1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
17 #include "proxmark3.h"
24 #include "legicrfsim.h"
27 #include "iso14443b.h"
29 #include "lfsampling.h"
31 #include "mifareutil.h"
35 #include "fpgaloader.h"
40 static uint32_t hw_capabilities
;
42 // Craig Young - 14a stand-alone code
44 #include "iso14443a.h"
47 //=============================================================================
48 // A buffer where we can queue things up to be sent through the FPGA, for
49 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
50 // is the order in which they go out on the wire.
51 //=============================================================================
53 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
54 uint8_t ToSend
[TOSEND_BUFFER_SIZE
];
57 struct common_area common_area
__attribute__((section(".commonarea")));
59 void ToSendReset(void)
65 void ToSendStuffBit(int b
)
69 ToSend
[ToSendMax
] = 0;
74 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
79 if(ToSendMax
>= sizeof(ToSend
)) {
81 DbpString("ToSendStuffBit overflowed!");
85 //=============================================================================
86 // Debug print functions, to go out over USB, to the usual PC-side client.
87 //=============================================================================
89 void DbpString(char *str
)
91 byte_t len
= strlen(str
);
92 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
96 void DbpIntegers(int x1
, int x2
, int x3
)
98 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
102 void Dbprintf(const char *fmt
, ...) {
103 // should probably limit size here; oh well, let's just use a big buffer
104 char output_string
[128];
108 kvsprintf(fmt
, output_string
, 10, ap
);
111 DbpString(output_string
);
114 // prints HEX & ASCII
115 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
128 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
131 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
133 Dbprintf("%*D",l
,d
," ");
141 //-----------------------------------------------------------------------------
142 // Read an ADC channel and block till it completes, then return the result
143 // in ADC units (0 to 1023). Also a routine to average 32 samples and
145 //-----------------------------------------------------------------------------
146 static int ReadAdc(int ch
)
148 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
149 // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
150 // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
153 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
155 // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
157 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
158 AT91C_BASE_ADC
->ADC_MR
=
159 ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
160 ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
161 ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
163 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
164 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
166 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
))) {};
168 return AT91C_BASE_ADC
->ADC_CDR
[ch
] & 0x3ff;
171 int AvgAdc(int ch
) // was static - merlok
176 for(i
= 0; i
< 32; i
++) {
180 return (a
+ 15) >> 5;
183 static int AvgAdc_Voltage_HF(void)
185 int AvgAdc_Voltage_Low
, AvgAdc_Voltage_High
;
187 AvgAdc_Voltage_Low
= (MAX_ADC_HF_VOLTAGE_LOW
* AvgAdc(ADC_CHAN_HF_LOW
)) >> 10;
188 // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only)
189 if (AvgAdc_Voltage_Low
> MAX_ADC_HF_VOLTAGE_LOW
- 300) {
190 AvgAdc_Voltage_High
= (MAX_ADC_HF_VOLTAGE_HIGH
* AvgAdc(ADC_CHAN_HF_HIGH
)) >> 10;
191 if (AvgAdc_Voltage_High
>= AvgAdc_Voltage_Low
) {
192 return AvgAdc_Voltage_High
;
195 return AvgAdc_Voltage_Low
;
198 static int AvgAdc_Voltage_LF(void)
200 return (MAX_ADC_LF_VOLTAGE
* AvgAdc(ADC_CHAN_LF
)) >> 10;
203 void MeasureAntennaTuningLfOnly(int *vLf125
, int *vLf134
, int *peakf
, int *peakv
, uint8_t LF_Results
[])
205 int i
, adcval
= 0, peak
= 0;
208 * Sweeps the useful LF range of the proxmark from
209 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
210 * read the voltage in the antenna, the result left
211 * in the buffer is a graph which should clearly show
212 * the resonating frequency of your LF antenna
213 * ( hopefully around 95 if it is tuned to 125kHz!)
216 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
217 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
220 for (i
=255; i
>=19; i
--) {
222 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
224 adcval
= AvgAdc_Voltage_LF();
225 if (i
==95) *vLf125
= adcval
; // voltage at 125Khz
226 if (i
==89) *vLf134
= adcval
; // voltage at 134Khz
228 LF_Results
[i
] = adcval
>> 9; // scale int to fit in byte for graphing purposes
229 if(LF_Results
[i
] > peak
) {
231 peak
= LF_Results
[i
];
237 for (i
=18; i
>= 0; i
--) LF_Results
[i
] = 0;
242 void MeasureAntennaTuningHfOnly(int *vHf
)
244 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
246 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
247 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
249 *vHf
= AvgAdc_Voltage_HF();
254 void MeasureAntennaTuning(int mode
)
256 uint8_t LF_Results
[256] = {0};
257 int peakv
= 0, peakf
= 0;
258 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
262 if (((mode
& FLAG_TUNE_ALL
) == FLAG_TUNE_ALL
) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF
)) {
263 // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
264 MeasureAntennaTuningHfOnly(&vHf
);
265 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
267 if (mode
& FLAG_TUNE_LF
) {
268 MeasureAntennaTuningLfOnly(&vLf125
, &vLf134
, &peakf
, &peakv
, LF_Results
);
270 if (mode
& FLAG_TUNE_HF
) {
271 MeasureAntennaTuningHfOnly(&vHf
);
275 cmd_send(CMD_MEASURED_ANTENNA_TUNING
, vLf125
>>1 | (vLf134
>>1<<16), vHf
, peakf
| (peakv
>>1<<16), LF_Results
, 256);
276 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
281 void MeasureAntennaTuningHf(void)
283 int vHf
= 0; // in mV
285 DbpString("Measuring HF antenna, press button to exit");
287 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
288 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
289 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
293 vHf
= AvgAdc_Voltage_HF();
295 Dbprintf("%d mV",vHf
);
296 if (BUTTON_PRESS()) break;
298 DbpString("cancelled");
300 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
305 void ReadMem(int addr
)
307 const uint8_t *data
= ((uint8_t *)addr
);
309 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
310 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
313 /* osimage version information is linked in */
314 extern struct version_information version_information
;
315 /* bootrom version information is pointed to from _bootphase1_version_pointer */
316 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
, _bootrom_start
, _bootrom_end
, __data_src_start__
;
319 void set_hw_capabilities(void)
321 if (I2C_is_available()) {
322 hw_capabilities
|= HAS_SMARTCARD_SLOT
;
325 if (false) { // TODO: implement a test
326 hw_capabilities
|= HAS_EXTRA_FLASH_MEM
;
331 void SendVersion(void)
333 set_hw_capabilities();
335 char temp
[USB_CMD_DATA_SIZE
]; /* Limited data payload in USB packets */
336 char VersionString
[USB_CMD_DATA_SIZE
] = { '\0' };
338 /* Try to find the bootrom version information. Expect to find a pointer at
339 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
340 * pointer, then use it.
342 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
343 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
344 strcat(VersionString
, "bootrom version information appears invalid\n");
346 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
347 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
350 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
351 strncat(VersionString
, temp
, sizeof(VersionString
) - strlen(VersionString
) - 1);
353 for (int i
= 0; i
< fpga_bitstream_num
; i
++) {
354 strncat(VersionString
, fpga_version_information
[i
], sizeof(VersionString
) - strlen(VersionString
) - 1);
355 strncat(VersionString
, "\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
358 // test availability of SmartCard slot
359 if (I2C_is_available()) {
360 strncat(VersionString
, "SmartCard Slot: available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
362 strncat(VersionString
, "SmartCard Slot: not available\n", sizeof(VersionString
) - strlen(VersionString
) - 1);
365 // Send Chip ID and used flash memory
366 uint32_t text_and_rodata_section_size
= (uint32_t)&__data_src_start__
- (uint32_t)&_flash_start
;
367 uint32_t compressed_data_section_size
= common_area
.arg1
;
368 cmd_send(CMD_ACK
, *(AT91C_DBGU_CIDR
), text_and_rodata_section_size
+ compressed_data_section_size
, hw_capabilities
, VersionString
, strlen(VersionString
));
371 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
372 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
373 void printUSBSpeed(void)
375 Dbprintf("USB Speed:");
376 Dbprintf(" Sending USB packets to client...");
378 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
379 uint8_t *test_data
= BigBuf_get_addr();
382 uint32_t start_time
= end_time
= GetTickCount();
383 uint32_t bytes_transferred
= 0;
386 while(end_time
< start_time
+ USB_SPEED_TEST_MIN_TIME
) {
387 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
, 0, USB_CMD_DATA_SIZE
, 0, test_data
, USB_CMD_DATA_SIZE
);
388 end_time
= GetTickCount();
389 bytes_transferred
+= USB_CMD_DATA_SIZE
;
393 Dbprintf(" Time elapsed: %dms", end_time
- start_time
);
394 Dbprintf(" Bytes transferred: %d", bytes_transferred
);
395 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
396 1000 * bytes_transferred
/ (end_time
- start_time
));
401 * Prints runtime information about the PM3.
403 void SendStatus(void)
405 BigBuf_print_status();
407 #ifdef WITH_SMARTCARD
410 printConfig(); //LF Sampling config
413 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL
);
414 Dbprintf(" ToSendMax..........%d", ToSendMax
);
415 Dbprintf(" ToSendBit..........%d", ToSendBit
);
417 cmd_send(CMD_ACK
,1,0,0,0,0);
420 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone)
424 void StandAloneMode()
426 DbpString("Stand-alone mode! No PC necessary.");
427 // Oooh pretty -- notify user we're in elite samy mode now
429 LED(LED_ORANGE
, 200);
431 LED(LED_ORANGE
, 200);
433 LED(LED_ORANGE
, 200);
435 LED(LED_ORANGE
, 200);
444 #ifdef WITH_ISO14443a_StandAlone
445 void StandAloneMode14a()
448 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
451 bool playing
= false, GotoRecord
= false, GotoClone
= false;
452 bool cardRead
[OPTS
] = {false};
453 uint8_t readUID
[10] = {0};
454 uint32_t uid_1st
[OPTS
]={0};
455 uint32_t uid_2nd
[OPTS
]={0};
456 uint32_t uid_tmp1
= 0;
457 uint32_t uid_tmp2
= 0;
458 iso14a_card_select_t hi14a_card
[OPTS
];
460 LED(selected
+ 1, 0);
468 if (GotoRecord
|| !cardRead
[selected
])
472 LED(selected
+ 1, 0);
476 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected
);
477 /* need this delay to prevent catching some weird data */
479 /* Code for reading from 14a tag */
480 uint8_t uid
[10] ={0};
482 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD
);
487 if (BUTTON_PRESS()) {
488 if (cardRead
[selected
]) {
489 Dbprintf("Button press detected -- replaying card in bank[%d]", selected
);
492 else if (cardRead
[(selected
+1)%OPTS
]) {
493 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected
, (selected
+1)%OPTS
);
494 selected
= (selected
+1)%OPTS
;
498 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
502 if (!iso14443a_select_card(uid
, &hi14a_card
[selected
], &cuid
, true, 0, true))
506 Dbprintf("Read UID:"); Dbhexdump(10,uid
,0);
507 memcpy(readUID
,uid
,10*sizeof(uint8_t));
508 uint8_t *dst
= (uint8_t *)&uid_tmp1
;
509 // Set UID byte order
510 for (int i
=0; i
<4; i
++)
512 dst
= (uint8_t *)&uid_tmp2
;
513 for (int i
=0; i
<4; i
++)
515 if (uid_1st
[(selected
+1)%OPTS
] == uid_tmp1
&& uid_2nd
[(selected
+1)%OPTS
] == uid_tmp2
) {
516 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
520 Dbprintf("Bank[%d] received a 7-byte UID",selected
);
521 uid_1st
[selected
] = (uid_tmp1
)>>8;
522 uid_2nd
[selected
] = (uid_tmp1
<<24) + (uid_tmp2
>>8);
525 Dbprintf("Bank[%d] received a 4-byte UID",selected
);
526 uid_1st
[selected
] = uid_tmp1
;
527 uid_2nd
[selected
] = uid_tmp2
;
533 Dbprintf("ATQA = %02X%02X",hi14a_card
[selected
].atqa
[0],hi14a_card
[selected
].atqa
[1]);
534 Dbprintf("SAK = %02X",hi14a_card
[selected
].sak
);
537 LED(LED_ORANGE
, 200);
539 LED(LED_ORANGE
, 200);
542 LED(selected
+ 1, 0);
544 // Next state is replay:
547 cardRead
[selected
] = true;
549 /* MF Classic UID clone */
554 LED(selected
+ 1, 0);
555 LED(LED_ORANGE
, 250);
559 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected
, uid_1st
[selected
]);
561 // wait for button to be released
562 while(BUTTON_PRESS())
564 // Delay cloning until card is in place
567 Dbprintf("Starting clone. [Bank: %u]", selected
);
568 // need this delay to prevent catching some weird data
570 // Begin clone function here:
571 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
572 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
573 memcpy(c.d.asBytes, data, 16);
576 Block read is similar:
577 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
578 We need to imitate that call with blockNo 0 to set a uid.
580 The get and set commands are handled in this file:
581 // Work with "magic Chinese" card
582 case CMD_MIFARE_CSETBLOCK:
583 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
585 case CMD_MIFARE_CGETBLOCK:
586 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
589 mfCSetUID provides example logic for UID set workflow:
590 -Read block0 from card in field with MifareCGetBlock()
591 -Configure new values without replacing reserved bytes
592 memcpy(block0, uid, 4); // Copy UID bytes from byte array
594 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
595 Bytes 5-7 are reserved SAK and ATQA for mifare classic
596 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
598 uint8_t oldBlock0
[16] = {0}, newBlock0
[16] = {0}, testBlock0
[16] = {0};
599 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
600 MifareCGetBlock(0x3F, 1, 0, oldBlock0
);
601 if (oldBlock0
[0] == 0 && oldBlock0
[0] == oldBlock0
[1] && oldBlock0
[1] == oldBlock0
[2] && oldBlock0
[2] == oldBlock0
[3]) {
602 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected
);
606 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0
[0],oldBlock0
[1],oldBlock0
[2],oldBlock0
[3]);
607 memcpy(newBlock0
,oldBlock0
,16);
608 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
610 newBlock0
[0] = uid_1st
[selected
]>>24;
611 newBlock0
[1] = 0xFF & (uid_1st
[selected
]>>16);
612 newBlock0
[2] = 0xFF & (uid_1st
[selected
]>>8);
613 newBlock0
[3] = 0xFF & (uid_1st
[selected
]);
614 newBlock0
[4] = newBlock0
[0]^newBlock0
[1]^newBlock0
[2]^newBlock0
[3];
615 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
616 MifareCSetBlock(0, 0xFF,0, newBlock0
);
617 MifareCGetBlock(0x3F, 1, 0, testBlock0
);
618 if (memcmp(testBlock0
,newBlock0
,16)==0)
620 DbpString("Cloned successfull!");
621 cardRead
[selected
] = false; // Only if the card was cloned successfully should we clear it
624 selected
= (selected
+1) % OPTS
;
627 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected
);
632 LED(selected
+ 1, 0);
635 // Change where to record (or begin playing)
636 else if (playing
) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
639 LED(selected
+ 1, 0);
641 // Begin transmitting
643 DbpString("Playing");
646 int button_action
= BUTTON_HELD(1000);
647 if (button_action
== 0) { // No button action, proceed with sim
648 uint8_t data
[512] = {0}; // in case there is a read command received we shouldn't break
649 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st
[selected
],uid_2nd
[selected
],selected
);
650 if (hi14a_card
[selected
].sak
== 8 && hi14a_card
[selected
].atqa
[0] == 4 && hi14a_card
[selected
].atqa
[1] == 0) {
651 DbpString("Mifare Classic");
652 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
); // Mifare Classic
654 else if (hi14a_card
[selected
].sak
== 0 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 0) {
655 DbpString("Mifare Ultralight");
656 SimulateIso14443aTag(2,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare Ultralight
658 else if (hi14a_card
[selected
].sak
== 20 && hi14a_card
[selected
].atqa
[0] == 0x44 && hi14a_card
[selected
].atqa
[1] == 3) {
659 DbpString("Mifare DESFire");
660 SimulateIso14443aTag(3,uid_1st
[selected
],uid_2nd
[selected
],data
); // Mifare DESFire
663 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
664 SimulateIso14443aTag(1,uid_1st
[selected
], uid_2nd
[selected
], data
);
667 else if (button_action
== BUTTON_SINGLE_CLICK
) {
668 selected
= (selected
+ 1) % OPTS
;
669 Dbprintf("Done playing. Switching to record mode on bank %d",selected
);
673 else if (button_action
== BUTTON_HOLD
) {
674 Dbprintf("Playtime over. Begin cloning...");
681 /* We pressed a button so ignore it here with a delay */
684 LED(selected
+ 1, 0);
688 #elif WITH_LF_StandAlone
689 // samy's sniff and repeat routine
693 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
695 int tops
[OPTS
], high
[OPTS
], low
[OPTS
];
700 // Turn on selected LED
701 LED(selected
+ 1, 0);
708 // Was our button held down or pressed?
709 int button_pressed
= BUTTON_HELD(1000);
712 // Button was held for a second, begin recording
713 if (button_pressed
> 0 && cardRead
== 0)
716 LED(selected
+ 1, 0);
720 DbpString("Starting recording");
722 // wait for button to be released
723 while(BUTTON_PRESS())
726 /* need this delay to prevent catching some weird data */
729 CmdHIDdemodFSK(1, &tops
[selected
], &high
[selected
], &low
[selected
], 0);
730 if (tops
[selected
] > 0)
731 Dbprintf("Recorded %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
733 Dbprintf("Recorded %x %x%08x", selected
, high
[selected
], low
[selected
]);
736 LED(selected
+ 1, 0);
737 // Finished recording
739 // If we were previously playing, set playing off
740 // so next button push begins playing what we recorded
747 else if (button_pressed
> 0 && cardRead
== 1)
750 LED(selected
+ 1, 0);
754 if (tops
[selected
] > 0)
755 Dbprintf("Cloning %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
757 Dbprintf("Cloning %x %x%08x", selected
, high
[selected
], low
[selected
]);
759 // wait for button to be released
760 while(BUTTON_PRESS())
763 /* need this delay to prevent catching some weird data */
766 CopyHIDtoT55x7(tops
[selected
] & 0x000FFFFF, high
[selected
], low
[selected
], (tops
[selected
] != 0 && ((high
[selected
]& 0xFFFFFFC0) != 0)), 0x1D);
767 if (tops
[selected
] > 0)
768 Dbprintf("Cloned %x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
770 Dbprintf("Cloned %x %x%08x", selected
, high
[selected
], low
[selected
]);
773 LED(selected
+ 1, 0);
774 // Finished recording
776 // If we were previously playing, set playing off
777 // so next button push begins playing what we recorded
784 // Change where to record (or begin playing)
785 else if (button_pressed
)
787 // Next option if we were previously playing
789 selected
= (selected
+ 1) % OPTS
;
793 LED(selected
+ 1, 0);
795 // Begin transmitting
799 DbpString("Playing");
800 // wait for button to be released
801 while(BUTTON_PRESS())
803 if (tops
[selected
] > 0)
804 Dbprintf("%x %x%08x%08x", selected
, tops
[selected
], high
[selected
], low
[selected
]);
806 Dbprintf("%x %x%08x", selected
, high
[selected
], low
[selected
]);
808 CmdHIDsimTAG(tops
[selected
], high
[selected
], low
[selected
], 0);
809 DbpString("Done playing");
810 if (BUTTON_HELD(1000) > 0)
812 DbpString("Exiting");
817 /* We pressed a button so ignore it here with a delay */
820 // when done, we're done playing, move to next option
821 selected
= (selected
+ 1) % OPTS
;
824 LED(selected
+ 1, 0);
827 while(BUTTON_PRESS())
836 Listen and detect an external reader. Determine the best location
840 Inside the ListenReaderField() function, there is two mode.
841 By default, when you call the function, you will enter mode 1.
842 If you press the PM3 button one time, you will enter mode 2.
843 If you press the PM3 button a second time, you will exit the function.
845 DESCRIPTION OF MODE 1:
846 This mode just listens for an external reader field and lights up green
847 for HF and/or red for LF. This is the original mode of the detectreader
850 DESCRIPTION OF MODE 2:
851 This mode will visually represent, using the LEDs, the actual strength of the
852 current compared to the maximum current detected. Basically, once you know
853 what kind of external reader is present, it will help you spot the best location to place
854 your antenna. You will probably not get some good results if there is a LF and a HF reader
855 at the same place! :-)
859 static const char LIGHT_SCHEME
[] = {
860 0x0, /* ---- | No field detected */
861 0x1, /* X--- | 14% of maximum current detected */
862 0x2, /* -X-- | 29% of maximum current detected */
863 0x4, /* --X- | 43% of maximum current detected */
864 0x8, /* ---X | 57% of maximum current detected */
865 0xC, /* --XX | 71% of maximum current detected */
866 0xE, /* -XXX | 86% of maximum current detected */
867 0xF, /* XXXX | 100% of maximum current detected */
869 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
871 void ListenReaderField(int limit
)
873 int lf_av
, lf_av_new
=0, lf_baseline
= 0, lf_max
;
874 int hf_av
, hf_av_new
=0, hf_baseline
= 0, hf_max
;
875 int mode
=1, display_val
, display_max
, i
;
879 #define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT
880 #define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline
881 #define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline
884 // switch off FPGA - we don't want to measure our own signal
885 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
886 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
890 lf_av
= lf_max
= AvgAdc_Voltage_LF();
892 if(limit
!= HF_ONLY
) {
893 Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av
);
897 hf_av
= hf_max
= AvgAdc_Voltage_HF();
899 if (limit
!= LF_ONLY
) {
900 Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av
);
906 if (BUTTON_PRESS()) {
910 DbpString("Signal Strength Mode");
914 DbpString("Stopped");
919 while (BUTTON_PRESS());
923 if (limit
!= HF_ONLY
) {
925 if (lf_av
- lf_baseline
> MIN_LF_FIELD
)
931 lf_av_new
= AvgAdc_Voltage_LF();
932 // see if there's a significant change
933 if (ABS((lf_av
- lf_av_new
)*100/(lf_av
?lf_av
:1)) > REPORT_CHANGE_PERCENT
) {
934 Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new
);
941 if (limit
!= LF_ONLY
) {
943 if (hf_av
- hf_baseline
> MIN_HF_FIELD
)
949 hf_av_new
= AvgAdc_Voltage_HF();
951 // see if there's a significant change
952 if (ABS((hf_av
- hf_av_new
)*100/(hf_av
?hf_av
:1)) > REPORT_CHANGE_PERCENT
) {
953 Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new
);
961 if (limit
== LF_ONLY
) {
963 display_max
= lf_max
;
964 } else if (limit
== HF_ONLY
) {
966 display_max
= hf_max
;
967 } else { /* Pick one at random */
968 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
970 display_max
= hf_max
;
973 display_max
= lf_max
;
976 for (i
=0; i
<LIGHT_LEN
; i
++) {
977 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
978 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
979 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
980 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
981 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
989 void UsbPacketReceived(uint8_t *packet
, int len
)
991 UsbCommand
*c
= (UsbCommand
*)packet
;
993 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
997 case CMD_SET_LF_SAMPLING_CONFIG
:
998 setSamplingConfig((sample_config
*) c
->d
.asBytes
);
1000 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
1001 cmd_send(CMD_ACK
,SampleLF(c
->arg
[0], c
->arg
[1]),0,0,0,0);
1003 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
1004 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1006 case CMD_LF_SNOOP_RAW_ADC_SAMPLES
:
1007 cmd_send(CMD_ACK
,SnoopLF(),0,0,0,0);
1009 case CMD_HID_DEMOD_FSK
:
1010 CmdHIDdemodFSK(c
->arg
[0], 0, 0, 0, 1);
1012 case CMD_HID_SIM_TAG
:
1013 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], 1);
1015 case CMD_FSK_SIM_TAG
:
1016 CmdFSKsimTAG(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1018 case CMD_ASK_SIM_TAG
:
1019 CmdASKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1021 case CMD_PSK_SIM_TAG
:
1022 CmdPSKsimTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1024 case CMD_HID_CLONE_TAG
:
1025 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x1D);
1027 case CMD_PARADOX_CLONE_TAG
:
1028 // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function
1029 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0], 0x0F);
1031 case CMD_IO_DEMOD_FSK
:
1032 CmdIOdemodFSK(c
->arg
[0], 0, 0, 1);
1034 case CMD_IO_CLONE_TAG
:
1035 CopyIOtoT55x7(c
->arg
[0], c
->arg
[1]);
1037 case CMD_EM410X_DEMOD
:
1038 CmdEM410xdemod(c
->arg
[0], 0, 0, 1);
1040 case CMD_EM410X_WRITE_TAG
:
1041 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1043 case CMD_READ_TI_TYPE
:
1046 case CMD_WRITE_TI_TYPE
:
1047 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
1049 case CMD_SIMULATE_TAG_125K
:
1051 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
1054 case CMD_LF_SIMULATE_BIDIR
:
1055 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
1057 case CMD_INDALA_CLONE_TAG
:
1058 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
1060 case CMD_INDALA_CLONE_TAG_L
:
1061 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
1063 case CMD_T55XX_READ_BLOCK
:
1064 T55xxReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1066 case CMD_T55XX_WRITE_BLOCK
:
1067 T55xxWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
[0]);
1069 case CMD_T55XX_WAKEUP
:
1070 T55xxWakeUp(c
->arg
[0]);
1072 case CMD_T55XX_RESET_READ
:
1075 case CMD_PCF7931_READ
:
1078 case CMD_PCF7931_WRITE
:
1079 WritePCF7931(c
->d
.asBytes
[0],c
->d
.asBytes
[1],c
->d
.asBytes
[2],c
->d
.asBytes
[3],c
->d
.asBytes
[4],c
->d
.asBytes
[5],c
->d
.asBytes
[6], c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128, c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1081 case CMD_PCF7931_BRUTEFORCE
:
1082 BruteForcePCF7931(c
->arg
[0], (c
->arg
[1] & 0xFF), c
->d
.asBytes
[9], c
->d
.asBytes
[7]-128,c
->d
.asBytes
[8]-128);
1084 case CMD_EM4X_READ_WORD
:
1085 EM4xReadWord(c
->arg
[0], c
->arg
[1],c
->arg
[2]);
1087 case CMD_EM4X_WRITE_WORD
:
1088 EM4xWriteWord(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1090 case CMD_AWID_DEMOD_FSK
: // Set realtime AWID demodulation
1091 CmdAWIDdemodFSK(c
->arg
[0], 0, 0, 1);
1093 case CMD_VIKING_CLONE_TAG
:
1094 CopyVikingtoT55xx(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
1102 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
1103 SnoopHitag(c
->arg
[0]);
1105 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
1106 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1108 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
1109 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
1111 case CMD_SIMULATE_HITAG_S
:// Simulate Hitag s tag, args = memory content
1112 SimulateHitagSTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
1114 case CMD_TEST_HITAGS_TRACES
:// Tests every challenge within the given file
1115 check_challenges_cmd((bool)c
->arg
[0], (byte_t
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1]);
1117 case CMD_READ_HITAG_S
://Reader for only Hitag S tags, args = key or challenge
1118 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], false);
1120 case CMD_READ_HITAG_S_BLK
:
1121 ReadHitagSCmd((hitag_function
)c
->arg
[0], (hitag_data
*)c
->d
.asBytes
, (uint8_t)c
->arg
[1], (uint8_t)c
->arg
[2], true);
1123 case CMD_WR_HITAG_S
://writer for Hitag tags args=data to write,page and key or challenge
1124 if ((hitag_function
)c
->arg
[0] < 10) {
1125 WritePageHitagS((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
,c
->arg
[2]);
1127 else if ((hitag_function
)c
->arg
[0] >= 10) {
1128 WriterHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
, c
->arg
[2]);
1133 #ifdef WITH_ISO15693
1134 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
1135 AcquireRawAdcSamplesIso15693();
1138 case CMD_SNOOP_ISO_15693
:
1142 case CMD_ISO_15693_COMMAND
:
1143 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1146 case CMD_ISO_15693_FIND_AFI
:
1147 BruteforceIso15693Afi(c
->arg
[0]);
1150 case CMD_ISO_15693_DEBUG
:
1151 SetDebugIso15693(c
->arg
[0]);
1154 case CMD_READER_ISO_15693
:
1155 ReaderIso15693(c
->arg
[0]);
1157 case CMD_SIMTAG_ISO_15693
:
1158 SimTagIso15693(c
->arg
[0], c
->d
.asBytes
);
1163 case CMD_SIMULATE_TAG_LEGIC_RF
:
1164 LegicRfSimulate(c
->arg
[0]);
1167 case CMD_WRITER_LEGIC_RF
:
1168 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
1171 case CMD_READER_LEGIC_RF
:
1172 LegicRfReader(c
->arg
[0], c
->arg
[1]);
1176 #ifdef WITH_ISO14443b
1177 case CMD_READ_SRI512_TAG
:
1178 ReadSTMemoryIso14443b(0x0F);
1180 case CMD_READ_SRIX4K_TAG
:
1181 ReadSTMemoryIso14443b(0x7F);
1183 case CMD_SNOOP_ISO_14443B
:
1186 case CMD_SIMULATE_TAG_ISO_14443B
:
1187 SimulateIso14443bTag();
1189 case CMD_ISO_14443B_COMMAND
:
1190 SendRawCommand14443B(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
1194 #ifdef WITH_ISO14443a
1195 case CMD_SNOOP_ISO_14443a
:
1196 SnoopIso14443a(c
->arg
[0]);
1198 case CMD_READER_ISO_14443a
:
1201 case CMD_SIMULATE_TAG_ISO_14443a
:
1202 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
); // ## Simulate iso14443a tag - pass tag type & UID
1205 case CMD_EPA_PACE_COLLECT_NONCE
:
1206 EPA_PACE_Collect_Nonce(c
);
1208 case CMD_EPA_PACE_REPLAY
:
1212 case CMD_READER_MIFARE
:
1213 ReaderMifare(c
->arg
[0]);
1215 case CMD_MIFARE_READBL
:
1216 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1218 case CMD_MIFAREU_READBL
:
1219 MifareUReadBlock(c
->arg
[0],c
->arg
[1], c
->d
.asBytes
);
1221 case CMD_MIFAREUC_AUTH
:
1222 MifareUC_Auth(c
->arg
[0],c
->d
.asBytes
);
1224 case CMD_MIFAREU_READCARD
:
1225 MifareUReadCard(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1227 case CMD_MIFAREUC_SETPWD
:
1228 MifareUSetPwd(c
->arg
[0], c
->d
.asBytes
);
1230 case CMD_MIFARE_READSC
:
1231 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1233 case CMD_MIFARE_WRITEBL
:
1234 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1236 //case CMD_MIFAREU_WRITEBL_COMPAT:
1237 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1239 case CMD_MIFAREU_WRITEBL
:
1240 MifareUWriteBlock(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1242 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES
:
1243 MifareAcquireEncryptedNonces(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1245 case CMD_MIFARE_NESTED
:
1246 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1248 case CMD_MIFARE_CHKKEYS
:
1249 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1251 case CMD_SIMULATE_MIFARE_CARD
:
1252 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1256 case CMD_MIFARE_SET_DBGMODE
:
1257 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1259 case CMD_MIFARE_EML_MEMCLR
:
1260 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1262 case CMD_MIFARE_EML_MEMSET
:
1263 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1265 case CMD_MIFARE_EML_MEMGET
:
1266 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1268 case CMD_MIFARE_EML_CARDLOAD
:
1269 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1272 // Work with "magic Chinese" card
1273 case CMD_MIFARE_CWIPE
:
1274 MifareCWipe(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1276 case CMD_MIFARE_CSETBLOCK
:
1277 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1279 case CMD_MIFARE_CGETBLOCK
:
1280 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1282 case CMD_MIFARE_CIDENT
:
1287 case CMD_MIFARE_SNIFFER
:
1288 SniffMifare(c
->arg
[0]);
1294 // Makes use of ISO14443a FPGA Firmware
1295 case CMD_SNOOP_ICLASS
:
1298 case CMD_SIMULATE_TAG_ICLASS
:
1299 SimulateIClass(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
1301 case CMD_READER_ICLASS
:
1302 ReaderIClass(c
->arg
[0]);
1304 case CMD_READER_ICLASS_REPLAY
:
1305 ReaderIClass_Replay(c
->arg
[0], c
->d
.asBytes
);
1307 case CMD_ICLASS_EML_MEMSET
:
1308 emlSet(c
->d
.asBytes
,c
->arg
[0], c
->arg
[1]);
1310 case CMD_ICLASS_WRITEBLOCK
:
1311 iClass_WriteBlock(c
->arg
[0], c
->d
.asBytes
);
1313 case CMD_ICLASS_READCHECK
: // auth step 1
1314 iClass_ReadCheck(c
->arg
[0], c
->arg
[1]);
1316 case CMD_ICLASS_READBLOCK
:
1317 iClass_ReadBlk(c
->arg
[0]);
1319 case CMD_ICLASS_AUTHENTICATION
: //check
1320 iClass_Authentication(c
->d
.asBytes
);
1322 case CMD_ICLASS_DUMP
:
1323 iClass_Dump(c
->arg
[0], c
->arg
[1]);
1325 case CMD_ICLASS_CLONE
:
1326 iClass_Clone(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1331 case CMD_HF_SNIFFER
:
1332 HfSnoop(c
->arg
[0], c
->arg
[1]);
1339 #ifdef WITH_SMARTCARD
1340 case CMD_SMART_ATR
: {
1344 case CMD_SMART_SETCLOCK
:{
1345 SmartCardSetClock(c
->arg
[0]);
1348 case CMD_SMART_RAW
: {
1349 SmartCardRaw(c
->arg
[0], c
->arg
[1], c
->d
.asBytes
);
1352 case CMD_SMART_UPLOAD
: {
1353 // upload file from client
1354 uint8_t *mem
= BigBuf_get_addr();
1355 memcpy( mem
+ c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1356 cmd_send(CMD_ACK
,1,0,0,0,0);
1359 case CMD_SMART_UPGRADE
: {
1360 SmartCardUpgrade(c
->arg
[0]);
1365 case CMD_BUFF_CLEAR
:
1369 case CMD_MEASURE_ANTENNA_TUNING
:
1370 MeasureAntennaTuning(c
->arg
[0]);
1373 case CMD_MEASURE_ANTENNA_TUNING_HF
:
1374 MeasureAntennaTuningHf();
1377 case CMD_LISTEN_READER_FIELD
:
1378 ListenReaderField(c
->arg
[0]);
1381 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
1382 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1384 LED_D_OFF(); // LED D indicates field ON or OFF
1387 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
:
1389 uint8_t *BigBuf
= BigBuf_get_addr();
1390 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
1391 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
1392 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,BigBuf_get_traceLen(),BigBuf
+c
->arg
[0]+i
,len
);
1394 // Trigger a finish downloading signal with an ACK frame
1395 cmd_send(CMD_ACK
,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config
));
1399 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
1400 // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
1401 // to be able to use this one for uploading data to device
1402 // arg1 = 0 upload for LF usage
1403 // 1 upload for HF usage
1405 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1407 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1409 uint8_t *b
= BigBuf_get_addr();
1410 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, USB_CMD_DATA_SIZE
);
1411 cmd_send(CMD_ACK
,0,0,0,0,0);
1418 case CMD_SET_LF_DIVISOR
:
1419 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1420 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
1423 case CMD_SET_ADC_MUX
:
1425 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
1426 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
1427 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
1428 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
1439 cmd_send(CMD_ACK
,0,0,0,0,0);
1449 case CMD_SETUP_WRITE
:
1450 case CMD_FINISH_WRITE
:
1451 case CMD_HARDWARE_RESET
:
1455 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1457 // We're going to reset, and the bootrom will take control.
1461 case CMD_START_FLASH
:
1462 if(common_area
.flags
.bootrom_present
) {
1463 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
1466 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
1470 case CMD_DEVICE_INFO
: {
1471 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
1472 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
1473 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
1477 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
1482 void __attribute__((noreturn
)) AppMain(void)
1486 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
1487 /* Initialize common area */
1488 memset(&common_area
, 0, sizeof(common_area
));
1489 common_area
.magic
= COMMON_AREA_MAGIC
;
1490 common_area
.version
= 1;
1492 common_area
.flags
.osimage_present
= 1;
1499 // The FPGA gets its clock from us from PCK0 output, so set that up.
1500 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
1501 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
1502 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
1503 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1504 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
1505 AT91C_PMC_PRES_CLK_4
; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1506 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
1509 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
1511 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
1513 // Load the FPGA image, which we have stored in our flash.
1514 // (the HF version by default)
1515 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1523 byte_t rx
[sizeof(UsbCommand
)];
1528 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
1530 UsbPacketReceived(rx
,rx_len
);
1535 #ifdef WITH_LF_StandAlone
1536 #ifndef WITH_ISO14443a_StandAlone
1537 if (BUTTON_HELD(1000) > 0)
1541 #ifdef WITH_ISO14443a
1542 #ifdef WITH_ISO14443a_StandAlone
1543 if (BUTTON_HELD(1000) > 0)
1544 StandAloneMode14a();