.syncBit
= 6;
427 else if ((Demod
.twoBits
& 0x1DC0) == 0x1C00) Demod
.syncBit
= 5;
428 else if ((Demod
.twoBits
& 0x0EE0) == 0x0E00) Demod
.syncBit
= 4;
429 else if ((Demod
.twoBits
& 0x0770) == 0x0700) Demod
.syncBit
= 3;
430 else if ((Demod
.twoBits
& 0x03B8) == 0x0380) Demod
.syncBit
= 2;
431 else if ((Demod
.twoBits
& 0x01DC) == 0x01C0) Demod
.syncBit
= 1;
432 else if ((Demod
.twoBits
& 0x00EE) == 0x00E0) Demod
.syncBit
= 0;
433 if (Demod
.syncBit
!= 0xFFFF) {
434 Demod
.startTime
= non_real_time
?non_real_time
:(GetCountSspClk() & 0xfffffff8);
435 Demod
.startTime
-= Demod
.syncBit
;
436 Demod
.bitCount
= offset
; // number of decoded data bits
437 Demod
.state
= DEMOD_MANCHESTER_DATA
;
443 if (IsManchesterModulationNibble1(Demod
.twoBits
>> Demod
.syncBit
)) { // modulation in first half
444 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // ... and in second half = collision
445 if (!Demod
.collisionPos
) {
446 Demod
.collisionPos
= (Demod
.len
<< 3) + Demod
.bitCount
;
448 } // modulation in first half only - Sequence D = 1
450 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) | 0x100; // in both cases, add a 1 to the shiftreg
451 if(Demod
.bitCount
== 9) { // if we decoded a full byte (including parity)
452 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
453 Demod
.parityBits
<<= 1; // make room for the parity bit
454 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
458 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1) - 4;
459 } else { // no modulation in first half
460 if (IsManchesterModulationNibble2(Demod
.twoBits
>> Demod
.syncBit
)) { // and modulation in second half = Sequence E = 0
462 Demod
.shiftReg
= (Demod
.shiftReg
>> 1); // add a 0 to the shiftreg
463 if(Demod
.bitCount
>= 9) { // if we decoded a full byte (including parity)
464 Demod
.output
[Demod
.len
++] = (Demod
.shiftReg
& 0xff);
465 Demod
.parityBits
<<= 1; // make room for the new parity bit
466 Demod
.parityBits
|= ((Demod
.shiftReg
>> 8) & 0x01); // store parity bit
470 Demod
.endTime
= Demod
.startTime
+ 8*(9*Demod
.len
+ Demod
.bitCount
+ 1);
471 } else { // no modulation in both halves - End of communication
472 if (Demod
.len
> 0 || Demod
.bitCount
> 0) { // received something
473 if(Demod
.bitCount
> 0) { // if we decoded bits
474 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // add the remaining decoded bits to the output
475 Demod
.output
[Demod
.len
++] = Demod
.shiftReg
& 0xff;
476 // No parity bit, so just shift a 0
477 Demod
.parityBits
<<= 1;
479 return TRUE
; // we are finished with decoding the raw data sequence
480 } else { // nothing received. Start over
488 return FALSE
; // not finished yet, need more data
491 //=============================================================================
492 // Finally, a `sniffer' for ISO 14443 Type A
493 // Both sides of communication!
494 //=============================================================================
496 //-----------------------------------------------------------------------------
497 // Record the sequence of commands sent by the reader to the tag, with
498 // triggering so that we start recording at the point that the tag is moved
500 //-----------------------------------------------------------------------------
501 void RAMFUNC
SnoopIso14443a(uint8_t param
) {
503 // bit 0 - trigger from first card answer
504 // bit 1 - trigger from first reader 7-bit request
508 iso14a_clear_trace();
510 // We won't start recording the frames that we acquire until we trigger;
511 // a good trigger condition to get started is probably when we see a
512 // response from the tag.
513 // triggered == FALSE -- to wait first for card
514 bool triggered
= !(param
& 0x03);
516 // The command (reader -> tag) that we're receiving.
517 // The length of a received command will in most cases be no more than 18 bytes.
518 // So 32 should be enough!
519 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
520 // The response (tag -> reader) that we're receiving.
521 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
523 // As we receive stuff, we copy it from receivedCmd or receivedResponse
524 // into trace, along with its length and other annotations.
525 //uint8_t *trace = (uint8_t *)BigBuf;
527 // The DMA buffer, used to stream samples from the FPGA
528 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
529 uint8_t *data
= dmaBuf
;
530 uint8_t previous_data
= 0;
533 bool TagIsActive
= FALSE
;
534 bool ReaderIsActive
= FALSE
;
536 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
538 // Set up the demodulator for tag -> reader responses.
539 Demod
.output
= receivedResponse
;
541 // Set up the demodulator for the reader -> tag commands
542 Uart
.output
= receivedCmd
;
544 // Setup and start DMA.
545 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
547 // And now we loop, receiving samples.
548 for(uint32_t rsamples
= 0; TRUE
; ) {
551 DbpString("cancelled by button");
558 int register readBufDataP
= data
- dmaBuf
;
559 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
;
560 if (readBufDataP
<= dmaBufDataP
){
561 dataLen
= dmaBufDataP
- readBufDataP
;
563 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
;
565 // test for length of buffer
566 if(dataLen
> maxDataLen
) {
567 maxDataLen
= dataLen
;
569 Dbprintf("blew circular buffer! dataLen=%d", dataLen
);
573 if(dataLen
< 1) continue;
575 // primary buffer was stopped( <-- we lost data!
576 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
577 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
578 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
579 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
581 // secondary buffer sets as primary, secondary buffer was stopped
582 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
583 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
584 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
589 if (rsamples
& 0x01) { // Need two samples to feed Miller and Manchester-Decoder
591 if(!TagIsActive
) { // no need to try decoding reader data if the tag is sending
592 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
593 if (MillerDecoding(readerdata
, (rsamples
-1)*4)) {
596 // check - if there is a short 7bit request from reader
597 if ((!triggered
) && (param
& 0x02) && (Uart
.len
== 1) && (Uart
.bitCount
== 7)) triggered
= TRUE
;
600 if (!LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
, Uart
.parityBits
, TRUE
)) break;
601 if (!LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_READER_AIR2ARM_AS_SNIFFER
, 0, TRUE
)) break;
603 /* And ready to receive another command. */
605 /* And also reset the demod code, which might have been */
606 /* false-triggered by the commands from the reader. */
610 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
613 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
614 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
615 if(ManchesterDecoding(tagdata
, 0, (rsamples
-1)*4)) {
618 if (!LogTrace(receivedResponse
, Demod
.len
, Demod
.startTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
, Demod
.parityBits
, FALSE
)) break;
619 if (!LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER
, 0, FALSE
)) break;
621 if ((!triggered
) && (param
& 0x01)) triggered
= TRUE
;
623 // And ready to receive another response.
627 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
631 previous_data
= *data
;
634 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
639 DbpString("COMMAND FINISHED");
642 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen
, Uart
.state
, Uart
.len
);
643 Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen
, (uint32_t)Uart
.output
[0]);
647 //-----------------------------------------------------------------------------
648 // Prepare tag messages
649 //-----------------------------------------------------------------------------
650 static void CodeIso14443aAsTagPar(const uint8_t *cmd
, int len
, uint32_t dwParity
)
656 // Correction bit, might be removed when not needed
661 ToSendStuffBit(1); // 1
667 ToSend
[++ToSendMax
] = SEC_D
;
668 LastProxToAirDuration
= 8 * ToSendMax
- 4;
670 for(i
= 0; i
< len
; i
++) {
675 for(j
= 0; j
< 8; j
++) {
677 ToSend
[++ToSendMax
] = SEC_D
;
679 ToSend
[++ToSendMax
] = SEC_E
;
684 // Get the parity bit
685 if ((dwParity
>> i
) & 0x01) {
686 ToSend
[++ToSendMax
] = SEC_D
;
687 LastProxToAirDuration
= 8 * ToSendMax
- 4;
689 ToSend
[++ToSendMax
] = SEC_E
;
690 LastProxToAirDuration
= 8 * ToSendMax
;
695 ToSend
[++ToSendMax
] = SEC_F
;
697 // Convert from last byte pos to length
701 static void CodeIso14443aAsTag(const uint8_t *cmd
, int len
){
702 CodeIso14443aAsTagPar(cmd
, len
, GetParity(cmd
, len
));
706 static void Code4bitAnswerAsTag(uint8_t cmd
)
712 // Correction bit, might be removed when not needed
717 ToSendStuffBit(1); // 1
723 ToSend
[++ToSendMax
] = SEC_D
;
726 for(i
= 0; i
< 4; i
++) {
728 ToSend
[++ToSendMax
] = SEC_D
;
729 LastProxToAirDuration
= 8 * ToSendMax
- 4;
731 ToSend
[++ToSendMax
] = SEC_E
;
732 LastProxToAirDuration
= 8 * ToSendMax
;
738 ToSend
[++ToSendMax
] = SEC_F
;
740 // Convert from last byte pos to length
744 //-----------------------------------------------------------------------------
745 // Wait for commands from reader
746 // Stop when button is pressed
747 // Or return TRUE when command is captured
748 //-----------------------------------------------------------------------------
749 static int GetIso14443aCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
751 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
752 // only, since we are receiving, not transmitting).
753 // Signal field is off with the appropriate LED
755 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
757 // Now run a `software UART' on the stream of incoming samples.
759 Uart
.output
= received
;
762 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
767 if(BUTTON_PRESS()) return FALSE
;
769 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
770 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
771 if(MillerDecoding(b
, 0)) {
779 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, bool correctionNeeded
);
780 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
);
781 int EmSend4bit(uint8_t resp
);
782 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
);
783 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
);
784 int EmSendCmdEx(uint8_t *resp
, int respLen
, bool correctionNeeded
);
785 int EmSendCmd(uint8_t *resp
, int respLen
);
786 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
);
787 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint32_t reader_Parity
,
788 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint32_t tag_Parity
);
790 static uint8_t* free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
797 uint32_t ProxToAirDuration
;
798 } tag_response_info_t
;
800 void reset_free_buffer() {
801 free_buffer_pointer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
804 bool prepare_tag_modulation(tag_response_info_t
* response_info
, size_t max_buffer_size
) {
805 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
806 // This will need the following byte array for a modulation sequence
807 // 144 data bits (18 * 8)
810 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
811 // 1 just for the case
813 // 166 bytes, since every bit that needs to be send costs us a byte
816 // Prepare the tag modulation bits from the message
817 CodeIso14443aAsTag(response_info
->response
,response_info
->response_n
);
819 // Make sure we do not exceed the free buffer space
820 if (ToSendMax
> max_buffer_size
) {
821 Dbprintf("Out of memory, when modulating bits for tag answer:");
822 Dbhexdump(response_info
->response_n
,response_info
->response
,false);
826 // Copy the byte array, used for this modulation to the buffer position
827 memcpy(response_info
->modulation
,ToSend
,ToSendMax
);
829 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
830 response_info
->modulation_n
= ToSendMax
;
831 response_info
->ProxToAirDuration
= LastProxToAirDuration
;
836 bool prepare_allocated_tag_modulation(tag_response_info_t
* response_info
) {
837 // Retrieve and store the current buffer index
838 response_info
->modulation
= free_buffer_pointer
;
840 // Determine the maximum size we can use from our buffer
841 size_t max_buffer_size
= (((uint8_t *)BigBuf
)+FREE_BUFFER_OFFSET
+FREE_BUFFER_SIZE
)-free_buffer_pointer
;
843 // Forward the prepare tag modulation function to the inner function
844 if (prepare_tag_modulation(response_info
,max_buffer_size
)) {
845 // Update the free buffer offset
846 free_buffer_pointer
+= ToSendMax
;
853 //-----------------------------------------------------------------------------
854 // Main loop of simulated tag: receive commands from reader, decide what
855 // response to send, and send it.
856 //-----------------------------------------------------------------------------
857 void SimulateIso14443aTag(int tagType
, int uid_1st
, int uid_2nd
, byte_t
* data
)
859 // Enable and clear the trace
860 iso14a_clear_trace();
861 iso14a_set_tracing(TRUE
);
865 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
866 uint8_t response1
[2];
869 case 1: { // MIFARE Classic
870 // Says: I am Mifare 1k - original line
875 case 2: { // MIFARE Ultralight
876 // Says: I am a stupid memory tag, no crypto
881 case 3: { // MIFARE DESFire
882 // Says: I am a DESFire tag, ph33r me
887 case 4: { // ISO/IEC 14443-4
888 // Says: I am a javacard (JCOP)
894 Dbprintf("Error: unkown tagtype (%d)",tagType
);
899 // The second response contains the (mandatory) first 24 bits of the UID
900 uint8_t response2
[5];
902 // Check if the uid uses the (optional) part
903 uint8_t response2a
[5];
906 num_to_bytes(uid_1st
,3,response2
+1);
907 num_to_bytes(uid_2nd
,4,response2a
);
908 response2a
[4] = response2a
[0] ^ response2a
[1] ^ response2a
[2] ^ response2a
[3];
910 // Configure the ATQA and SAK accordingly
911 response1
[0] |= 0x40;
914 num_to_bytes(uid_1st
,4,response2
);
915 // Configure the ATQA and SAK accordingly
916 response1
[0] &= 0xBF;
920 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
921 response2
[4] = response2
[0] ^ response2
[1] ^ response2
[2] ^ response2
[3];
923 // Prepare the mandatory SAK (for 4 and 7 byte UID)
924 uint8_t response3
[3];
926 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
928 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
929 uint8_t response3a
[3];
930 response3a
[0] = sak
& 0xFB;
931 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
933 uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
934 uint8_t response6
[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
935 ComputeCrc14443(CRC_14443_A
, response6
, 4, &response6
[4], &response6
[5]);
937 #define TAG_RESPONSE_COUNT 7
938 tag_response_info_t responses
[TAG_RESPONSE_COUNT
] = {
939 { .response
= response1
, .response_n
= sizeof(response1
) }, // Answer to request - respond with card type
940 { .response
= response2
, .response_n
= sizeof(response2
) }, // Anticollision cascade1 - respond with uid
941 { .response
= response2a
, .response_n
= sizeof(response2a
) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
942 { .response
= response3
, .response_n
= sizeof(response3
) }, // Acknowledge select - cascade 1
943 { .response
= response3a
, .response_n
= sizeof(response3a
) }, // Acknowledge select - cascade 2
944 { .response
= response5
, .response_n
= sizeof(response5
) }, // Authentication answer (random nonce)
945 { .response
= response6
, .response_n
= sizeof(response6
) }, // dummy ATS (pseudo-ATR), answer to RATS
948 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
949 // Such a response is less time critical, so we can prepare them on the fly
950 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
951 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
952 uint8_t dynamic_response_buffer
[DYNAMIC_RESPONSE_BUFFER_SIZE
];
953 uint8_t dynamic_modulation_buffer
[DYNAMIC_MODULATION_BUFFER_SIZE
];
954 tag_response_info_t dynamic_response_info
= {
955 .response
= dynamic_response_buffer
,
957 .modulation
= dynamic_modulation_buffer
,
961 // Reset the offset pointer of the free buffer
964 // Prepare the responses of the anticollision phase
965 // there will be not enough time to do this at the moment the reader sends it REQA
966 for (size_t i
=0; i
<TAG_RESPONSE_COUNT
; i
++) {
967 prepare_allocated_tag_modulation(&responses
[i
]);
970 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
973 // To control where we are in the protocol
977 // Just to allow some checks
982 // We need to listen to the high-frequency, peak-detected path.
983 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
986 tag_response_info_t
* p_response
;
990 // Clean receive command buffer
992 if(!GetIso14443aCommandFromReader(receivedCmd
, &len
, RECV_CMD_SIZE
)) {
993 DbpString("Button press");
999 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1000 // Okay, look at the command now.
1002 if(receivedCmd
[0] == 0x26) { // Received a REQUEST
1003 p_response
= &responses
[0]; order
= 1;
1004 } else if(receivedCmd
[0] == 0x52) { // Received a WAKEUP
1005 p_response
= &responses
[0]; order
= 6;
1006 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // Received request for UID (cascade 1)
1007 p_response
= &responses
[1]; order
= 2;
1008 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x95) { // Received request for UID (cascade 2)
1009 p_response
= &responses
[2]; order
= 20;
1010 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x93) { // Received a SELECT (cascade 1)
1011 p_response
= &responses
[3]; order
= 3;
1012 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] == 0x95) { // Received a SELECT (cascade 2)
1013 p_response
= &responses
[4]; order
= 30;
1014 } else if(receivedCmd
[0] == 0x30) { // Received a (plain) READ
1015 EmSendCmdEx(data
+(4*receivedCmd
[0]),16,false);
1016 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1017 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1019 } else if(receivedCmd
[0] == 0x50) { // Received a HALT
1020 // DbpString("Reader requested we HALT!:");
1022 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1023 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1026 } else if(receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61) { // Received an authentication request
1027 p_response
= &responses
[5]; order
= 7;
1028 } else if(receivedCmd
[0] == 0xE0) { // Received a RATS request
1029 if (tagType
== 1 || tagType
== 2) { // RATS not supported
1030 EmSend4bit(CARD_NACK_NA
);
1033 p_response
= &responses
[6]; order
= 70;
1035 } else if (order
== 7 && len
== 8) { // Received authentication request
1037 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1038 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1040 uint32_t nr
= bytes_to_num(receivedCmd
,4);
1041 uint32_t ar
= bytes_to_num(receivedCmd
+4,4);
1042 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr
,ar
);
1044 // Check for ISO 14443A-4 compliant commands, look at left nibble
1045 switch (receivedCmd
[0]) {
1048 case 0x0A: { // IBlock (command)
1049 dynamic_response_info
.response
[0] = receivedCmd
[0];
1050 dynamic_response_info
.response
[1] = 0x00;
1051 dynamic_response_info
.response
[2] = 0x90;
1052 dynamic_response_info
.response
[3] = 0x00;
1053 dynamic_response_info
.response_n
= 4;
1057 case 0x1B: { // Chaining command
1058 dynamic_response_info
.response
[0] = 0xaa | ((receivedCmd
[0]) & 1);
1059 dynamic_response_info
.response_n
= 2;
1064 dynamic_response_info
.response
[0] = receivedCmd
[0] ^ 0x11;
1065 dynamic_response_info
.response_n
= 2;
1069 memcpy(dynamic_response_info
.response
,"\xAB\x00",2);
1070 dynamic_response_info
.response_n
= 2;
1074 case 0xC2: { // Readers sends deselect command
1075 memcpy(dynamic_response_info
.response
,"\xCA\x00",2);
1076 dynamic_response_info
.response_n
= 2;
1080 // Never seen this command before
1082 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1083 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1085 Dbprintf("Received unknown command (len=%d):",len
);
1086 Dbhexdump(len
,receivedCmd
,false);
1088 dynamic_response_info
.response_n
= 0;
1092 if (dynamic_response_info
.response_n
> 0) {
1093 // Copy the CID from the reader query
1094 dynamic_response_info
.response
[1] = receivedCmd
[1];
1096 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1097 AppendCrc14443a(dynamic_response_info
.response
,dynamic_response_info
.response_n
);
1098 dynamic_response_info
.response_n
+= 2;
1100 if (prepare_tag_modulation(&dynamic_response_info
,DYNAMIC_MODULATION_BUFFER_SIZE
) == false) {
1101 Dbprintf("Error preparing tag response");
1103 LogTrace(receivedCmd
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
1104 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
1108 p_response
= &dynamic_response_info
;
1112 // Count number of wakeups received after a halt
1113 if(order
== 6 && lastorder
== 5) { happened
++; }
1115 // Count number of other messages after a halt
1116 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1118 if(cmdsRecvd
> 999) {
1119 DbpString("1000 commands later...");
1124 if (p_response
!= NULL
) {
1125 EmSendCmd14443aRaw(p_response
->modulation
, p_response
->modulation_n
, receivedCmd
[0] == 0x52);
1126 // do the tracing for the previous reader request and this tag answer:
1127 EmLogTrace(Uart
.output
,
1129 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1130 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1132 p_response
->response
,
1133 p_response
->response_n
,
1134 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1135 (LastTimeProxToAirStart
+ p_response
->ProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1136 SwapBits(GetParity(p_response
->response
, p_response
->response_n
), p_response
->response_n
));
1140 Dbprintf("Trace Full. Simulation stopped.");
1145 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1150 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1151 // of bits specified in the delay parameter.
1152 void PrepareDelayedTransfer(uint16_t delay
)
1154 uint8_t bitmask
= 0;
1155 uint8_t bits_to_shift
= 0;
1156 uint8_t bits_shifted
= 0;
1160 for (uint16_t i
= 0; i
< delay
; i
++) {
1161 bitmask
|= (0x01 << i
);
1163 ToSend
[ToSendMax
++] = 0x00;
1164 for (uint16_t i
= 0; i
< ToSendMax
; i
++) {
1165 bits_to_shift
= ToSend
[i
] & bitmask
;
1166 ToSend
[i
] = ToSend
[i
] >> delay
;
1167 ToSend
[i
] = ToSend
[i
] | (bits_shifted
<< (8 - delay
));
1168 bits_shifted
= bits_to_shift
;
1174 //-------------------------------------------------------------------------------------
1175 // Transmit the command (to the tag) that was placed in ToSend[].
1176 // Parameter timing:
1177 // if NULL: transfer at next possible time, taking into account
1178 // request guard time and frame delay time
1179 // if == 0: transfer immediately and return time of transfer
1180 // if != 0: delay transfer until time specified
1181 //-------------------------------------------------------------------------------------
1182 static void TransmitFor14443a(const uint8_t *cmd
, int len
, uint32_t *timing
)
1185 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1187 uint32_t ThisTransferTime
= 0;
1190 if(*timing
== 0) { // Measure time
1191 *timing
= (GetCountSspClk() + 8) & 0xfffffff8;
1193 PrepareDelayedTransfer(*timing
& 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1195 if(MF_DBGLEVEL
>= 4 && GetCountSspClk() >= (*timing
& 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1196 while(GetCountSspClk() < (*timing
& 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1197 LastTimeProxToAirStart
= *timing
;
1199 ThisTransferTime
= ((MAX(NextTransferTime
, GetCountSspClk()) & 0xfffffff8) + 8);
1200 while(GetCountSspClk() < ThisTransferTime
);
1201 LastTimeProxToAirStart
= ThisTransferTime
;
1205 AT91C_BASE_SSC
->SSC_THR
= SEC_Y
;
1207 // for(uint16_t c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
1208 // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1209 // AT91C_BASE_SSC->SSC_THR = SEC_Y;
1216 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1217 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1225 NextTransferTime
= MAX(NextTransferTime
, LastTimeProxToAirStart
+ REQUEST_GUARD_TIME
);
1230 //-----------------------------------------------------------------------------
1231 // Prepare reader command (in bits, support short frames) to send to FPGA
1232 //-----------------------------------------------------------------------------
1233 void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd
, int bits
, uint32_t dwParity
)
1241 // Start of Communication (Seq. Z)
1242 ToSend
[++ToSendMax
] = SEC_Z
;
1243 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1246 size_t bytecount
= nbytes(bits
);
1247 // Generate send structure for the data bits
1248 for (i
= 0; i
< bytecount
; i
++) {
1249 // Get the current byte to send
1251 size_t bitsleft
= MIN((bits
-(i
*8)),8);
1253 for (j
= 0; j
< bitsleft
; j
++) {
1256 ToSend
[++ToSendMax
] = SEC_X
;
1257 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1262 ToSend
[++ToSendMax
] = SEC_Z
;
1263 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1266 ToSend
[++ToSendMax
] = SEC_Y
;
1273 // Only transmit (last) parity bit if we transmitted a complete byte
1275 // Get the parity bit
1276 if ((dwParity
>> i
) & 0x01) {
1278 ToSend
[++ToSendMax
] = SEC_X
;
1279 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 2;
1284 ToSend
[++ToSendMax
] = SEC_Z
;
1285 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1288 ToSend
[++ToSendMax
] = SEC_Y
;
1295 // End of Communication: Logic 0 followed by Sequence Y
1298 ToSend
[++ToSendMax
] = SEC_Z
;
1299 LastProxToAirDuration
= 8 * (ToSendMax
+1) - 6;
1302 ToSend
[++ToSendMax
] = SEC_Y
;
1305 ToSend
[++ToSendMax
] = SEC_Y
;
1307 // Convert to length of command:
1311 //-----------------------------------------------------------------------------
1312 // Prepare reader command to send to FPGA
1313 //-----------------------------------------------------------------------------
1314 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, int len
, uint32_t dwParity
)
1316 CodeIso14443aBitsAsReaderPar(cmd
,len
*8,dwParity
);
1319 //-----------------------------------------------------------------------------
1320 // Wait for commands from reader
1321 // Stop when button is pressed (return 1) or field was gone (return 2)
1322 // Or return 0 when command is captured
1323 //-----------------------------------------------------------------------------
1324 static int EmGetCmd(uint8_t *received
, int *len
)
1328 uint32_t timer
= 0, vtime
= 0;
1332 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1333 // only, since we are receiving, not transmitting).
1334 // Signal field is off with the appropriate LED
1336 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1338 // Set ADC to read field strength
1339 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
1340 AT91C_BASE_ADC
->ADC_MR
=
1341 ADC_MODE_PRESCALE(32) |
1342 ADC_MODE_STARTUP_TIME(16) |
1343 ADC_MODE_SAMPLE_HOLD_TIME(8);
1344 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ADC_CHAN_HF
);
1346 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1348 // Now run a 'software UART' on the stream of incoming samples.
1350 Uart
.output
= received
;
1353 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1358 if (BUTTON_PRESS()) return 1;
1360 // test if the field exists
1361 if (AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ADC_CHAN_HF
)) {
1363 analogAVG
+= AT91C_BASE_ADC
->ADC_CDR
[ADC_CHAN_HF
];
1364 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
1365 if (analogCnt
>= 32) {
1366 if ((33000 * (analogAVG
/ analogCnt
) >> 10) < MF_MINFIELDV
) {
1367 vtime
= GetTickCount();
1368 if (!timer
) timer
= vtime
;
1369 // 50ms no field --> card to idle state
1370 if (vtime
- timer
> 50) return 2;
1372 if (timer
) timer
= 0;
1378 // receive and test the miller decoding
1379 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1380 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1381 if(MillerDecoding(b
, 0)) {
1391 static int EmSendCmd14443aRaw(uint8_t *resp
, int respLen
, bool correctionNeeded
)
1395 uint32_t ThisTransferTime
;
1397 // Modulate Manchester
1398 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1400 // include correction bit if necessary
1401 if (Uart
.parityBits
& 0x01) {
1402 correctionNeeded
= TRUE
;
1404 if(correctionNeeded
) {
1405 // 1236, so correction bit needed
1411 // clear receiving shift register and holding register
1412 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1413 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1414 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1415 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1417 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1418 for (uint16_t j
= 0; j
< 5; j
++) { // allow timeout - better late than never
1419 while(!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
));
1420 if (AT91C_BASE_SSC
->SSC_RHR
) break;
1423 while ((ThisTransferTime
= GetCountSspClk()) & 0x00000007);
1426 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1429 for(; i
<= respLen
; ) {
1430 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1431 AT91C_BASE_SSC
->SSC_THR
= resp
[i
++];
1432 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1435 if(BUTTON_PRESS()) {
1440 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1441 for (i
= 0; i
< 2 ; ) {
1442 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1443 AT91C_BASE_SSC
->SSC_THR
= SEC_F
;
1444 FpgaSendQueueDelay
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1449 LastTimeProxToAirStart
= ThisTransferTime
+ (correctionNeeded
?8:0);
1454 int EmSend4bitEx(uint8_t resp
, bool correctionNeeded
){
1455 Code4bitAnswerAsTag(resp
);
1456 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1457 // do the tracing for the previous reader request and this tag answer:
1458 EmLogTrace(Uart
.output
,
1460 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1461 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1465 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1466 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1467 SwapBits(GetParity(&resp
, 1), 1));
1471 int EmSend4bit(uint8_t resp
){
1472 return EmSend4bitEx(resp
, false);
1475 int EmSendCmdExPar(uint8_t *resp
, int respLen
, bool correctionNeeded
, uint32_t par
){
1476 CodeIso14443aAsTagPar(resp
, respLen
, par
);
1477 int res
= EmSendCmd14443aRaw(ToSend
, ToSendMax
, correctionNeeded
);
1478 // do the tracing for the previous reader request and this tag answer:
1479 EmLogTrace(Uart
.output
,
1481 Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1482 Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
,
1486 LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_TAG
,
1487 (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_TAG
,
1488 SwapBits(GetParity(resp
, respLen
), respLen
));
1492 int EmSendCmdEx(uint8_t *resp
, int respLen
, bool correctionNeeded
){
1493 return EmSendCmdExPar(resp
, respLen
, correctionNeeded
, GetParity(resp
, respLen
));
1496 int EmSendCmd(uint8_t *resp
, int respLen
){
1497 return EmSendCmdExPar(resp
, respLen
, false, GetParity(resp
, respLen
));
1500 int EmSendCmdPar(uint8_t *resp
, int respLen
, uint32_t par
){
1501 return EmSendCmdExPar(resp
, respLen
, false, par
);
1504 bool EmLogTrace(uint8_t *reader_data
, uint16_t reader_len
, uint32_t reader_StartTime
, uint32_t reader_EndTime
, uint32_t reader_Parity
,
1505 uint8_t *tag_data
, uint16_t tag_len
, uint32_t tag_StartTime
, uint32_t tag_EndTime
, uint32_t tag_Parity
)
1508 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1509 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1510 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1511 uint16_t reader_modlen
= reader_EndTime
- reader_StartTime
;
1512 uint16_t approx_fdt
= tag_StartTime
- reader_EndTime
;
1513 uint16_t exact_fdt
= (approx_fdt
- 20 + 32)/64 * 64 + 20;
1514 reader_EndTime
= tag_StartTime
- exact_fdt
;
1515 reader_StartTime
= reader_EndTime
- reader_modlen
;
1516 if (!LogTrace(reader_data
, reader_len
, reader_StartTime
, reader_Parity
, TRUE
)) {
1518 } else if (!LogTrace(NULL
, 0, reader_EndTime
, 0, TRUE
)) {
1520 } else if (!LogTrace(tag_data
, tag_len
, tag_StartTime
, tag_Parity
, FALSE
)) {
1523 return (!LogTrace(NULL
, 0, tag_EndTime
, 0, FALSE
));
1530 //-----------------------------------------------------------------------------
1531 // Wait a certain time for tag response
1532 // If a response is captured return TRUE
1533 // If it takes too long return FALSE
1534 //-----------------------------------------------------------------------------
1535 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, uint16_t offset
, int maxLen
)
1539 // Set FPGA mode to "reader listen mode", no modulation (listen
1540 // only, since we are receiving, not transmitting).
1541 // Signal field is on with the appropriate LED
1543 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1545 // Now get the answer from the card
1547 Demod
.output
= receivedResponse
;
1550 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1556 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1557 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1558 if(ManchesterDecoding(b
, offset
, 0)) {
1559 NextTransferTime
= MAX(NextTransferTime
, Demod
.endTime
- (DELAY_AIR2ARM_AS_READER
+ DELAY_ARM2AIR_AS_READER
)/16 + FRAME_DELAY_TIME_PICC_TO_PCD
);
1561 } else if(c
++ > iso14a_timeout
) {
1568 void ReaderTransmitBitsPar(uint8_t* frame
, int bits
, uint32_t par
, uint32_t *timing
)
1571 CodeIso14443aBitsAsReaderPar(frame
,bits
,par
);
1573 // Send command to tag
1574 TransmitFor14443a(ToSend
, ToSendMax
, timing
);
1578 // Log reader command in trace buffer
1580 LogTrace(frame
, nbytes(bits
), LastTimeProxToAirStart
*16 + DELAY_ARM2AIR_AS_READER
, par
, TRUE
);
1581 LogTrace(NULL
, 0, (LastTimeProxToAirStart
+ LastProxToAirDuration
)*16 + DELAY_ARM2AIR_AS_READER
, 0, TRUE
);
1585 void ReaderTransmitPar(uint8_t* frame
, int len
, uint32_t par
, uint32_t *timing
)
1587 ReaderTransmitBitsPar(frame
,len
*8,par
, timing
);
1590 void ReaderTransmitBits(uint8_t* frame
, int len
, uint32_t *timing
)
1592 // Generate parity and redirect
1593 ReaderTransmitBitsPar(frame
,len
,GetParity(frame
,len
/8), timing
);
1596 void ReaderTransmit(uint8_t* frame
, int len
, uint32_t *timing
)
1598 // Generate parity and redirect
1599 ReaderTransmitBitsPar(frame
,len
*8,GetParity(frame
,len
), timing
);
1602 int ReaderReceiveOffset(uint8_t* receivedAnswer
, uint16_t offset
)
1604 if (!GetIso14443aAnswerFromTag(receivedAnswer
,offset
,160)) return FALSE
;
1606 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.parityBits
, FALSE
);
1607 LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, 0, FALSE
);
1612 int ReaderReceive(uint8_t* receivedAnswer
)
1614 return ReaderReceiveOffset(receivedAnswer
, 0);
1617 int ReaderReceivePar(uint8_t *receivedAnswer
, uint32_t *parptr
)
1619 if (!GetIso14443aAnswerFromTag(receivedAnswer
,0,160)) return FALSE
;
1621 LogTrace(receivedAnswer
, Demod
.len
, Demod
.startTime
*16 - DELAY_AIR2ARM_AS_READER
, Demod
.parityBits
, FALSE
);
1622 LogTrace(NULL
, 0, Demod
.endTime
*16 - DELAY_AIR2ARM_AS_READER
, 0, FALSE
);
1624 *parptr
= Demod
.parityBits
;
1628 /* performs iso14443a anticollision procedure
1629 * fills the uid pointer unless NULL
1630 * fills resp_data unless NULL */
1631 int iso14443a_select_card(byte_t
* uid_ptr
, iso14a_card_select_t
* p_hi14a_card
, uint32_t* cuid_ptr
) {
1632 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1633 uint8_t sel_all
[] = { 0x93,0x20 };
1634 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1635 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1636 uint8_t* resp
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
); // was 3560 - tied to other size changes
1638 size_t uid_resp_len
;
1640 uint8_t sak
= 0x04; // cascade uid
1641 int cascade_level
= 0;
1644 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1645 ReaderTransmitBitsPar(wupa
,7,0, NULL
);
1648 if(!ReaderReceive(resp
)) return 0;
1649 // Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
1652 memcpy(p_hi14a_card
->atqa
, resp
, 2);
1653 p_hi14a_card
->uidlen
= 0;
1654 memset(p_hi14a_card
->uid
,0,10);
1659 memset(uid_ptr
,0,10);
1662 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1663 // which case we need to make a cascade 2 request and select - this is a long UID
1664 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1665 for(; sak
& 0x04; cascade_level
++) {
1666 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1667 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1670 ReaderTransmit(sel_all
,sizeof(sel_all
), NULL
);
1671 if (!ReaderReceive(resp
)) return 0;
1673 if (Demod
.collisionPos
) { // we had a collision and need to construct the UID bit by bit
1674 memset(uid_resp
, 0, 4);
1675 uint16_t uid_resp_bits
= 0;
1676 uint16_t collision_answer_offset
= 0;
1677 // anti-collision-loop:
1678 while (Demod
.collisionPos
) {
1679 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod
.collisionPos
);
1680 for (uint16_t i
= collision_answer_offset
; i
< Demod
.collisionPos
; i
++, uid_resp_bits
++) { // add valid UID bits before collision point
1681 uint16_t UIDbit
= (resp
[i
/8] >> (i
% 8)) & 0x01;
1682 uid_resp
[uid_resp_bits
& 0xf8] |= UIDbit
<< (uid_resp_bits
% 8);
1684 uid_resp
[uid_resp_bits
/8] |= 1 << (uid_resp_bits
% 8); // next time select the card(s) with a 1 in the collision position
1686 // construct anticollosion command:
1687 sel_uid
[1] = ((2 + uid_resp_bits
/8) << 4) | (uid_resp_bits
& 0x07); // length of data in bytes and bits
1688 for (uint16_t i
= 0; i
<= uid_resp_bits
/8; i
++) {
1689 sel_uid
[2+i
] = uid_resp
[i
];
1691 collision_answer_offset
= uid_resp_bits
%8;
1692 ReaderTransmitBits(sel_uid
, 16 + uid_resp_bits
, NULL
);
1693 if (!ReaderReceiveOffset(resp
, collision_answer_offset
)) return 0;
1695 // finally, add the last bits and BCC of the UID
1696 for (uint16_t i
= collision_answer_offset
; i
< (Demod
.len
-1)*8; i
++, uid_resp_bits
++) {
1697 uint16_t UIDbit
= (resp
[i
/8] >> (i
%8)) & 0x01;
1698 uid_resp
[uid_resp_bits
/8] |= UIDbit
<< (uid_resp_bits
% 8);
1701 } else { // no collision, use the response to SELECT_ALL as current uid
1702 memcpy(uid_resp
,resp
,4);
1705 // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
1707 // calculate crypto UID. Always use last 4 Bytes.
1709 *cuid_ptr
= bytes_to_num(uid_resp
, 4);
1712 // Construct SELECT UID command
1713 sel_uid
[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1714 memcpy(sel_uid
+2,uid_resp
,4); // the UID
1715 sel_uid
[6] = sel_uid
[2] ^ sel_uid
[3] ^ sel_uid
[4] ^ sel_uid
[5]; // calculate and add BCC
1716 AppendCrc14443a(sel_uid
,7); // calculate and add CRC
1717 ReaderTransmit(sel_uid
,sizeof(sel_uid
), NULL
);
1720 if (!ReaderReceive(resp
)) return 0;
1723 // Test if more parts of the uid are comming
1724 if ((sak
& 0x04) /* && uid_resp[0] == 0x88 */) {
1725 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1726 // http://www.nxp.com/documents/application_note/AN10927.pdf
1727 memcpy(uid_resp
, uid_resp
+ 1, 3);
1732 memcpy(uid_ptr
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1736 memcpy(p_hi14a_card
->uid
+ (cascade_level
*3), uid_resp
, uid_resp_len
);
1737 p_hi14a_card
->uidlen
+= uid_resp_len
;
1742 p_hi14a_card
->sak
= sak
;
1743 p_hi14a_card
->ats_len
= 0;
1746 if( (sak
& 0x20) == 0) {
1747 return 2; // non iso14443a compliant tag
1750 // Request for answer to select
1751 AppendCrc14443a(rats
, 2);
1752 ReaderTransmit(rats
, sizeof(rats
), NULL
);
1754 if (!(len
= ReaderReceive(resp
))) return 0;
1757 memcpy(p_hi14a_card
->ats
, resp
, sizeof(p_hi14a_card
->ats
));
1758 p_hi14a_card
->ats_len
= len
;
1761 // reset the PCB block number
1762 iso14_pcb_blocknum
= 0;
1766 void iso14443a_setup(uint8_t fpga_minor_mode
) {
1767 // Set up the synchronous serial port
1769 // connect Demodulated Signal to ADC:
1770 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1772 // Signal field is on with the appropriate LED
1773 if (fpga_minor_mode
== FPGA_HF_ISO14443A_READER_MOD
1774 || fpga_minor_mode
== FPGA_HF_ISO14443A_READER_LISTEN
) {
1779 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| fpga_minor_mode
);
1786 NextTransferTime
= 2*DELAY_ARM2AIR_AS_READER
;
1787 iso14a_set_timeout(1050); // 10ms default
1790 int iso14_apdu(uint8_t * cmd
, size_t cmd_len
, void * data
) {
1791 uint8_t real_cmd
[cmd_len
+4];
1792 real_cmd
[0] = 0x0a; //I-Block
1793 // put block number into the PCB
1794 real_cmd
[0] |= iso14_pcb_blocknum
;
1795 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1796 memcpy(real_cmd
+2, cmd
, cmd_len
);
1797 AppendCrc14443a(real_cmd
,cmd_len
+2);
1799 ReaderTransmit(real_cmd
, cmd_len
+4, NULL
);
1800 size_t len
= ReaderReceive(data
);
1801 uint8_t * data_bytes
= (uint8_t *) data
;
1803 return 0; //DATA LINK ERROR
1804 // if we received an I- or R(ACK)-Block with a block number equal to the
1805 // current block number, toggle the current block number
1806 else if (len
>= 4 // PCB+CID+CRC = 4 bytes
1807 && ((data_bytes
[0] & 0xC0) == 0 // I-Block
1808 || (data_bytes
[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1809 && (data_bytes
[0] & 0x01) == iso14_pcb_blocknum
) // equal block numbers
1811 iso14_pcb_blocknum
^= 1;
1817 //-----------------------------------------------------------------------------
1818 // Read an ISO 14443a tag. Send out commands and store answers.
1820 //-----------------------------------------------------------------------------
1821 void ReaderIso14443a(UsbCommand
*c
)
1823 iso14a_command_t param
= c
->arg
[0];
1824 uint8_t *cmd
= c
->d
.asBytes
;
1825 size_t len
= c
->arg
[1];
1826 size_t lenbits
= c
->arg
[2];
1828 byte_t buf
[USB_CMD_DATA_SIZE
];
1830 if(param
& ISO14A_CONNECT
) {
1831 iso14a_clear_trace();
1834 iso14a_set_tracing(TRUE
);
1836 if(param
& ISO14A_REQUEST_TRIGGER
) {
1837 iso14a_set_trigger(TRUE
);
1840 if(param
& ISO14A_CONNECT
) {
1841 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN
);
1842 if(!(param
& ISO14A_NO_SELECT
)) {
1843 iso14a_card_select_t
*card
= (iso14a_card_select_t
*)buf
;
1844 arg0
= iso14443a_select_card(NULL
,card
,NULL
);
1845 cmd_send(CMD_ACK
,arg0
,card
->uidlen
,0,buf
,sizeof(iso14a_card_select_t
));
1849 if(param
& ISO14A_SET_TIMEOUT
) {
1850 iso14a_timeout
= c
->arg
[2];
1853 if(param
& ISO14A_APDU
) {
1854 arg0
= iso14_apdu(cmd
, len
, buf
);
1855 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1858 if(param
& ISO14A_RAW
) {
1859 if(param
& ISO14A_APPEND_CRC
) {
1860 AppendCrc14443a(cmd
,len
);
1864 ReaderTransmitBitsPar(cmd
,lenbits
,GetParity(cmd
,lenbits
/8), NULL
);
1866 ReaderTransmit(cmd
,len
, NULL
);
1868 arg0
= ReaderReceive(buf
);
1869 cmd_send(CMD_ACK
,arg0
,0,0,buf
,sizeof(buf
));
1872 if(param
& ISO14A_REQUEST_TRIGGER
) {
1873 iso14a_set_trigger(FALSE
);
1876 if(param
& ISO14A_NO_DISCONNECT
) {
1880 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1885 // Determine the distance between two nonces.
1886 // Assume that the difference is small, but we don't know which is first.
1887 // Therefore try in alternating directions.
1888 int32_t dist_nt(uint32_t nt1
, uint32_t nt2
) {
1891 uint32_t nttmp1
, nttmp2
;
1893 if (nt1
== nt2
) return 0;
1898 for (i
= 1; i
< 32768; i
++) {
1899 nttmp1
= prng_successor(nttmp1
, 1);
1900 if (nttmp1
== nt2
) return i
;
1901 nttmp2
= prng_successor(nttmp2
, 1);
1902 if (nttmp2
== nt1
) return -i
;
1905 return(-99999); // either nt1 or nt2 are invalid nonces
1909 //-----------------------------------------------------------------------------
1910 // Recover several bits of the cypher stream. This implements (first stages of)
1911 // the algorithm described in "The Dark Side of Security by Obscurity and
1912 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1913 // (article by Nicolas T. Courtois, 2009)
1914 //-----------------------------------------------------------------------------
1915 void ReaderMifare(bool first_try
)
1918 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1919 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1920 static uint8_t mf_nr_ar3
;
1922 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + FREE_BUFFER_OFFSET
);
1924 iso14a_clear_trace();
1925 iso14a_set_tracing(TRUE
);
1929 //byte_t par_mask = 0xff;
1930 static byte_t par_low
= 0;
1935 uint32_t nt
, previous_nt
;
1936 static uint32_t nt_attacked
= 0;
1937 byte_t par_list
[8] = {0,0,0,0,0,0,0,0};
1938 byte_t ks_list
[8] = {0,0,0,0,0,0,0,0};
1940 static uint32_t sync_time
;
1941 static uint32_t sync_cycles
;
1942 int catch_up_cycles
= 0;
1943 int last_catch_up
= 0;
1944 uint16_t consecutive_resyncs
= 0;
1951 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
1952 sync_time
= GetCountSspClk() & 0xfffffff8;
1953 sync_cycles
= 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
1959 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
1960 // nt_attacked = prng_successor(nt_attacked, 1);
1962 mf_nr_ar
[3] = mf_nr_ar3
;
1971 for(uint16_t i
= 0; TRUE
; i
++) {
1975 // Test if the action was cancelled
1976 if(BUTTON_PRESS()) {
1982 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
1983 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Can't select card");
1987 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
+ catch_up_cycles
;
1988 catch_up_cycles
= 0;
1990 // if we missed the sync time already, advance to the next nonce repeat
1991 while(GetCountSspClk() > sync_time
) {
1992 sync_time
= (sync_time
& 0xfffffff8) + sync_cycles
;
1995 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
1996 ReaderTransmit(mf_auth
, sizeof(mf_auth
), &sync_time
);
1998 // Receive the (4 Byte) "random" nonce
1999 if (!ReaderReceive(receivedAnswer
)) {
2000 if (MF_DBGLEVEL
>= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2005 nt
= bytes_to_num(receivedAnswer
, 4);
2007 // Transmit reader nonce with fake par
2008 ReaderTransmitPar(mf_nr_ar
, sizeof(mf_nr_ar
), par
, NULL
);
2010 if (first_try
&& previous_nt
&& !nt_attacked
) { // we didn't calibrate our clock yet
2011 int nt_distance
= dist_nt(previous_nt
, nt
);
2012 if (nt_distance
== 0) {
2016 if (nt_distance
== -99999) { // invalid nonce received, try again
2019 sync_cycles
= (sync_cycles
- nt_distance
);
2020 if (MF_DBGLEVEL
>= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i
, nt_distance
, sync_cycles
);
2025 if ((nt
!= nt_attacked
) && nt_attacked
) { // we somehow lost sync. Try to catch up again...
2026 catch_up_cycles
= -dist_nt(nt_attacked
, nt
);
2027 if (catch_up_cycles
== 99999) { // invalid nonce received. Don't resync on that one.
2028 catch_up_cycles
= 0;
2031 if (catch_up_cycles
== last_catch_up
) {
2032 consecutive_resyncs
++;
2035 last_catch_up
= catch_up_cycles
;
2036 consecutive_resyncs
= 0;
2038 if (consecutive_resyncs
< 3) {
2039 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i
, -catch_up_cycles
, consecutive_resyncs
);
2042 sync_cycles
= sync_cycles
+ catch_up_cycles
;
2043 if (MF_DBGLEVEL
>= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i
, -catch_up_cycles
, sync_cycles
);
2048 consecutive_resyncs
= 0;
2050 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2051 if (ReaderReceive(receivedAnswer
))
2053 catch_up_cycles
= 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2057 par_low
= par
& 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2061 if(led_on
) LED_B_ON(); else LED_B_OFF();
2063 par_list
[nt_diff
] = par
;
2064 ks_list
[nt_diff
] = receivedAnswer
[0] ^ 0x05;
2066 // Test if the information is complete
2067 if (nt_diff
== 0x07) {
2072 nt_diff
= (nt_diff
+ 1) & 0x07;
2073 mf_nr_ar
[3] = (mf_nr_ar
[3] & 0x1F) | (nt_diff
<< 5);
2076 if (nt_diff
== 0 && first_try
)
2080 par
= (((par
>> 3) + 1) << 3) | par_low
;
2086 mf_nr_ar
[3] &= 0x1F;
2089 memcpy(buf
+ 0, uid
, 4);
2090 num_to_bytes(nt
, 4, buf
+ 4);
2091 memcpy(buf
+ 8, par_list
, 8);
2092 memcpy(buf
+ 16, ks_list
, 8);
2093 memcpy(buf
+ 24, mf_nr_ar
, 4);
2095 cmd_send(CMD_ACK
,isOK
,0,0,buf
,28);
2098 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2101 iso14a_set_tracing(FALSE
);
2105 *MIFARE 1K simulate.
2108 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2109 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2110 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2111 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2112 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2114 void Mifare1ksim(uint8_t flags
, uint8_t exitAfterNReads
, uint8_t arg2
, uint8_t *datain
)
2116 int cardSTATE
= MFEMUL_NOFIELD
;
2118 int vHf
= 0; // in mV
2120 uint32_t selTimer
= 0;
2121 uint32_t authTimer
= 0;
2124 uint8_t cardWRBL
= 0;
2125 uint8_t cardAUTHSC
= 0;
2126 uint8_t cardAUTHKEY
= 0xff; // no authentication
2127 uint32_t cardRr
= 0;
2129 //uint32_t rn_enc = 0;
2131 uint32_t cardINTREG
= 0;
2132 uint8_t cardINTBLOCK
= 0;
2133 struct Crypto1State mpcs
= {0, 0};
2134 struct Crypto1State
*pcs
;
2136 uint32_t numReads
= 0;//Counts numer of times reader read a block
2137 uint8_t* receivedCmd
= eml_get_bigbufptr_recbuf();
2138 uint8_t *response
= eml_get_bigbufptr_sendbuf();
2140 uint8_t rATQA
[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2141 uint8_t rUIDBCC1
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2142 uint8_t rUIDBCC2
[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2143 uint8_t rSAK
[] = {0x08, 0xb6, 0xdd};
2144 uint8_t rSAK1
[] = {0x04, 0xda, 0x17};
2146 uint8_t rAUTH_NT
[] = {0x01, 0x02, 0x03, 0x04};
2147 uint8_t rAUTH_AT
[] = {0x00, 0x00, 0x00, 0x00};
2149 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2150 // This can be used in a reader-only attack.
2151 // (it can also be retrieved via 'hf 14a list', but hey...
2152 uint32_t ar_nr_responses
[] = {0,0,0,0,0,0,0,0};
2153 uint8_t ar_nr_collected
= 0;
2156 iso14a_clear_trace();
2157 iso14a_set_tracing(TRUE
);
2159 // Authenticate response - nonce
2160 uint32_t nonce
= bytes_to_num(rAUTH_NT
, 4);
2162 //-- Determine the UID
2163 // Can be set from emulator memory, incoming data
2164 // and can be 7 or 4 bytes long
2165 if (flags
& FLAG_4B_UID_IN_DATA
)
2167 // 4B uid comes from data-portion of packet
2168 memcpy(rUIDBCC1
,datain
,4);
2169 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2171 } else if (flags
& FLAG_7B_UID_IN_DATA
) {
2172 // 7B uid comes from data-portion of packet
2173 memcpy(&rUIDBCC1
[1],datain
,3);
2174 memcpy(rUIDBCC2
, datain
+3, 4);
2177 // get UID from emul memory
2178 emlGetMemBt(receivedCmd
, 7, 1);
2179 _7BUID
= !(receivedCmd
[0] == 0x00);
2180 if (!_7BUID
) { // ---------- 4BUID
2181 emlGetMemBt(rUIDBCC1
, 0, 4);
2182 } else { // ---------- 7BUID
2183 emlGetMemBt(&rUIDBCC1
[1], 0, 3);
2184 emlGetMemBt(rUIDBCC2
, 3, 4);
2189 * Regardless of what method was used to set the UID, set fifth byte and modify
2190 * the ATQA for 4 or 7-byte UID
2192 rUIDBCC1
[4] = rUIDBCC1
[0] ^ rUIDBCC1
[1] ^ rUIDBCC1
[2] ^ rUIDBCC1
[3];
2196 rUIDBCC2
[4] = rUIDBCC2
[0] ^ rUIDBCC2
[1] ^ rUIDBCC2
[2] ^ rUIDBCC2
[3];
2199 // We need to listen to the high-frequency, peak-detected path.
2200 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
2203 if (MF_DBGLEVEL
>= 1) {
2205 Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1
[0] , rUIDBCC1
[1] , rUIDBCC1
[2] , rUIDBCC1
[3]);
2207 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1
[0] , rUIDBCC1
[1] , rUIDBCC1
[2] , rUIDBCC1
[3],rUIDBCC2
[0],rUIDBCC2
[1] ,rUIDBCC2
[2] , rUIDBCC2
[3]);
2211 bool finished
= FALSE
;
2212 while (!BUTTON_PRESS() && !finished
) {
2215 // find reader field
2216 // Vref = 3300mV, and an 10:1 voltage divider on the input
2217 // can measure voltages up to 33000 mV
2218 if (cardSTATE
== MFEMUL_NOFIELD
) {
2219 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
2220 if (vHf
> MF_MINFIELDV
) {
2221 cardSTATE_TO_IDLE();
2225 if(cardSTATE
== MFEMUL_NOFIELD
) continue;
2229 res
= EmGetCmd(receivedCmd
, &len
);
2230 if (res
== 2) { //Field is off!
2231 cardSTATE
= MFEMUL_NOFIELD
;
2234 } else if (res
== 1) {
2235 break; //return value 1 means button press
2238 // REQ or WUP request in ANY state and WUP in HALTED state
2239 if (len
== 1 && ((receivedCmd
[0] == 0x26 && cardSTATE
!= MFEMUL_HALTED
) || receivedCmd
[0] == 0x52)) {
2240 selTimer
= GetTickCount();
2241 EmSendCmdEx(rATQA
, sizeof(rATQA
), (receivedCmd
[0] == 0x52));
2242 cardSTATE
= MFEMUL_SELECT1
;
2244 // init crypto block
2247 crypto1_destroy(pcs
);
2252 switch (cardSTATE
) {
2253 case MFEMUL_NOFIELD
:
2256 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2257 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2260 case MFEMUL_SELECT1
:{
2262 if (len
== 2 && (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x20)) {
2263 if (MF_DBGLEVEL
>= 4) Dbprintf("SELECT ALL received");
2264 EmSendCmd(rUIDBCC1
, sizeof(rUIDBCC1
));
2268 if (MF_DBGLEVEL
>= 4 && len
== 9 && receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 )
2270 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd
[2],receivedCmd
[3],receivedCmd
[4],receivedCmd
[5]);
2274 (receivedCmd
[0] == 0x93 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC1
, 4) == 0)) {
2275 EmSendCmd(_7BUID
?rSAK1
:rSAK
, sizeof(_7BUID
?rSAK1
:rSAK
));
2276 cuid
= bytes_to_num(rUIDBCC1
, 4);
2278 cardSTATE
= MFEMUL_WORK
;
2280 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer
);
2283 cardSTATE
= MFEMUL_SELECT2
;
2291 cardSTATE_TO_IDLE();
2292 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2293 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2296 uint32_t ar
= bytes_to_num(receivedCmd
, 4);
2297 uint32_t nr
= bytes_to_num(&receivedCmd
[4], 4);
2300 if(ar_nr_collected
< 2){
2301 if(ar_nr_responses
[2] != ar
)
2302 {// Avoid duplicates... probably not necessary, ar should vary.
2303 ar_nr_responses
[ar_nr_collected
*4] = cuid
;
2304 ar_nr_responses
[ar_nr_collected
*4+1] = nonce
;
2305 ar_nr_responses
[ar_nr_collected
*4+2] = ar
;
2306 ar_nr_responses
[ar_nr_collected
*4+3] = nr
;
2312 crypto1_word(pcs
, ar
, 1);
2313 cardRr
= nr
^ crypto1_word(pcs
, 0, 0);
2316 if (cardRr
!= prng_successor(nonce
, 64)){
2317 if (MF_DBGLEVEL
>= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr
, prng_successor(nonce
, 64));
2318 // Shouldn't we respond anything here?
2319 // Right now, we don't nack or anything, which causes the
2320 // reader to do a WUPA after a while. /Martin
2321 cardSTATE_TO_IDLE();
2322 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2323 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2327 ans
= prng_successor(nonce
, 96) ^ crypto1_word(pcs
, 0, 0);
2329 num_to_bytes(ans
, 4, rAUTH_AT
);
2331 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2333 cardSTATE
= MFEMUL_WORK
;
2334 if (MF_DBGLEVEL
>= 4) Dbprintf("AUTH COMPLETED. sector=%d, key=%d time=%d", cardAUTHSC
, cardAUTHKEY
, GetTickCount() - authTimer
);
2337 case MFEMUL_SELECT2
:{
2339 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2340 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2343 if (len
== 2 && (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x20)) {
2344 EmSendCmd(rUIDBCC2
, sizeof(rUIDBCC2
));
2350 (receivedCmd
[0] == 0x95 && receivedCmd
[1] == 0x70 && memcmp(&receivedCmd
[2], rUIDBCC2
, 4) == 0)) {
2351 EmSendCmd(rSAK
, sizeof(rSAK
));
2352 cuid
= bytes_to_num(rUIDBCC2
, 4);
2353 cardSTATE
= MFEMUL_WORK
;
2355 if (MF_DBGLEVEL
>= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer
);
2359 // i guess there is a command). go into the work state.
2361 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2362 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2365 cardSTATE
= MFEMUL_WORK
;
2367 //intentional fall-through to the next case-stmt
2372 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2373 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2377 bool encrypted_data
= (cardAUTHKEY
!= 0xFF) ;
2379 if(encrypted_data
) {
2381 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2384 if (len
== 4 && (receivedCmd
[0] == 0x60 || receivedCmd
[0] == 0x61)) {
2385 authTimer
= GetTickCount();
2386 cardAUTHSC
= receivedCmd
[1] / 4; // received block num
2387 cardAUTHKEY
= receivedCmd
[0] - 0x60;
2388 crypto1_destroy(pcs
);//Added by martin
2389 crypto1_create(pcs
, emlGetKey(cardAUTHSC
, cardAUTHKEY
));
2391 if (!encrypted_data
) { // first authentication
2392 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2394 crypto1_word(pcs
, cuid
^ nonce
, 0);//Update crypto state
2395 num_to_bytes(nonce
, 4, rAUTH_AT
); // Send nonce
2396 } else { // nested authentication
2397 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd
[1] ,receivedCmd
[1],cardAUTHKEY
);
2398 ans
= nonce
^ crypto1_word(pcs
, cuid
^ nonce
, 0);
2399 num_to_bytes(ans
, 4, rAUTH_AT
);
2401 EmSendCmd(rAUTH_AT
, sizeof(rAUTH_AT
));
2402 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2403 cardSTATE
= MFEMUL_AUTH1
;
2407 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2408 // BUT... ACK --> NACK
2409 if (len
== 1 && receivedCmd
[0] == CARD_ACK
) {
2410 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2414 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2415 if (len
== 1 && receivedCmd
[0] == CARD_NACK_NA
) {
2416 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2421 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2422 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2426 if(receivedCmd
[0] == 0x30 // read block
2427 || receivedCmd
[0] == 0xA0 // write block
2428 || receivedCmd
[0] == 0xC0
2429 || receivedCmd
[0] == 0xC1
2430 || receivedCmd
[0] == 0xC2 // inc dec restore
2431 || receivedCmd
[0] == 0xB0) { // transfer
2432 if (receivedCmd
[1] >= 16 * 4) {
2433 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2434 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2438 if (receivedCmd
[1] / 4 != cardAUTHSC
) {
2439 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2440 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd
[0],receivedCmd
[1],cardAUTHSC
);
2445 if (receivedCmd
[0] == 0x30) {
2446 if (MF_DBGLEVEL
>= 2) {
2447 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd
[1],receivedCmd
[1]);
2449 emlGetMem(response
, receivedCmd
[1], 1);
2450 AppendCrc14443a(response
, 16);
2451 mf_crypto1_encrypt(pcs
, response
, 18, &par
);
2452 EmSendCmdPar(response
, 18, par
);
2454 if(exitAfterNReads
> 0 && numReads
== exitAfterNReads
) {
2455 Dbprintf("%d reads done, exiting", numReads
);
2461 if (receivedCmd
[0] == 0xA0) {
2462 if (MF_DBGLEVEL
>= 2) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd
[1],receivedCmd
[1]);
2463 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2464 cardSTATE
= MFEMUL_WRITEBL2
;
2465 cardWRBL
= receivedCmd
[1];
2468 // increment, decrement, restore
2469 if (receivedCmd
[0] == 0xC0 || receivedCmd
[0] == 0xC1 || receivedCmd
[0] == 0xC2) {
2470 if (MF_DBGLEVEL
>= 2) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2471 if (emlCheckValBl(receivedCmd
[1])) {
2472 if (MF_DBGLEVEL
>= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2473 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2476 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2477 if (receivedCmd
[0] == 0xC1)
2478 cardSTATE
= MFEMUL_INTREG_INC
;
2479 if (receivedCmd
[0] == 0xC0)
2480 cardSTATE
= MFEMUL_INTREG_DEC
;
2481 if (receivedCmd
[0] == 0xC2)
2482 cardSTATE
= MFEMUL_INTREG_REST
;
2483 cardWRBL
= receivedCmd
[1];
2487 if (receivedCmd
[0] == 0xB0) {
2488 if (MF_DBGLEVEL
>= 2) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd
[0],receivedCmd
[1],receivedCmd
[1]);
2489 if (emlSetValBl(cardINTREG
, cardINTBLOCK
, receivedCmd
[1]))
2490 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2492 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2496 if (receivedCmd
[0] == 0x50 && receivedCmd
[1] == 0x00) {
2499 cardSTATE
= MFEMUL_HALTED
;
2500 if (MF_DBGLEVEL
>= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer
);
2501 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2502 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2506 if (receivedCmd
[0] == 0xe0) {//RATS
2507 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2510 // command not allowed
2511 if (MF_DBGLEVEL
>= 4) Dbprintf("Received command not allowed, nacking");
2512 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2515 case MFEMUL_WRITEBL2
:{
2517 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2518 emlSetMem(receivedCmd
, cardWRBL
, 1);
2519 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_ACK
));
2520 cardSTATE
= MFEMUL_WORK
;
2522 cardSTATE_TO_IDLE();
2523 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2524 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2529 case MFEMUL_INTREG_INC
:{
2530 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2531 memcpy(&ans
, receivedCmd
, 4);
2532 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2533 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2534 cardSTATE_TO_IDLE();
2537 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2538 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2539 cardINTREG
= cardINTREG
+ ans
;
2540 cardSTATE
= MFEMUL_WORK
;
2543 case MFEMUL_INTREG_DEC
:{
2544 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2545 memcpy(&ans
, receivedCmd
, 4);
2546 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2547 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2548 cardSTATE_TO_IDLE();
2551 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2552 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2553 cardINTREG
= cardINTREG
- ans
;
2554 cardSTATE
= MFEMUL_WORK
;
2557 case MFEMUL_INTREG_REST
:{
2558 mf_crypto1_decrypt(pcs
, receivedCmd
, len
);
2559 memcpy(&ans
, receivedCmd
, 4);
2560 if (emlGetValBl(&cardINTREG
, &cardINTBLOCK
, cardWRBL
)) {
2561 EmSend4bit(mf_crypto1_encrypt4bit(pcs
, CARD_NACK_NA
));
2562 cardSTATE_TO_IDLE();
2565 LogTrace(Uart
.output
, Uart
.len
, Uart
.startTime
*16 - DELAY_AIR2ARM_AS_TAG
, Uart
.parityBits
, TRUE
);
2566 LogTrace(NULL
, 0, Uart
.endTime
*16 - DELAY_AIR2ARM_AS_TAG
, 0, TRUE
);
2567 cardSTATE
= MFEMUL_WORK
;
2573 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2576 if(flags
& FLAG_INTERACTIVE
)// Interactive mode flag, means we need to send ACK
2578 //May just aswell send the collected ar_nr in the response aswell
2579 cmd_send(CMD_ACK
,CMD_SIMULATE_MIFARE_CARD
,0,0,&ar_nr_responses
,ar_nr_collected
*4*4);
2582 if(flags
& FLAG_NR_AR_ATTACK
)
2584 if(ar_nr_collected
> 1) {
2585 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2586 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2587 ar_nr_responses
[0], // UID
2588 ar_nr_responses
[1], //NT
2589 ar_nr_responses
[2], //AR1
2590 ar_nr_responses
[3], //NR1
2591 ar_nr_responses
[6], //AR2
2592 ar_nr_responses
[7] //NR2
2595 Dbprintf("Failed to obtain two AR/NR pairs!");
2596 if(ar_nr_collected
>0) {
2597 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2598 ar_nr_responses
[0], // UID
2599 ar_nr_responses
[1], //NT
2600 ar_nr_responses
[2], //AR1
2601 ar_nr_responses
[3] //NR1
2606 if (MF_DBGLEVEL
>= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing
, traceLen
);
2611 //-----------------------------------------------------------------------------
2614 //-----------------------------------------------------------------------------
2615 void RAMFUNC
SniffMifare(uint8_t param
) {
2617 // bit 0 - trigger from first card answer
2618 // bit 1 - trigger from first reader 7-bit request
2620 // C(red) A(yellow) B(green)
2622 // init trace buffer
2623 iso14a_clear_trace();
2625 // The command (reader -> tag) that we're receiving.
2626 // The length of a received command will in most cases be no more than 18 bytes.
2627 // So 32 should be enough!
2628 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
2629 // The response (tag -> reader) that we're receiving.
2630 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
2632 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2633 // into trace, along with its length and other annotations.
2634 //uint8_t *trace = (uint8_t *)BigBuf;
2636 // The DMA buffer, used to stream samples from the FPGA
2637 uint8_t *dmaBuf
= ((uint8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
2638 uint8_t *data
= dmaBuf
;
2639 uint8_t previous_data
= 0;
2642 bool ReaderIsActive
= FALSE
;
2643 bool TagIsActive
= FALSE
;
2645 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER
);
2647 // Set up the demodulator for tag -> reader responses.
2648 Demod
.output
= receivedResponse
;
2650 // Set up the demodulator for the reader -> tag commands
2651 Uart
.output
= receivedCmd
;
2653 // Setup for the DMA.
2654 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2661 // And now we loop, receiving samples.
2662 for(uint32_t sniffCounter
= 0; TRUE
; ) {
2664 if(BUTTON_PRESS()) {
2665 DbpString("cancelled by button");
2672 if ((sniffCounter
& 0x0000FFFF) == 0) { // from time to time
2673 // check if a transaction is completed (timeout after 2000ms).
2674 // if yes, stop the DMA transfer and send what we have so far to the client
2675 if (MfSniffSend(2000)) {
2676 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2680 ReaderIsActive
= FALSE
;
2681 TagIsActive
= FALSE
;
2682 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
); // set transfer address and number of bytes. Start transfer.
2686 int register readBufDataP
= data
- dmaBuf
; // number of bytes we have processed so far
2687 int register dmaBufDataP
= DMA_BUFFER_SIZE
- AT91C_BASE_PDC_SSC
->PDC_RCR
; // number of bytes already transferred
2688 if (readBufDataP
<= dmaBufDataP
){ // we are processing the same block of data which is currently being transferred
2689 dataLen
= dmaBufDataP
- readBufDataP
; // number of bytes still to be processed
2691 dataLen
= DMA_BUFFER_SIZE
- readBufDataP
+ dmaBufDataP
; // number of bytes still to be processed
2693 // test for length of buffer
2694 if(dataLen
> maxDataLen
) { // we are more behind than ever...
2695 maxDataLen
= dataLen
;
2697 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen
);
2701 if(dataLen
< 1) continue;
2703 // primary buffer was stopped ( <-- we lost data!
2704 if (!AT91C_BASE_PDC_SSC
->PDC_RCR
) {
2705 AT91C_BASE_PDC_SSC
->PDC_RPR
= (uint32_t) dmaBuf
;
2706 AT91C_BASE_PDC_SSC
->PDC_RCR
= DMA_BUFFER_SIZE
;
2707 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen
); // temporary
2709 // secondary buffer sets as primary, secondary buffer was stopped
2710 if (!AT91C_BASE_PDC_SSC
->PDC_RNCR
) {
2711 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
;
2712 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
2717 if (sniffCounter
& 0x01) {
2719 if(!TagIsActive
) { // no need to try decoding tag data if the reader is sending
2720 uint8_t readerdata
= (previous_data
& 0xF0) | (*data
>> 4);
2721 if(MillerDecoding(readerdata
, (sniffCounter
-1)*4)) {
2723 if (MfSniffLogic(receivedCmd
, Uart
.len
, Uart
.parityBits
, Uart
.bitCount
, TRUE
)) break;
2725 /* And ready to receive another command. */
2728 /* And also reset the demod code */
2731 ReaderIsActive
= (Uart
.state
!= STATE_UNSYNCD
);
2734 if(!ReaderIsActive
) { // no need to try decoding tag data if the reader is sending
2735 uint8_t tagdata
= (previous_data
<< 4) | (*data
& 0x0F);
2736 if(ManchesterDecoding(tagdata
, 0, (sniffCounter
-1)*4)) {
2739 if (MfSniffLogic(receivedResponse
, Demod
.len
, Demod
.parityBits
, Demod
.bitCount
, FALSE
)) break;
2741 // And ready to receive another response.
2744 TagIsActive
= (Demod
.state
!= DEMOD_UNSYNCD
);
2748 previous_data
= *data
;
2751 if(data
== dmaBuf
+ DMA_BUFFER_SIZE
) {
2757 DbpString("COMMAND FINISHED");
2759 FpgaDisableSscDma();
2762 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen
, Uart
.state
, Uart
.len
);