]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
97817709a15794ce89184a28a98468a2bd2316db
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26 #include "lfsampling.h"
27 #include "BigBuf.h"
28 #include "mifareutil.h"
29 #include "pcf7931.h"
30 #ifdef WITH_LCD
31 #include "LCD.h"
32 #endif
33
34 // Craig Young - 14a stand-alone code
35 #ifdef WITH_ISO14443a_StandAlone
36 #include "iso14443a.h"
37 #endif
38
39 #define abs(x) ( ((x)<0) ? -(x) : (x) )
40
41 //=============================================================================
42 // A buffer where we can queue things up to be sent through the FPGA, for
43 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
44 // is the order in which they go out on the wire.
45 //=============================================================================
46
47 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
48 uint8_t ToSend[TOSEND_BUFFER_SIZE];
49 int ToSendMax;
50 static int ToSendBit;
51 struct common_area common_area __attribute__((section(".commonarea")));
52
53 void ToSendReset(void)
54 {
55 ToSendMax = -1;
56 ToSendBit = 8;
57 }
58
59 void ToSendStuffBit(int b)
60 {
61 if(ToSendBit >= 8) {
62 ToSendMax++;
63 ToSend[ToSendMax] = 0;
64 ToSendBit = 0;
65 }
66
67 if(b) {
68 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
69 }
70
71 ToSendBit++;
72
73 if(ToSendMax >= sizeof(ToSend)) {
74 ToSendBit = 0;
75 DbpString("ToSendStuffBit overflowed!");
76 }
77 }
78
79 //=============================================================================
80 // Debug print functions, to go out over USB, to the usual PC-side client.
81 //=============================================================================
82
83 void DbpString(char *str)
84 {
85 byte_t len = strlen(str);
86 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
87 }
88
89 #if 0
90 void DbpIntegers(int x1, int x2, int x3)
91 {
92 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
93 }
94 #endif
95
96 void Dbprintf(const char *fmt, ...) {
97 // should probably limit size here; oh well, let's just use a big buffer
98 char output_string[128];
99 va_list ap;
100
101 va_start(ap, fmt);
102 kvsprintf(fmt, output_string, 10, ap);
103 va_end(ap);
104
105 DbpString(output_string);
106 }
107
108 // prints HEX & ASCII
109 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
110 int l=0,i;
111 char ascii[9];
112
113 while (len>0) {
114 if (len>8) l=8;
115 else l=len;
116
117 memcpy(ascii,d,l);
118 ascii[l]=0;
119
120 // filter safe ascii
121 for (i=0;i<l;i++)
122 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
123
124 if (bAsci) {
125 Dbprintf("%-8s %*D",ascii,l,d," ");
126 } else {
127 Dbprintf("%*D",l,d," ");
128 }
129
130 len-=8;
131 d+=8;
132 }
133 }
134
135 //-----------------------------------------------------------------------------
136 // Read an ADC channel and block till it completes, then return the result
137 // in ADC units (0 to 1023). Also a routine to average 32 samples and
138 // return that.
139 //-----------------------------------------------------------------------------
140 static int ReadAdc(int ch)
141 {
142 uint32_t d;
143
144 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
145 AT91C_BASE_ADC->ADC_MR =
146 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
147 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
148 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
149
150 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
151 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
152 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
153 //
154 // The maths are:
155 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
156 //
157 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
158 //
159 // Note: with the "historic" values in the comments above, the error was 34% !!!
160
161 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
162
163 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
164
165 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
166 ;
167 d = AT91C_BASE_ADC->ADC_CDR[ch];
168
169 return d;
170 }
171
172 int AvgAdc(int ch) // was static - merlok
173 {
174 int i;
175 int a = 0;
176
177 for(i = 0; i < 32; i++) {
178 a += ReadAdc(ch);
179 }
180
181 return (a + 15) >> 5;
182 }
183
184 void MeasureAntennaTuning(void)
185 {
186 uint8_t LF_Results[256];
187 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
188 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
189
190 LED_B_ON();
191
192 /*
193 * Sweeps the useful LF range of the proxmark from
194 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
195 * read the voltage in the antenna, the result left
196 * in the buffer is a graph which should clearly show
197 * the resonating frequency of your LF antenna
198 * ( hopefully around 95 if it is tuned to 125kHz!)
199 */
200
201 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
202 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
203 for (i=255; i>=19; i--) {
204 WDT_HIT();
205 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
206 SpinDelay(20);
207 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
208 if (i==95) vLf125 = adcval; // voltage at 125Khz
209 if (i==89) vLf134 = adcval; // voltage at 134Khz
210
211 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
212 if(LF_Results[i] > peak) {
213 peakv = adcval;
214 peak = LF_Results[i];
215 peakf = i;
216 //ptr = i;
217 }
218 }
219
220 for (i=18; i >= 0; i--) LF_Results[i] = 0;
221
222 LED_A_ON();
223 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
224 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
225 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
226 SpinDelay(20);
227 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
228
229 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
230 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
231 LED_A_OFF();
232 LED_B_OFF();
233 return;
234 }
235
236 void MeasureAntennaTuningHf(void)
237 {
238 int vHf = 0; // in mV
239
240 DbpString("Measuring HF antenna, press button to exit");
241
242 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
243 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
244 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
245
246 for (;;) {
247 SpinDelay(20);
248 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
249
250 Dbprintf("%d mV",vHf);
251 if (BUTTON_PRESS()) break;
252 }
253 DbpString("cancelled");
254
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
256
257 }
258
259
260 void ReadMem(int addr)
261 {
262 const uint8_t *data = ((uint8_t *)addr);
263
264 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
265 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
266 }
267
268 /* osimage version information is linked in */
269 extern struct version_information version_information;
270 /* bootrom version information is pointed to from _bootphase1_version_pointer */
271 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
272 void SendVersion(void)
273 {
274 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
275 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
276
277 /* Try to find the bootrom version information. Expect to find a pointer at
278 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
279 * pointer, then use it.
280 */
281 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
282 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
283 strcat(VersionString, "bootrom version information appears invalid\n");
284 } else {
285 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
286 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
287 }
288
289 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
290 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
291
292 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
293 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
294 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
295 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
296
297 // Send Chip ID and used flash memory
298 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
299 uint32_t compressed_data_section_size = common_area.arg1;
300 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
301 }
302
303 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
304 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
305 void printUSBSpeed(void)
306 {
307 Dbprintf("USB Speed:");
308 Dbprintf(" Sending USB packets to client...");
309
310 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
311 uint8_t *test_data = BigBuf_get_addr();
312 uint32_t end_time;
313
314 uint32_t start_time = end_time = GetTickCount();
315 uint32_t bytes_transferred = 0;
316
317 LED_B_ON();
318 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
319 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
320 end_time = GetTickCount();
321 bytes_transferred += USB_CMD_DATA_SIZE;
322 }
323 LED_B_OFF();
324
325 Dbprintf(" Time elapsed: %dms", end_time - start_time);
326 Dbprintf(" Bytes transferred: %d", bytes_transferred);
327 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
328 1000 * bytes_transferred / (end_time - start_time));
329
330 }
331
332 /**
333 * Prints runtime information about the PM3.
334 **/
335 void SendStatus(void)
336 {
337 BigBuf_print_status();
338 Fpga_print_status();
339 printConfig(); //LF Sampling config
340 printUSBSpeed();
341 Dbprintf("Various");
342 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL);
343 Dbprintf(" ToSendMax........%d",ToSendMax);
344 Dbprintf(" ToSendBit........%d",ToSendBit);
345
346 cmd_send(CMD_ACK,1,0,0,0,0);
347 }
348
349 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
350
351 #define OPTS 2
352
353 void StandAloneMode()
354 {
355 DbpString("Stand-alone mode! No PC necessary.");
356 // Oooh pretty -- notify user we're in elite samy mode now
357 LED(LED_RED, 200);
358 LED(LED_ORANGE, 200);
359 LED(LED_GREEN, 200);
360 LED(LED_ORANGE, 200);
361 LED(LED_RED, 200);
362 LED(LED_ORANGE, 200);
363 LED(LED_GREEN, 200);
364 LED(LED_ORANGE, 200);
365 LED(LED_RED, 200);
366
367 }
368
369 #endif
370
371
372
373 #ifdef WITH_ISO14443a_StandAlone
374 void StandAloneMode14a()
375 {
376 StandAloneMode();
377 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
378
379 int selected = 0;
380 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
381 int cardRead[OPTS] = {0};
382 uint8_t readUID[10] = {0};
383 uint32_t uid_1st[OPTS]={0};
384 uint32_t uid_2nd[OPTS]={0};
385 uint32_t uid_tmp1 = 0;
386 uint32_t uid_tmp2 = 0;
387 iso14a_card_select_t hi14a_card[OPTS];
388
389 LED(selected + 1, 0);
390
391 for (;;)
392 {
393 usb_poll();
394 WDT_HIT();
395 SpinDelay(300);
396
397 if (iGotoRecord == 1 || cardRead[selected] == 0)
398 {
399 iGotoRecord = 0;
400 LEDsoff();
401 LED(selected + 1, 0);
402 LED(LED_RED2, 0);
403
404 // record
405 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
406 /* need this delay to prevent catching some weird data */
407 SpinDelay(500);
408 /* Code for reading from 14a tag */
409 uint8_t uid[10] ={0};
410 uint32_t cuid;
411 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
412
413 for ( ; ; )
414 {
415 WDT_HIT();
416 if (BUTTON_PRESS()) {
417 if (cardRead[selected]) {
418 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
419 break;
420 }
421 else if (cardRead[(selected+1)%OPTS]) {
422 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
423 selected = (selected+1)%OPTS;
424 break; // playing = 1;
425 }
426 else {
427 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
428 SpinDelay(300);
429 }
430 }
431 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid))
432 continue;
433 else
434 {
435 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
436 memcpy(readUID,uid,10*sizeof(uint8_t));
437 uint8_t *dst = (uint8_t *)&uid_tmp1;
438 // Set UID byte order
439 for (int i=0; i<4; i++)
440 dst[i] = uid[3-i];
441 dst = (uint8_t *)&uid_tmp2;
442 for (int i=0; i<4; i++)
443 dst[i] = uid[7-i];
444 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
445 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
446 }
447 else {
448 if (uid_tmp2) {
449 Dbprintf("Bank[%d] received a 7-byte UID",selected);
450 uid_1st[selected] = (uid_tmp1)>>8;
451 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
452 }
453 else {
454 Dbprintf("Bank[%d] received a 4-byte UID",selected);
455 uid_1st[selected] = uid_tmp1;
456 uid_2nd[selected] = uid_tmp2;
457 }
458 break;
459 }
460 }
461 }
462 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
463 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
464 LEDsoff();
465 LED(LED_GREEN, 200);
466 LED(LED_ORANGE, 200);
467 LED(LED_GREEN, 200);
468 LED(LED_ORANGE, 200);
469
470 LEDsoff();
471 LED(selected + 1, 0);
472
473 // Next state is replay:
474 playing = 1;
475
476 cardRead[selected] = 1;
477 }
478 /* MF Classic UID clone */
479 else if (iGotoClone==1)
480 {
481 iGotoClone=0;
482 LEDsoff();
483 LED(selected + 1, 0);
484 LED(LED_ORANGE, 250);
485
486
487 // record
488 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
489
490 // wait for button to be released
491 while(BUTTON_PRESS())
492 {
493 // Delay cloning until card is in place
494 WDT_HIT();
495 }
496 Dbprintf("Starting clone. [Bank: %u]", selected);
497 // need this delay to prevent catching some weird data
498 SpinDelay(500);
499 // Begin clone function here:
500 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
501 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
502 memcpy(c.d.asBytes, data, 16);
503 SendCommand(&c);
504
505 Block read is similar:
506 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
507 We need to imitate that call with blockNo 0 to set a uid.
508
509 The get and set commands are handled in this file:
510 // Work with "magic Chinese" card
511 case CMD_MIFARE_CSETBLOCK:
512 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
513 break;
514 case CMD_MIFARE_CGETBLOCK:
515 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
516 break;
517
518 mfCSetUID provides example logic for UID set workflow:
519 -Read block0 from card in field with MifareCGetBlock()
520 -Configure new values without replacing reserved bytes
521 memcpy(block0, uid, 4); // Copy UID bytes from byte array
522 // Mifare UID BCC
523 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
524 Bytes 5-7 are reserved SAK and ATQA for mifare classic
525 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
526 */
527 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
528 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
529 MifareCGetBlock(0x3F, 1, 0, oldBlock0);
530 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
531 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
532 playing = 1;
533 }
534 else {
535 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
536 memcpy(newBlock0,oldBlock0,16);
537 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
538
539 newBlock0[0] = uid_1st[selected]>>24;
540 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
541 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
542 newBlock0[3] = 0xFF & (uid_1st[selected]);
543 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
544 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
545 MifareCSetBlock(0, 0xFF,0, newBlock0);
546 MifareCGetBlock(0x3F, 1, 0, testBlock0);
547 if (memcmp(testBlock0,newBlock0,16)==0)
548 {
549 DbpString("Cloned successfull!");
550 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
551 playing = 0;
552 iGotoRecord = 1;
553 selected = (selected+1) % OPTS;
554 }
555 else {
556 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
557 playing = 1;
558 }
559 }
560 LEDsoff();
561 LED(selected + 1, 0);
562
563 }
564 // Change where to record (or begin playing)
565 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
566 {
567 LEDsoff();
568 LED(selected + 1, 0);
569
570 // Begin transmitting
571 if (playing)
572 {
573 LED(LED_GREEN, 0);
574 DbpString("Playing");
575 for ( ; ; ) {
576 WDT_HIT();
577 int button_action = BUTTON_HELD(1000);
578 if (button_action == 0) { // No button action, proceed with sim
579 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
580 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
581 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
582 DbpString("Mifare Classic");
583 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
584 }
585 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
586 DbpString("Mifare Ultralight");
587 SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
588 }
589 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
590 DbpString("Mifare DESFire");
591 SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
592 }
593 else {
594 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
595 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
596 }
597 }
598 else if (button_action == BUTTON_SINGLE_CLICK) {
599 selected = (selected + 1) % OPTS;
600 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
601 iGotoRecord = 1;
602 break;
603 }
604 else if (button_action == BUTTON_HOLD) {
605 Dbprintf("Playtime over. Begin cloning...");
606 iGotoClone = 1;
607 break;
608 }
609 WDT_HIT();
610 }
611
612 /* We pressed a button so ignore it here with a delay */
613 SpinDelay(300);
614 LEDsoff();
615 LED(selected + 1, 0);
616 }
617 else
618 while(BUTTON_PRESS())
619 WDT_HIT();
620 }
621 }
622 }
623 #elif WITH_LF
624 // samy's sniff and repeat routine
625 void SamyRun()
626 {
627 StandAloneMode();
628 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
629
630 int high[OPTS], low[OPTS];
631 int selected = 0;
632 int playing = 0;
633 int cardRead = 0;
634
635 // Turn on selected LED
636 LED(selected + 1, 0);
637
638 for (;;)
639 {
640 usb_poll();
641 WDT_HIT();
642
643 // Was our button held down or pressed?
644 int button_pressed = BUTTON_HELD(1000);
645 SpinDelay(300);
646
647 // Button was held for a second, begin recording
648 if (button_pressed > 0 && cardRead == 0)
649 {
650 LEDsoff();
651 LED(selected + 1, 0);
652 LED(LED_RED2, 0);
653
654 // record
655 DbpString("Starting recording");
656
657 // wait for button to be released
658 while(BUTTON_PRESS())
659 WDT_HIT();
660
661 /* need this delay to prevent catching some weird data */
662 SpinDelay(500);
663
664 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
665 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
666
667 LEDsoff();
668 LED(selected + 1, 0);
669 // Finished recording
670
671 // If we were previously playing, set playing off
672 // so next button push begins playing what we recorded
673 playing = 0;
674
675 cardRead = 1;
676
677 }
678
679 else if (button_pressed > 0 && cardRead == 1)
680 {
681 LEDsoff();
682 LED(selected + 1, 0);
683 LED(LED_ORANGE, 0);
684
685 // record
686 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
687
688 // wait for button to be released
689 while(BUTTON_PRESS())
690 WDT_HIT();
691
692 /* need this delay to prevent catching some weird data */
693 SpinDelay(500);
694
695 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
696 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
697
698 LEDsoff();
699 LED(selected + 1, 0);
700 // Finished recording
701
702 // If we were previously playing, set playing off
703 // so next button push begins playing what we recorded
704 playing = 0;
705
706 cardRead = 0;
707
708 }
709
710 // Change where to record (or begin playing)
711 else if (button_pressed)
712 {
713 // Next option if we were previously playing
714 if (playing)
715 selected = (selected + 1) % OPTS;
716 playing = !playing;
717
718 LEDsoff();
719 LED(selected + 1, 0);
720
721 // Begin transmitting
722 if (playing)
723 {
724 LED(LED_GREEN, 0);
725 DbpString("Playing");
726 // wait for button to be released
727 while(BUTTON_PRESS())
728 WDT_HIT();
729 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
730 CmdHIDsimTAG(high[selected], low[selected], 0);
731 DbpString("Done playing");
732 if (BUTTON_HELD(1000) > 0)
733 {
734 DbpString("Exiting");
735 LEDsoff();
736 return;
737 }
738
739 /* We pressed a button so ignore it here with a delay */
740 SpinDelay(300);
741
742 // when done, we're done playing, move to next option
743 selected = (selected + 1) % OPTS;
744 playing = !playing;
745 LEDsoff();
746 LED(selected + 1, 0);
747 }
748 else
749 while(BUTTON_PRESS())
750 WDT_HIT();
751 }
752 }
753 }
754
755 #endif
756 /*
757 OBJECTIVE
758 Listen and detect an external reader. Determine the best location
759 for the antenna.
760
761 INSTRUCTIONS:
762 Inside the ListenReaderField() function, there is two mode.
763 By default, when you call the function, you will enter mode 1.
764 If you press the PM3 button one time, you will enter mode 2.
765 If you press the PM3 button a second time, you will exit the function.
766
767 DESCRIPTION OF MODE 1:
768 This mode just listens for an external reader field and lights up green
769 for HF and/or red for LF. This is the original mode of the detectreader
770 function.
771
772 DESCRIPTION OF MODE 2:
773 This mode will visually represent, using the LEDs, the actual strength of the
774 current compared to the maximum current detected. Basically, once you know
775 what kind of external reader is present, it will help you spot the best location to place
776 your antenna. You will probably not get some good results if there is a LF and a HF reader
777 at the same place! :-)
778
779 LIGHT SCHEME USED:
780 */
781 static const char LIGHT_SCHEME[] = {
782 0x0, /* ---- | No field detected */
783 0x1, /* X--- | 14% of maximum current detected */
784 0x2, /* -X-- | 29% of maximum current detected */
785 0x4, /* --X- | 43% of maximum current detected */
786 0x8, /* ---X | 57% of maximum current detected */
787 0xC, /* --XX | 71% of maximum current detected */
788 0xE, /* -XXX | 86% of maximum current detected */
789 0xF, /* XXXX | 100% of maximum current detected */
790 };
791 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
792
793 void ListenReaderField(int limit)
794 {
795 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
796 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
797 int mode=1, display_val, display_max, i;
798
799 #define LF_ONLY 1
800 #define HF_ONLY 2
801 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
802
803
804 // switch off FPGA - we don't want to measure our own signal
805 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
806 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
807
808 LEDsoff();
809
810 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
811
812 if(limit != HF_ONLY) {
813 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
814 lf_baseline = lf_av;
815 }
816
817 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
818
819 if (limit != LF_ONLY) {
820 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
821 hf_baseline = hf_av;
822 }
823
824 for(;;) {
825 if (BUTTON_PRESS()) {
826 SpinDelay(500);
827 switch (mode) {
828 case 1:
829 mode=2;
830 DbpString("Signal Strength Mode");
831 break;
832 case 2:
833 default:
834 DbpString("Stopped");
835 LEDsoff();
836 return;
837 break;
838 }
839 }
840 WDT_HIT();
841
842 if (limit != HF_ONLY) {
843 if(mode == 1) {
844 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
845 LED_D_ON();
846 else
847 LED_D_OFF();
848 }
849
850 lf_av_new = AvgAdc(ADC_CHAN_LF);
851 // see if there's a significant change
852 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
853 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
854 lf_av = lf_av_new;
855 if (lf_av > lf_max)
856 lf_max = lf_av;
857 }
858 }
859
860 if (limit != LF_ONLY) {
861 if (mode == 1){
862 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
863 LED_B_ON();
864 else
865 LED_B_OFF();
866 }
867
868 hf_av_new = AvgAdc(ADC_CHAN_HF);
869 // see if there's a significant change
870 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
871 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
872 hf_av = hf_av_new;
873 if (hf_av > hf_max)
874 hf_max = hf_av;
875 }
876 }
877
878 if(mode == 2) {
879 if (limit == LF_ONLY) {
880 display_val = lf_av;
881 display_max = lf_max;
882 } else if (limit == HF_ONLY) {
883 display_val = hf_av;
884 display_max = hf_max;
885 } else { /* Pick one at random */
886 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
887 display_val = hf_av;
888 display_max = hf_max;
889 } else {
890 display_val = lf_av;
891 display_max = lf_max;
892 }
893 }
894 for (i=0; i<LIGHT_LEN; i++) {
895 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
896 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
897 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
898 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
899 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
900 break;
901 }
902 }
903 }
904 }
905 }
906
907 void UsbPacketReceived(uint8_t *packet, int len)
908 {
909 UsbCommand *c = (UsbCommand *)packet;
910
911 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
912
913 switch(c->cmd) {
914 #ifdef WITH_LF
915 case CMD_SET_LF_SAMPLING_CONFIG:
916 setSamplingConfig((sample_config *) c->d.asBytes);
917 break;
918 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
919 cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
920 break;
921 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
922 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
923 break;
924 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
925 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
926 break;
927 case CMD_HID_DEMOD_FSK:
928 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
929 break;
930 case CMD_HID_SIM_TAG:
931 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
932 break;
933 case CMD_FSK_SIM_TAG:
934 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
935 break;
936 case CMD_ASK_SIM_TAG:
937 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
938 break;
939 case CMD_PSK_SIM_TAG:
940 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
941 break;
942 case CMD_HID_CLONE_TAG:
943 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
944 break;
945 case CMD_IO_DEMOD_FSK:
946 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
947 break;
948 case CMD_IO_CLONE_TAG:
949 CopyIOtoT55x7(c->arg[0], c->arg[1]);
950 break;
951 case CMD_EM410X_DEMOD:
952 CmdEM410xdemod(c->arg[0], 0, 0, 1);
953 break;
954 case CMD_EM410X_WRITE_TAG:
955 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
956 break;
957 case CMD_READ_TI_TYPE:
958 ReadTItag();
959 break;
960 case CMD_WRITE_TI_TYPE:
961 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
962 break;
963 case CMD_SIMULATE_TAG_125K:
964 LED_A_ON();
965 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
966 LED_A_OFF();
967 break;
968 case CMD_LF_SIMULATE_BIDIR:
969 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
970 break;
971 case CMD_INDALA_CLONE_TAG:
972 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
973 break;
974 case CMD_INDALA_CLONE_TAG_L:
975 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
976 break;
977 case CMD_T55XX_READ_BLOCK:
978 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
979 break;
980 case CMD_T55XX_WRITE_BLOCK:
981 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
982 break;
983 case CMD_T55XX_WAKEUP:
984 T55xxWakeUp(c->arg[0]);
985 break;
986 case CMD_T55XX_RESET_READ:
987 T55xxResetRead();
988 break;
989 case CMD_PCF7931_READ:
990 ReadPCF7931();
991 break;
992 case CMD_PCF7931_WRITE:
993 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
994 break;
995 case CMD_EM4X_READ_WORD:
996 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
997 break;
998 case CMD_EM4X_WRITE_WORD:
999 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
1000 break;
1001 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
1002 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
1003 break;
1004 case CMD_VIKING_CLONE_TAG:
1005 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
1006 break;
1007 #endif
1008
1009 #ifdef WITH_HITAG
1010 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1011 SnoopHitag(c->arg[0]);
1012 break;
1013 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1014 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1015 break;
1016 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1017 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1018 break;
1019 #endif
1020
1021 #ifdef WITH_ISO15693
1022 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1023 AcquireRawAdcSamplesIso15693();
1024 break;
1025 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1026 RecordRawAdcSamplesIso15693();
1027 break;
1028
1029 case CMD_ISO_15693_COMMAND:
1030 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1031 break;
1032
1033 case CMD_ISO_15693_FIND_AFI:
1034 BruteforceIso15693Afi(c->arg[0]);
1035 break;
1036
1037 case CMD_ISO_15693_DEBUG:
1038 SetDebugIso15693(c->arg[0]);
1039 break;
1040
1041 case CMD_READER_ISO_15693:
1042 ReaderIso15693(c->arg[0]);
1043 break;
1044 case CMD_SIMTAG_ISO_15693:
1045 SimTagIso15693(c->arg[0], c->d.asBytes);
1046 break;
1047 #endif
1048
1049 #ifdef WITH_LEGICRF
1050 case CMD_SIMULATE_TAG_LEGIC_RF:
1051 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1052 break;
1053
1054 case CMD_WRITER_LEGIC_RF:
1055 LegicRfWriter(c->arg[1], c->arg[0]);
1056 break;
1057
1058 case CMD_READER_LEGIC_RF:
1059 LegicRfReader(c->arg[0], c->arg[1]);
1060 break;
1061 #endif
1062
1063 #ifdef WITH_ISO14443b
1064 case CMD_READ_SRI512_TAG:
1065 ReadSTMemoryIso14443b(0x0F);
1066 break;
1067 case CMD_READ_SRIX4K_TAG:
1068 ReadSTMemoryIso14443b(0x7F);
1069 break;
1070 case CMD_SNOOP_ISO_14443B:
1071 SnoopIso14443b();
1072 break;
1073 case CMD_SIMULATE_TAG_ISO_14443B:
1074 SimulateIso14443bTag();
1075 break;
1076 case CMD_ISO_14443B_COMMAND:
1077 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1078 break;
1079 #endif
1080
1081 #ifdef WITH_ISO14443a
1082 case CMD_SNOOP_ISO_14443a:
1083 SnoopIso14443a(c->arg[0]);
1084 break;
1085 case CMD_READER_ISO_14443a:
1086 ReaderIso14443a(c);
1087 break;
1088 case CMD_SIMULATE_TAG_ISO_14443a:
1089 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1090 break;
1091
1092 case CMD_EPA_PACE_COLLECT_NONCE:
1093 EPA_PACE_Collect_Nonce(c);
1094 break;
1095 case CMD_EPA_PACE_REPLAY:
1096 EPA_PACE_Replay(c);
1097 break;
1098
1099 case CMD_READER_MIFARE:
1100 ReaderMifare(c->arg[0]);
1101 break;
1102 case CMD_MIFARE_READBL:
1103 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1104 break;
1105 case CMD_MIFAREU_READBL:
1106 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1107 break;
1108 case CMD_MIFAREUC_AUTH:
1109 MifareUC_Auth(c->arg[0],c->d.asBytes);
1110 break;
1111 case CMD_MIFAREU_READCARD:
1112 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1113 break;
1114 case CMD_MIFAREUC_SETPWD:
1115 MifareUSetPwd(c->arg[0], c->d.asBytes);
1116 break;
1117 case CMD_MIFARE_READSC:
1118 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1119 break;
1120 case CMD_MIFARE_WRITEBL:
1121 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1122 break;
1123 //case CMD_MIFAREU_WRITEBL_COMPAT:
1124 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1125 //break;
1126 case CMD_MIFAREU_WRITEBL:
1127 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1128 break;
1129 case CMD_MIFARE_NESTED:
1130 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1131 break;
1132 case CMD_MIFARE_CHKKEYS:
1133 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1134 break;
1135 case CMD_SIMULATE_MIFARE_CARD:
1136 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1137 break;
1138
1139 // emulator
1140 case CMD_MIFARE_SET_DBGMODE:
1141 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1142 break;
1143 case CMD_MIFARE_EML_MEMCLR:
1144 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1145 break;
1146 case CMD_MIFARE_EML_MEMSET:
1147 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1148 break;
1149 case CMD_MIFARE_EML_MEMGET:
1150 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1151 break;
1152 case CMD_MIFARE_EML_CARDLOAD:
1153 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1154 break;
1155
1156 // Work with "magic Chinese" card
1157 case CMD_MIFARE_CSETBLOCK:
1158 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1159 break;
1160 case CMD_MIFARE_CGETBLOCK:
1161 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1162 break;
1163 case CMD_MIFARE_CIDENT:
1164 MifareCIdent();
1165 break;
1166
1167 // mifare sniffer
1168 case CMD_MIFARE_SNIFFER:
1169 SniffMifare(c->arg[0]);
1170 break;
1171
1172 #endif
1173
1174 #ifdef WITH_ICLASS
1175 // Makes use of ISO14443a FPGA Firmware
1176 case CMD_SNOOP_ICLASS:
1177 SnoopIClass();
1178 break;
1179 case CMD_SIMULATE_TAG_ICLASS:
1180 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1181 break;
1182 case CMD_READER_ICLASS:
1183 ReaderIClass(c->arg[0]);
1184 break;
1185 case CMD_READER_ICLASS_REPLAY:
1186 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1187 break;
1188 case CMD_ICLASS_EML_MEMSET:
1189 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1190 break;
1191 case CMD_ICLASS_WRITEBLOCK:
1192 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1193 break;
1194 case CMD_ICLASS_READCHECK: // auth step 1
1195 iClass_ReadCheck(c->arg[0], c->arg[1]);
1196 break;
1197 case CMD_ICLASS_READBLOCK:
1198 iClass_ReadBlk(c->arg[0]);
1199 break;
1200 case CMD_ICLASS_AUTHENTICATION: //check
1201 iClass_Authentication(c->d.asBytes);
1202 break;
1203 case CMD_ICLASS_DUMP:
1204 iClass_Dump(c->arg[0], c->arg[1]);
1205 break;
1206 case CMD_ICLASS_CLONE:
1207 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1208 break;
1209 #endif
1210 #ifdef WITH_HFSNOOP
1211 case CMD_HF_SNIFFER:
1212 HfSnoop(c->arg[0], c->arg[1]);
1213 break;
1214 #endif
1215
1216 case CMD_BUFF_CLEAR:
1217 BigBuf_Clear();
1218 break;
1219
1220 case CMD_MEASURE_ANTENNA_TUNING:
1221 MeasureAntennaTuning();
1222 break;
1223
1224 case CMD_MEASURE_ANTENNA_TUNING_HF:
1225 MeasureAntennaTuningHf();
1226 break;
1227
1228 case CMD_LISTEN_READER_FIELD:
1229 ListenReaderField(c->arg[0]);
1230 break;
1231
1232 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1233 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1234 SpinDelay(200);
1235 LED_D_OFF(); // LED D indicates field ON or OFF
1236 break;
1237
1238 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
1239
1240 LED_B_ON();
1241 uint8_t *BigBuf = BigBuf_get_addr();
1242 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1243 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
1244 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1245 }
1246 // Trigger a finish downloading signal with an ACK frame
1247 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
1248 LED_B_OFF();
1249 break;
1250
1251 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1252 uint8_t *b = BigBuf_get_addr();
1253 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1254 cmd_send(CMD_ACK,0,0,0,0,0);
1255 break;
1256 }
1257 case CMD_READ_MEM:
1258 ReadMem(c->arg[0]);
1259 break;
1260
1261 case CMD_SET_LF_DIVISOR:
1262 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1263 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1264 break;
1265
1266 case CMD_SET_ADC_MUX:
1267 switch(c->arg[0]) {
1268 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1269 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1270 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1271 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1272 }
1273 break;
1274
1275 case CMD_VERSION:
1276 SendVersion();
1277 break;
1278 case CMD_STATUS:
1279 SendStatus();
1280 break;
1281 case CMD_PING:
1282 cmd_send(CMD_ACK,0,0,0,0,0);
1283 break;
1284 #ifdef WITH_LCD
1285 case CMD_LCD_RESET:
1286 LCDReset();
1287 break;
1288 case CMD_LCD:
1289 LCDSend(c->arg[0]);
1290 break;
1291 #endif
1292 case CMD_SETUP_WRITE:
1293 case CMD_FINISH_WRITE:
1294 case CMD_HARDWARE_RESET:
1295 usb_disable();
1296 SpinDelay(1000);
1297 SpinDelay(1000);
1298 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1299 for(;;) {
1300 // We're going to reset, and the bootrom will take control.
1301 }
1302 break;
1303
1304 case CMD_START_FLASH:
1305 if(common_area.flags.bootrom_present) {
1306 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1307 }
1308 usb_disable();
1309 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1310 for(;;);
1311 break;
1312
1313 case CMD_DEVICE_INFO: {
1314 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1315 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1316 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1317 break;
1318 }
1319 default:
1320 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1321 break;
1322 }
1323 }
1324
1325 void __attribute__((noreturn)) AppMain(void)
1326 {
1327 SpinDelay(100);
1328 clear_trace();
1329 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1330 /* Initialize common area */
1331 memset(&common_area, 0, sizeof(common_area));
1332 common_area.magic = COMMON_AREA_MAGIC;
1333 common_area.version = 1;
1334 }
1335 common_area.flags.osimage_present = 1;
1336
1337 LED_D_OFF();
1338 LED_C_OFF();
1339 LED_B_OFF();
1340 LED_A_OFF();
1341
1342 // Init USB device
1343 usb_enable();
1344
1345 // The FPGA gets its clock from us from PCK0 output, so set that up.
1346 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1347 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1348 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1349 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1350 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1351 AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
1352 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1353
1354 // Reset SPI
1355 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1356 // Reset SSC
1357 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1358
1359 // Load the FPGA image, which we have stored in our flash.
1360 // (the HF version by default)
1361 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1362
1363 StartTickCount();
1364
1365 #ifdef WITH_LCD
1366 LCDInit();
1367 #endif
1368
1369 byte_t rx[sizeof(UsbCommand)];
1370 size_t rx_len;
1371
1372 for(;;) {
1373 if (usb_poll()) {
1374 rx_len = usb_read(rx,sizeof(UsbCommand));
1375 if (rx_len) {
1376 UsbPacketReceived(rx,rx_len);
1377 }
1378 }
1379 WDT_HIT();
1380
1381 #ifdef WITH_LF
1382 #ifndef WITH_ISO14443a_StandAlone
1383 if (BUTTON_HELD(1000) > 0)
1384 SamyRun();
1385 #endif
1386 #endif
1387 #ifdef WITH_ISO14443a
1388 #ifdef WITH_ISO14443a_StandAlone
1389 if (BUTTON_HELD(1000) > 0)
1390 StandAloneMode14a();
1391 #endif
1392 #endif
1393 }
1394 }
Impressum, Datenschutz