1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
20 * Does the sample acquisition. If threshold is specified, the actual sampling
21 * is not commenced until the threshold has been reached.
22 * @param trigger_threshold - the threshold
23 * @param silent - is true, now outputs are made. If false, dbprints the status
25 void DoAcquisition125k_internal(int trigger_threshold
,bool silent
)
27 uint8_t *dest
= (uint8_t *)BigBuf
;
28 int n
= sizeof(BigBuf
);
34 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
35 AT91C_BASE_SSC
->SSC_THR
= 0x43;
38 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
39 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
41 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
44 trigger_threshold
= -1;
50 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
51 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
56 * Perform sample aquisition.
58 void DoAcquisition125k(int trigger_threshold
)
60 DoAcquisition125k_internal(trigger_threshold
, false);
64 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
65 * if not already loaded, sets divisor and starts up the antenna.
66 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
70 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
72 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
73 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
74 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
75 else if (divisor
== 0)
76 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
78 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
80 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
82 // Connect the A/D to the peak-detected low-frequency path.
83 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
84 // Give it a bit of time for the resonant antenna to settle.
86 // Now set up the SSC to get the ADC samples that are now streaming at us.
90 * Initializes the FPGA, and acquires the samples.
92 void AcquireRawAdcSamples125k(int divisor
)
94 LFSetupFPGAForADC(divisor
, true);
95 // Now call the acquisition routine
96 DoAcquisition125k_internal(-1,false);
99 * Initializes the FPGA for snoop-mode, and acquires the samples.
102 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
104 LFSetupFPGAForADC(divisor
, false);
105 DoAcquisition125k(trigger_threshold
);
108 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
111 /* Make sure the tag is reset */
112 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
113 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
117 int divisor_used
= 95; // 125 KHz
118 // see if 'h' was specified
120 if (command
[strlen((char *) command
) - 1] == 'h')
121 divisor_used
= 88; // 134.8 KHz
124 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
125 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
126 // Give it a bit of time for the resonant antenna to settle.
129 // And a little more time for the tag to fully power up
132 // Now set up the SSC to get the ADC samples that are now streaming at us.
135 // now modulate the reader field
136 while(*command
!= '\0' && *command
!= ' ') {
137 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
139 SpinDelayUs(delay_off
);
140 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
142 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
144 if(*(command
++) == '0')
145 SpinDelayUs(period_0
);
147 SpinDelayUs(period_1
);
149 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
151 SpinDelayUs(delay_off
);
152 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
154 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
157 DoAcquisition125k(-1);
160 /* blank r/w tag data stream
161 ...0000000000000000 01111111
162 1010101010101010101010101010101010101010101010101010101010101010
165 101010101010101[0]000...
167 [5555fe852c5555555555555555fe0000]
171 // some hardcoded initial params
172 // when we read a TI tag we sample the zerocross line at 2Mhz
173 // TI tags modulate a 1 as 16 cycles of 123.2Khz
174 // TI tags modulate a 0 as 16 cycles of 134.2Khz
175 #define FSAMPLE 2000000
176 #define FREQLO 123200
177 #define FREQHI 134200
179 signed char *dest
= (signed char *)BigBuf
;
180 int n
= sizeof(BigBuf
);
181 // int *dest = GraphBuffer;
182 // int n = GraphTraceLen;
184 // 128 bit shift register [shift3:shift2:shift1:shift0]
185 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
187 int i
, cycles
=0, samples
=0;
188 // how many sample points fit in 16 cycles of each frequency
189 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
190 // when to tell if we're close enough to one freq or another
191 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
193 // TI tags charge at 134.2Khz
194 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
195 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
197 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
198 // connects to SSP_DIN and the SSP_DOUT logic level controls
199 // whether we're modulating the antenna (high)
200 // or listening to the antenna (low)
201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
203 // get TI tag data into the buffer
206 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
208 for (i
=0; i
<n
-1; i
++) {
209 // count cycles by looking for lo to hi zero crossings
210 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
212 // after 16 cycles, measure the frequency
215 samples
=i
-samples
; // number of samples in these 16 cycles
217 // TI bits are coming to us lsb first so shift them
218 // right through our 128 bit right shift register
219 shift0
= (shift0
>>1) | (shift1
<< 31);
220 shift1
= (shift1
>>1) | (shift2
<< 31);
221 shift2
= (shift2
>>1) | (shift3
<< 31);
224 // check if the cycles fall close to the number
225 // expected for either the low or high frequency
226 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
227 // low frequency represents a 1
229 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
230 // high frequency represents a 0
232 // probably detected a gay waveform or noise
233 // use this as gaydar or discard shift register and start again
234 shift3
= shift2
= shift1
= shift0
= 0;
238 // for each bit we receive, test if we've detected a valid tag
240 // if we see 17 zeroes followed by 6 ones, we might have a tag
241 // remember the bits are backwards
242 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
243 // if start and end bytes match, we have a tag so break out of the loop
244 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
245 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
253 // if flag is set we have a tag
255 DbpString("Info: No valid tag detected.");
257 // put 64 bit data into shift1 and shift0
258 shift0
= (shift0
>>24) | (shift1
<< 8);
259 shift1
= (shift1
>>24) | (shift2
<< 8);
261 // align 16 bit crc into lower half of shift2
262 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
264 // if r/w tag, check ident match
265 if ( shift3
&(1<<15) ) {
266 DbpString("Info: TI tag is rewriteable");
267 // only 15 bits compare, last bit of ident is not valid
268 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
269 DbpString("Error: Ident mismatch!");
271 DbpString("Info: TI tag ident is valid");
274 DbpString("Info: TI tag is readonly");
277 // WARNING the order of the bytes in which we calc crc below needs checking
278 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
279 // bytes in reverse or something
283 crc
= update_crc16(crc
, (shift0
)&0xff);
284 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
285 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
286 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
287 crc
= update_crc16(crc
, (shift1
)&0xff);
288 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
289 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
290 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
292 Dbprintf("Info: Tag data: %x%08x, crc=%x",
293 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
294 if (crc
!= (shift2
&0xffff)) {
295 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
297 DbpString("Info: CRC is good");
302 void WriteTIbyte(uint8_t b
)
306 // modulate 8 bits out to the antenna
310 // stop modulating antenna
317 // stop modulating antenna
327 void AcquireTiType(void)
330 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
331 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
332 #define TIBUFLEN 1250
335 memset(BigBuf
,0,sizeof(BigBuf
));
337 // Set up the synchronous serial port
338 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
339 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
343 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
345 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
346 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
348 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
349 // 48/2 = 24 MHz clock must be divided by 12
350 AT91C_BASE_SSC
->SSC_CMR
= 12;
352 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
353 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
354 AT91C_BASE_SSC
->SSC_TCMR
= 0;
355 AT91C_BASE_SSC
->SSC_TFMR
= 0;
362 // Charge TI tag for 50ms.
365 // stop modulating antenna and listen
372 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
373 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
374 i
++; if(i
>= TIBUFLEN
) break;
379 // return stolen pin to SSP
380 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
381 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
383 char *dest
= (char *)BigBuf
;
386 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
387 for (j
=0; j
<32; j
++) {
388 if(BigBuf
[i
] & (1 << j
)) {
397 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
398 // if crc provided, it will be written with the data verbatim (even if bogus)
399 // if not provided a valid crc will be computed from the data and written.
400 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
402 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
404 crc
= update_crc16(crc
, (idlo
)&0xff);
405 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
406 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
407 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
408 crc
= update_crc16(crc
, (idhi
)&0xff);
409 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
410 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
411 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
413 Dbprintf("Writing to tag: %x%08x, crc=%x",
414 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
416 // TI tags charge at 134.2Khz
417 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
418 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
419 // connects to SSP_DIN and the SSP_DOUT logic level controls
420 // whether we're modulating the antenna (high)
421 // or listening to the antenna (low)
422 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
425 // steal this pin from the SSP and use it to control the modulation
426 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
427 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
429 // writing algorithm:
430 // a high bit consists of a field off for 1ms and field on for 1ms
431 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
432 // initiate a charge time of 50ms (field on) then immediately start writing bits
433 // start by writing 0xBB (keyword) and 0xEB (password)
434 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
435 // finally end with 0x0300 (write frame)
436 // all data is sent lsb firts
437 // finish with 15ms programming time
441 SpinDelay(50); // charge time
443 WriteTIbyte(0xbb); // keyword
444 WriteTIbyte(0xeb); // password
445 WriteTIbyte( (idlo
)&0xff );
446 WriteTIbyte( (idlo
>>8 )&0xff );
447 WriteTIbyte( (idlo
>>16)&0xff );
448 WriteTIbyte( (idlo
>>24)&0xff );
449 WriteTIbyte( (idhi
)&0xff );
450 WriteTIbyte( (idhi
>>8 )&0xff );
451 WriteTIbyte( (idhi
>>16)&0xff );
452 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
453 WriteTIbyte( (crc
)&0xff ); // crc lo
454 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
455 WriteTIbyte(0x00); // write frame lo
456 WriteTIbyte(0x03); // write frame hi
458 SpinDelay(50); // programming time
462 // get TI tag data into the buffer
465 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
466 DbpString("Now use tiread to check");
469 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
472 uint8_t *tab
= (uint8_t *)BigBuf
;
474 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
475 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
477 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
479 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
480 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
482 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
483 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
487 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
489 DbpString("Stopped");
506 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
508 DbpString("Stopped");
525 #define DEBUG_FRAME_CONTENTS 1
526 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
530 // compose fc/8 fc/10 waveform
531 static void fc(int c
, int *n
) {
532 uint8_t *dest
= (uint8_t *)BigBuf
;
535 // for when we want an fc8 pattern every 4 logical bits
546 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
548 for (idx
=0; idx
<6; idx
++) {
560 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
562 for (idx
=0; idx
<5; idx
++) {
577 // prepare a waveform pattern in the buffer based on the ID given then
578 // simulate a HID tag until the button is pressed
579 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
583 HID tag bitstream format
584 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
585 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
586 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
587 A fc8 is inserted before every 4 bits
588 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
589 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
593 DbpString("Tags can only have 44 bits.");
597 // special start of frame marker containing invalid bit sequences
598 fc(8, &n
); fc(8, &n
); // invalid
599 fc(8, &n
); fc(10, &n
); // logical 0
600 fc(10, &n
); fc(10, &n
); // invalid
601 fc(8, &n
); fc(10, &n
); // logical 0
604 // manchester encode bits 43 to 32
605 for (i
=11; i
>=0; i
--) {
606 if ((i
%4)==3) fc(0,&n
);
608 fc(10, &n
); fc(8, &n
); // low-high transition
610 fc(8, &n
); fc(10, &n
); // high-low transition
615 // manchester encode bits 31 to 0
616 for (i
=31; i
>=0; i
--) {
617 if ((i
%4)==3) fc(0,&n
);
619 fc(10, &n
); fc(8, &n
); // low-high transition
621 fc(8, &n
); fc(10, &n
); // high-low transition
627 SimulateTagLowFrequency(n
, 0, ledcontrol
);
633 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
634 size_t fsk_demod(uint8_t * dest
, size_t size
)
636 uint32_t last_transition
= 0;
639 // // we don't care about actual value, only if it's more or less than a
640 // // threshold essentially we capture zero crossings for later analysis
642 // we do care about the actual value as sometimes near the center of the
643 // wave we may get static that changes direction of wave for one value
644 // if our value is too low it might affect the read. and if our tag or
645 // antenna is weak a setting too high might not see anything. [marshmellow]
646 if (size
<100) return size
;
647 for(idx
=1; idx
<100; idx
++){
648 if(maxVal
<dest
[idx
]) maxVal
= dest
[idx
];
650 // set close to the top of the wave threshold with 13% margin for error
651 // less likely to get a false transition up there.
652 // (but have to be careful not to go too high and miss some short waves)
653 uint32_t threshold_value
= (uint32_t)(maxVal
*.87); idx
=1;
654 //uint8_t threshold_value = 127;
656 // sync to first lo-hi transition, and threshold
658 // Need to threshold first sample
659 if(dest
[0] < threshold_value
) dest
[0] = 0;
663 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
664 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
665 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
666 for(idx
= 1; idx
< size
; idx
++) {
667 // threshold current value
668 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
671 // Check for 0->1 transition
672 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
673 if (idx
-last_transition
<6){
674 //do nothing with extra garbage
675 } else if (idx
-last_transition
< 9) {
680 last_transition
= idx
;
684 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
687 uint32_t myround(float f
)
689 if (f
>= 2000) return 2000;//something bad happened
690 return (uint32_t) (f
+ (float)0.5);
693 //translate 11111100000 to 10
694 size_t aggregate_bits(uint8_t *dest
,size_t size
, uint8_t rfLen
, uint8_t maxConsequtiveBits
, uint8_t invert
)// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
696 uint8_t lastval
=dest
[0];
701 for( idx
=1; idx
< size
; idx
++) {
703 if (dest
[idx
]==lastval
) {
707 //if lastval was 1, we have a 1->0 crossing
708 if ( dest
[idx
-1]==1 ) {
709 n
=myround((float)(n
+1)/((float)(rfLen
)/(float)8));
710 //n=(n+1) / h2l_crossing_value;
711 } else {// 0->1 crossing
712 n
=myround((float)(n
+1)/((float)(rfLen
-2)/(float)10));
713 //n=(n+1) / l2h_crossing_value;
717 if(n
< maxConsequtiveBits
) //Consecutive
719 if(invert
==0){ //invert bits
720 memset(dest
+numBits
, dest
[idx
-1] , n
);
722 memset(dest
+numBits
, dest
[idx
-1]^1 , n
);
731 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
732 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
734 uint8_t *dest
= (uint8_t *)BigBuf
;
736 size_t size
=0,idx
=0; //, found=0;
737 uint32_t hi2
=0, hi
=0, lo
=0;
739 // Configure to go in 125Khz listen mode
740 LFSetupFPGAForADC(95, true);
742 while(!BUTTON_PRESS()) {
745 if (ledcontrol
) LED_A_ON();
747 DoAcquisition125k_internal(-1,true);
748 size
= sizeof(BigBuf
);
749 if (size
< 2000) continue;
751 size
= fsk_demod(dest
, size
);
753 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
754 // 1->0 : fc/8 in sets of 6 (RF/50 / 8 = 6.25)
755 // 0->1 : fc/10 in sets of 5 (RF/50 / 10= 5)
757 size
= aggregate_bits(dest
,size
, 50,5,0); //6,5,5,0
761 // final loop, go over previously decoded manchester data and decode into usable tag ID
762 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
763 uint8_t frame_marker_mask
[] = {1,1,1,0,0,0};
767 uint8_t sameCardCount
=0;
768 while( idx
+ sizeof(frame_marker_mask
) < size
) {
769 // search for a start of frame marker
770 if (sameCardCount
>2) break; //only up to 2 valid sets of data for the same read of looping card data
771 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
772 { // frame marker found
773 idx
+=sizeof(frame_marker_mask
);
774 while(dest
[idx
] != dest
[idx
+1] && idx
< size
-2)
776 // Keep going until next frame marker (or error)
777 // Shift in a bit. Start by shifting high registers
778 hi2
= (hi2
<<1)|(hi
>>31);
779 hi
= (hi
<<1)|(lo
>>31);
780 //Then, shift in a 0 or one into low
781 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
789 //Dbprintf("Num shifts: %d ", numshifts);
790 // Hopefully, we read a tag and hit upon the next frame marker
791 if(idx
+ sizeof(frame_marker_mask
) < size
)
793 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
795 if (hi2
!= 0){ //extra large HID tags
796 Dbprintf("TAG ID: %x%08x%08x (%d)",
797 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
799 else { //standard HID tags <38 bits
800 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
803 uint32_t cardnum
= 0;
804 if (((hi
>>5)&1)==1){//if bit 38 is set then < 37 bit format is used
806 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
808 while(lo2
>1){ //find last bit set to 1 (format len bit)
816 cardnum
= (lo
>>1)&0xFFFF;
820 cardnum
= (lo
>>1)&0x7FFFF;
821 fc
= ((hi
&0xF)<<12)|(lo
>>20);
824 cardnum
= (lo
>>1)&0xFFFF;
825 fc
= ((hi
&1)<<15)|(lo
>>17);
828 cardnum
= (lo
>>1)&0xFFFFF;
829 fc
= ((hi
&1)<<11)|(lo
>>21);
832 else { //if bit 38 is not set then 37 bit format is used
837 cardnum
= (lo
>>1)&0x7FFFF;
838 fc
= ((hi
&0xF)<<12)|(lo
>>20);
841 //Dbprintf("TAG ID: %x%08x (%d)",
842 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
843 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
844 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
845 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
849 if (ledcontrol
) LED_A_OFF();
865 DbpString("Stopped");
866 if (ledcontrol
) LED_A_OFF();
869 uint32_t bytebits_to_byte(uint8_t* src
, int numbits
)
872 for(int i
= 0 ; i
< numbits
; i
++)
874 num
= (num
<< 1) | (*src
);
880 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
882 uint8_t *dest
= (uint8_t *)BigBuf
;
883 size_t size
=0, idx
=0;
884 uint32_t code
=0, code2
=0;
886 // Configure to go in 125Khz listen mode
887 LFSetupFPGAForADC(95, true);
889 while(!BUTTON_PRESS()) {
891 if (ledcontrol
) LED_A_ON();
892 DoAcquisition125k_internal(-1,true);
893 size
= sizeof(BigBuf
);
894 //make sure buffer has data
895 if (size
< 64) return;
896 //test samples are not just noise
898 for(idx
=0;idx
<64;idx
++){
899 if (testMax
<dest
[idx
]) testMax
=dest
[idx
];
904 //Dbprintf("testMax: %d",testMax);
906 size
= fsk_demod(dest
, size
);
907 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
908 // 1->0 : fc/8 in sets of 7 (RF/64 / 8 = 8)
909 // 0->1 : fc/10 in sets of 6 (RF/64 / 10 = 6.4)
910 size
= aggregate_bits(dest
, size
, 64, 13, 1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits
913 //0 10 20 30 40 50 60
915 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
916 //-----------------------------------------------------------------------------
917 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
919 //XSF(version)facility:codeone+codetwo
921 uint8_t sameCardCount
=0;
922 uint8_t mask
[] = {0,0,0,0,0,0,0,0,0,1};
923 for( idx
=0; idx
< (size
- 74); idx
++) {
924 if (sameCardCount
>2) break;
925 if ( memcmp(dest
+ idx
, mask
, sizeof(mask
))==0) {
927 if (!dest
[idx
+8] && dest
[idx
+17]==1 && dest
[idx
+26]==1 && dest
[idx
+35]==1 && dest
[idx
+44]==1 && dest
[idx
+53]==1){
928 //confirmed proper separator bits found
929 if(findone
){ //only print binary if we are doing one
930 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
931 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
932 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
933 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
934 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
935 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
936 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
938 code
= bytebits_to_byte(dest
+idx
,32);
939 code2
= bytebits_to_byte(dest
+idx
+32,32);
940 short version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
941 uint8_t facilitycode
= bytebits_to_byte(dest
+idx
+19,8) ;
942 uint16_t number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
944 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
945 // if we're only looking for one tag
947 if (ledcontrol
) LED_A_OFF();
958 DbpString("Stopped");
959 if (ledcontrol
) LED_A_OFF();
962 /*------------------------------
963 * T5555/T5557/T5567 routines
964 *------------------------------
967 /* T55x7 configuration register definitions */
968 #define T55x7_POR_DELAY 0x00000001
969 #define T55x7_ST_TERMINATOR 0x00000008
970 #define T55x7_PWD 0x00000010
971 #define T55x7_MAXBLOCK_SHIFT 5
972 #define T55x7_AOR 0x00000200
973 #define T55x7_PSKCF_RF_2 0
974 #define T55x7_PSKCF_RF_4 0x00000400
975 #define T55x7_PSKCF_RF_8 0x00000800
976 #define T55x7_MODULATION_DIRECT 0
977 #define T55x7_MODULATION_PSK1 0x00001000
978 #define T55x7_MODULATION_PSK2 0x00002000
979 #define T55x7_MODULATION_PSK3 0x00003000
980 #define T55x7_MODULATION_FSK1 0x00004000
981 #define T55x7_MODULATION_FSK2 0x00005000
982 #define T55x7_MODULATION_FSK1a 0x00006000
983 #define T55x7_MODULATION_FSK2a 0x00007000
984 #define T55x7_MODULATION_MANCHESTER 0x00008000
985 #define T55x7_MODULATION_BIPHASE 0x00010000
986 #define T55x7_BITRATE_RF_8 0
987 #define T55x7_BITRATE_RF_16 0x00040000
988 #define T55x7_BITRATE_RF_32 0x00080000
989 #define T55x7_BITRATE_RF_40 0x000C0000
990 #define T55x7_BITRATE_RF_50 0x00100000
991 #define T55x7_BITRATE_RF_64 0x00140000
992 #define T55x7_BITRATE_RF_100 0x00180000
993 #define T55x7_BITRATE_RF_128 0x001C0000
995 /* T5555 (Q5) configuration register definitions */
996 #define T5555_ST_TERMINATOR 0x00000001
997 #define T5555_MAXBLOCK_SHIFT 0x00000001
998 #define T5555_MODULATION_MANCHESTER 0
999 #define T5555_MODULATION_PSK1 0x00000010
1000 #define T5555_MODULATION_PSK2 0x00000020
1001 #define T5555_MODULATION_PSK3 0x00000030
1002 #define T5555_MODULATION_FSK1 0x00000040
1003 #define T5555_MODULATION_FSK2 0x00000050
1004 #define T5555_MODULATION_BIPHASE 0x00000060
1005 #define T5555_MODULATION_DIRECT 0x00000070
1006 #define T5555_INVERT_OUTPUT 0x00000080
1007 #define T5555_PSK_RF_2 0
1008 #define T5555_PSK_RF_4 0x00000100
1009 #define T5555_PSK_RF_8 0x00000200
1010 #define T5555_USE_PWD 0x00000400
1011 #define T5555_USE_AOR 0x00000800
1012 #define T5555_BITRATE_SHIFT 12
1013 #define T5555_FAST_WRITE 0x00004000
1014 #define T5555_PAGE_SELECT 0x00008000
1017 * Relevant times in microsecond
1018 * To compensate antenna falling times shorten the write times
1019 * and enlarge the gap ones.
1021 #define START_GAP 250
1022 #define WRITE_GAP 160
1023 #define WRITE_0 144 // 192
1024 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
1026 // Write one bit to card
1027 void T55xxWriteBit(int bit
)
1029 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1030 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1031 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1033 SpinDelayUs(WRITE_0
);
1035 SpinDelayUs(WRITE_1
);
1036 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1037 SpinDelayUs(WRITE_GAP
);
1040 // Write one card block in page 0, no lock
1041 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1043 //unsigned int i; //enio adjustment 12/10/14
1046 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1047 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1048 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1050 // Give it a bit of time for the resonant antenna to settle.
1051 // And for the tag to fully power up
1054 // Now start writting
1055 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1056 SpinDelayUs(START_GAP
);
1060 T55xxWriteBit(0); //Page 0
1063 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1064 T55xxWriteBit(Pwd
& i
);
1070 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1071 T55xxWriteBit(Data
& i
);
1074 for (i
= 0x04; i
!= 0; i
>>= 1)
1075 T55xxWriteBit(Block
& i
);
1077 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1078 // so wait a little more)
1079 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1080 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1082 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1085 // Read one card block in page 0
1086 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1088 uint8_t *dest
= (uint8_t *)BigBuf
;
1089 //int m=0, i=0; //enio adjustment 12/10/14
1091 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1093 // Clear destination buffer before sending the command
1094 memset(dest
, 128, m
);
1095 // Connect the A/D to the peak-detected low-frequency path.
1096 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1097 // Now set up the SSC to get the ADC samples that are now streaming at us.
1101 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1102 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1104 // Give it a bit of time for the resonant antenna to settle.
1105 // And for the tag to fully power up
1108 // Now start writting
1109 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1110 SpinDelayUs(START_GAP
);
1114 T55xxWriteBit(0); //Page 0
1117 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1118 T55xxWriteBit(Pwd
& i
);
1123 for (i
= 0x04; i
!= 0; i
>>= 1)
1124 T55xxWriteBit(Block
& i
);
1126 // Turn field on to read the response
1127 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1128 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1130 // Now do the acquisition
1133 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1134 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1136 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1137 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1138 // we don't care about actual value, only if it's more or less than a
1139 // threshold essentially we capture zero crossings for later analysis
1140 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1146 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1151 // Read card traceability data (page 1)
1152 void T55xxReadTrace(void){
1153 uint8_t *dest
= (uint8_t *)BigBuf
;
1156 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1158 // Clear destination buffer before sending the command
1159 memset(dest
, 128, m
);
1160 // Connect the A/D to the peak-detected low-frequency path.
1161 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1162 // Now set up the SSC to get the ADC samples that are now streaming at us.
1166 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1167 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1169 // Give it a bit of time for the resonant antenna to settle.
1170 // And for the tag to fully power up
1173 // Now start writting
1174 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1175 SpinDelayUs(START_GAP
);
1179 T55xxWriteBit(1); //Page 1
1181 // Turn field on to read the response
1182 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1183 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1185 // Now do the acquisition
1188 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1189 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1191 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1192 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1198 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1203 /*-------------- Cloning routines -----------*/
1204 // Copy HID id to card and setup block 0 config
1205 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1207 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1211 // Ensure no more than 84 bits supplied
1213 DbpString("Tags can only have 84 bits.");
1216 // Build the 6 data blocks for supplied 84bit ID
1218 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1219 for (int i
=0;i
<4;i
++) {
1220 if (hi2
& (1<<(19-i
)))
1221 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1223 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1227 for (int i
=0;i
<16;i
++) {
1228 if (hi2
& (1<<(15-i
)))
1229 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1231 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1235 for (int i
=0;i
<16;i
++) {
1236 if (hi
& (1<<(31-i
)))
1237 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1239 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1243 for (int i
=0;i
<16;i
++) {
1244 if (hi
& (1<<(15-i
)))
1245 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1247 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1251 for (int i
=0;i
<16;i
++) {
1252 if (lo
& (1<<(31-i
)))
1253 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1255 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1259 for (int i
=0;i
<16;i
++) {
1260 if (lo
& (1<<(15-i
)))
1261 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1263 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1267 // Ensure no more than 44 bits supplied
1269 DbpString("Tags can only have 44 bits.");
1273 // Build the 3 data blocks for supplied 44bit ID
1276 data1
= 0x1D000000; // load preamble
1278 for (int i
=0;i
<12;i
++) {
1279 if (hi
& (1<<(11-i
)))
1280 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1282 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1286 for (int i
=0;i
<16;i
++) {
1287 if (lo
& (1<<(31-i
)))
1288 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1290 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1294 for (int i
=0;i
<16;i
++) {
1295 if (lo
& (1<<(15-i
)))
1296 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1298 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1303 // Program the data blocks for supplied ID
1304 // and the block 0 for HID format
1305 T55xxWriteBlock(data1
,1,0,0);
1306 T55xxWriteBlock(data2
,2,0,0);
1307 T55xxWriteBlock(data3
,3,0,0);
1309 if (longFMT
) { // if long format there are 6 blocks
1310 T55xxWriteBlock(data4
,4,0,0);
1311 T55xxWriteBlock(data5
,5,0,0);
1312 T55xxWriteBlock(data6
,6,0,0);
1315 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1316 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1317 T55x7_MODULATION_FSK2a
|
1318 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1326 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1328 int data1
=0, data2
=0; //up to six blocks for long format
1330 data1
= hi
; // load preamble
1334 // Program the data blocks for supplied ID
1335 // and the block 0 for HID format
1336 T55xxWriteBlock(data1
,1,0,0);
1337 T55xxWriteBlock(data2
,2,0,0);
1340 T55xxWriteBlock(0x00147040,0,0,0);
1346 // Define 9bit header for EM410x tags
1347 #define EM410X_HEADER 0x1FF
1348 #define EM410X_ID_LENGTH 40
1350 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1353 uint64_t id
= EM410X_HEADER
;
1354 uint64_t rev_id
= 0; // reversed ID
1355 int c_parity
[4]; // column parity
1356 int r_parity
= 0; // row parity
1359 // Reverse ID bits given as parameter (for simpler operations)
1360 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1362 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1365 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1370 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1371 id_bit
= rev_id
& 1;
1374 // Don't write row parity bit at start of parsing
1376 id
= (id
<< 1) | r_parity
;
1377 // Start counting parity for new row
1384 // First elements in column?
1386 // Fill out first elements
1387 c_parity
[i
] = id_bit
;
1389 // Count column parity
1390 c_parity
[i
% 4] ^= id_bit
;
1393 id
= (id
<< 1) | id_bit
;
1397 // Insert parity bit of last row
1398 id
= (id
<< 1) | r_parity
;
1400 // Fill out column parity at the end of tag
1401 for (i
= 0; i
< 4; ++i
)
1402 id
= (id
<< 1) | c_parity
[i
];
1407 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1411 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1412 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1414 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1416 // Clock rate is stored in bits 8-15 of the card value
1417 clock
= (card
& 0xFF00) >> 8;
1418 Dbprintf("Clock rate: %d", clock
);
1422 clock
= T55x7_BITRATE_RF_32
;
1425 clock
= T55x7_BITRATE_RF_16
;
1428 // A value of 0 is assumed to be 64 for backwards-compatibility
1431 clock
= T55x7_BITRATE_RF_64
;
1434 Dbprintf("Invalid clock rate: %d", clock
);
1438 // Writing configuration for T55x7 tag
1439 T55xxWriteBlock(clock
|
1440 T55x7_MODULATION_MANCHESTER
|
1441 2 << T55x7_MAXBLOCK_SHIFT
,
1445 // Writing configuration for T5555(Q5) tag
1446 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1447 T5555_MODULATION_MANCHESTER
|
1448 2 << T5555_MAXBLOCK_SHIFT
,
1452 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1453 (uint32_t)(id
>> 32), (uint32_t)id
);
1456 // Clone Indala 64-bit tag by UID to T55x7
1457 void CopyIndala64toT55x7(int hi
, int lo
)
1460 //Program the 2 data blocks for supplied 64bit UID
1461 // and the block 0 for Indala64 format
1462 T55xxWriteBlock(hi
,1,0,0);
1463 T55xxWriteBlock(lo
,2,0,0);
1464 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1465 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1466 T55x7_MODULATION_PSK1
|
1467 2 << T55x7_MAXBLOCK_SHIFT
,
1469 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1470 // T5567WriteBlock(0x603E1042,0);
1476 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1479 //Program the 7 data blocks for supplied 224bit UID
1480 // and the block 0 for Indala224 format
1481 T55xxWriteBlock(uid1
,1,0,0);
1482 T55xxWriteBlock(uid2
,2,0,0);
1483 T55xxWriteBlock(uid3
,3,0,0);
1484 T55xxWriteBlock(uid4
,4,0,0);
1485 T55xxWriteBlock(uid5
,5,0,0);
1486 T55xxWriteBlock(uid6
,6,0,0);
1487 T55xxWriteBlock(uid7
,7,0,0);
1488 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1489 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1490 T55x7_MODULATION_PSK1
|
1491 7 << T55x7_MAXBLOCK_SHIFT
,
1493 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1494 // T5567WriteBlock(0x603E10E2,0);
1501 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1502 #define max(x,y) ( x<y ? y:x)
1504 int DemodPCF7931(uint8_t **outBlocks
) {
1505 uint8_t BitStream
[256];
1506 uint8_t Blocks
[8][16];
1507 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1508 int GraphTraceLen
= sizeof(BigBuf
);
1509 int i
, j
, lastval
, bitidx
, half_switch
;
1511 int tolerance
= clock
/ 8;
1512 int pmc
, block_done
;
1513 int lc
, warnings
= 0;
1515 int lmin
=128, lmax
=128;
1518 AcquireRawAdcSamples125k(0);
1525 /* Find first local max/min */
1526 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1527 while(i
< GraphTraceLen
) {
1528 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1535 while(i
< GraphTraceLen
) {
1536 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1548 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1550 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1555 // Switch depending on lc length:
1556 // Tolerance is 1/8 of clock rate (arbitrary)
1557 if (abs(lc
-clock
/4) < tolerance
) {
1559 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1561 i
+= (128+127+16+32+33+16)-1;
1569 } else if (abs(lc
-clock
/2) < tolerance
) {
1571 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1573 i
+= (128+127+16+32+33)-1;
1578 else if(half_switch
== 1) {
1579 BitStream
[bitidx
++] = 0;
1584 } else if (abs(lc
-clock
) < tolerance
) {
1586 BitStream
[bitidx
++] = 1;
1592 Dbprintf("Error: too many detection errors, aborting.");
1597 if(block_done
== 1) {
1599 for(j
=0; j
<16; j
++) {
1600 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1601 64*BitStream
[j
*8+6]+
1602 32*BitStream
[j
*8+5]+
1603 16*BitStream
[j
*8+4]+
1615 if(i
< GraphTraceLen
)
1617 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1624 if(num_blocks
== 4) break;
1626 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1630 int IsBlock0PCF7931(uint8_t *Block
) {
1631 // Assume RFU means 0 :)
1632 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1634 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1639 int IsBlock1PCF7931(uint8_t *Block
) {
1640 // Assume RFU means 0 :)
1641 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1642 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1650 void ReadPCF7931() {
1651 uint8_t Blocks
[8][17];
1652 uint8_t tmpBlocks
[4][16];
1653 int i
, j
, ind
, ind2
, n
;
1660 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1663 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1664 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1667 if(error
==10 && num_blocks
== 0) {
1668 Dbprintf("Error, no tag or bad tag");
1671 else if (tries
==20 || error
==10) {
1672 Dbprintf("Error reading the tag");
1673 Dbprintf("Here is the partial content");
1678 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1679 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1680 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1682 for(i
=0; i
<n
; i
++) {
1683 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1685 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1689 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1690 Blocks
[0][ALLOC
] = 1;
1691 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1692 Blocks
[1][ALLOC
] = 1;
1693 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1695 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1697 // Handle following blocks
1698 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1701 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1702 Blocks
[ind2
][ALLOC
] = 1;
1710 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1711 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1712 for(j
=0; j
<max_blocks
; j
++) {
1713 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1714 // Found an identical block
1715 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1718 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1719 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1720 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1721 Blocks
[ind2
][ALLOC
] = 1;
1723 if(num_blocks
== max_blocks
) goto end
;
1726 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1727 if(ind2
> max_blocks
)
1729 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1730 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1731 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1732 Blocks
[ind2
][ALLOC
] = 1;
1734 if(num_blocks
== max_blocks
) goto end
;
1743 if (BUTTON_PRESS()) return;
1744 } while (num_blocks
!= max_blocks
);
1746 Dbprintf("-----------------------------------------");
1747 Dbprintf("Memory content:");
1748 Dbprintf("-----------------------------------------");
1749 for(i
=0; i
<max_blocks
; i
++) {
1750 if(Blocks
[i
][ALLOC
]==1)
1751 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1752 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1753 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1755 Dbprintf("<missing block %d>", i
);
1757 Dbprintf("-----------------------------------------");
1763 //-----------------------------------
1764 // EM4469 / EM4305 routines
1765 //-----------------------------------
1766 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1767 #define FWD_CMD_WRITE 0xA
1768 #define FWD_CMD_READ 0x9
1769 #define FWD_CMD_DISABLE 0x5
1772 uint8_t forwardLink_data
[64]; //array of forwarded bits
1773 uint8_t * forward_ptr
; //ptr for forward message preparation
1774 uint8_t fwd_bit_sz
; //forwardlink bit counter
1775 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1777 //====================================================================
1778 // prepares command bits
1780 //====================================================================
1781 //--------------------------------------------------------------------
1782 uint8_t Prepare_Cmd( uint8_t cmd
) {
1783 //--------------------------------------------------------------------
1785 *forward_ptr
++ = 0; //start bit
1786 *forward_ptr
++ = 0; //second pause for 4050 code
1788 *forward_ptr
++ = cmd
;
1790 *forward_ptr
++ = cmd
;
1792 *forward_ptr
++ = cmd
;
1794 *forward_ptr
++ = cmd
;
1796 return 6; //return number of emited bits
1799 //====================================================================
1800 // prepares address bits
1802 //====================================================================
1804 //--------------------------------------------------------------------
1805 uint8_t Prepare_Addr( uint8_t addr
) {
1806 //--------------------------------------------------------------------
1808 register uint8_t line_parity
;
1813 *forward_ptr
++ = addr
;
1814 line_parity
^= addr
;
1818 *forward_ptr
++ = (line_parity
& 1);
1820 return 7; //return number of emited bits
1823 //====================================================================
1824 // prepares data bits intreleaved with parity bits
1826 //====================================================================
1828 //--------------------------------------------------------------------
1829 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1830 //--------------------------------------------------------------------
1832 register uint8_t line_parity
;
1833 register uint8_t column_parity
;
1834 register uint8_t i
, j
;
1835 register uint16_t data
;
1840 for(i
=0; i
<4; i
++) {
1842 for(j
=0; j
<8; j
++) {
1843 line_parity
^= data
;
1844 column_parity
^= (data
& 1) << j
;
1845 *forward_ptr
++ = data
;
1848 *forward_ptr
++ = line_parity
;
1853 for(j
=0; j
<8; j
++) {
1854 *forward_ptr
++ = column_parity
;
1855 column_parity
>>= 1;
1859 return 45; //return number of emited bits
1862 //====================================================================
1863 // Forward Link send function
1864 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1865 // fwd_bit_count set with number of bits to be sent
1866 //====================================================================
1867 void SendForward(uint8_t fwd_bit_count
) {
1869 fwd_write_ptr
= forwardLink_data
;
1870 fwd_bit_sz
= fwd_bit_count
;
1875 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1876 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1877 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1879 // Give it a bit of time for the resonant antenna to settle.
1880 // And for the tag to fully power up
1883 // force 1st mod pulse (start gap must be longer for 4305)
1884 fwd_bit_sz
--; //prepare next bit modulation
1886 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1887 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1888 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1889 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1890 SpinDelayUs(16*8); //16 cycles on (8us each)
1892 // now start writting
1893 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1894 if(((*fwd_write_ptr
++) & 1) == 1)
1895 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1897 //These timings work for 4469/4269/4305 (with the 55*8 above)
1898 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1899 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1900 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1901 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1902 SpinDelayUs(9*8); //16 cycles on (8us each)
1907 void EM4xLogin(uint32_t Password
) {
1909 uint8_t fwd_bit_count
;
1911 forward_ptr
= forwardLink_data
;
1912 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1913 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1915 SendForward(fwd_bit_count
);
1917 //Wait for command to complete
1922 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1924 uint8_t fwd_bit_count
;
1925 uint8_t *dest
= (uint8_t *)BigBuf
;
1928 //If password mode do login
1929 if (PwdMode
== 1) EM4xLogin(Pwd
);
1931 forward_ptr
= forwardLink_data
;
1932 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1933 fwd_bit_count
+= Prepare_Addr( Address
);
1936 // Clear destination buffer before sending the command
1937 memset(dest
, 128, m
);
1938 // Connect the A/D to the peak-detected low-frequency path.
1939 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1940 // Now set up the SSC to get the ADC samples that are now streaming at us.
1943 SendForward(fwd_bit_count
);
1945 // Now do the acquisition
1948 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1949 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1951 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1952 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1957 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1961 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1963 uint8_t fwd_bit_count
;
1965 //If password mode do login
1966 if (PwdMode
== 1) EM4xLogin(Pwd
);
1968 forward_ptr
= forwardLink_data
;
1969 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1970 fwd_bit_count
+= Prepare_Addr( Address
);
1971 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1973 SendForward(fwd_bit_count
);
1975 //Wait for write to complete
1977 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off