]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/appmain.c
99776a982a5d41edb10be30625ddc73394c2835e
[proxmark3-svn] / armsrc / appmain.c
1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
4 //
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
7 // the license.
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
10 // executes.
11 //-----------------------------------------------------------------------------
12
13 #include "usb_cdc.h"
14 #include "cmd.h"
15
16 #include "proxmark3.h"
17 #include "apps.h"
18 #include "util.h"
19 #include "printf.h"
20 #include "string.h"
21
22 #include <stdarg.h>
23
24 #include "legicrf.h"
25 #include <hitag2.h>
26 #include "lfsampling.h"
27 #include "BigBuf.h"
28 #include "mifareutil.h"
29 #ifdef WITH_LCD
30 #include "LCD.h"
31 #endif
32
33 // Craig Young - 14a stand-alone code
34 #ifdef WITH_ISO14443a_StandAlone
35 #include "iso14443a.h"
36 #endif
37
38 #define abs(x) ( ((x)<0) ? -(x) : (x) )
39
40 //=============================================================================
41 // A buffer where we can queue things up to be sent through the FPGA, for
42 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
43 // is the order in which they go out on the wire.
44 //=============================================================================
45
46 #define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
47 uint8_t ToSend[TOSEND_BUFFER_SIZE];
48 int ToSendMax;
49 static int ToSendBit;
50 struct common_area common_area __attribute__((section(".commonarea")));
51
52 void ToSendReset(void)
53 {
54 ToSendMax = -1;
55 ToSendBit = 8;
56 }
57
58 void ToSendStuffBit(int b)
59 {
60 if(ToSendBit >= 8) {
61 ToSendMax++;
62 ToSend[ToSendMax] = 0;
63 ToSendBit = 0;
64 }
65
66 if(b) {
67 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
68 }
69
70 ToSendBit++;
71
72 if(ToSendMax >= sizeof(ToSend)) {
73 ToSendBit = 0;
74 DbpString("ToSendStuffBit overflowed!");
75 }
76 }
77
78 //=============================================================================
79 // Debug print functions, to go out over USB, to the usual PC-side client.
80 //=============================================================================
81
82 void DbpString(char *str)
83 {
84 byte_t len = strlen(str);
85 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
86 }
87
88 #if 0
89 void DbpIntegers(int x1, int x2, int x3)
90 {
91 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
92 }
93 #endif
94
95 void Dbprintf(const char *fmt, ...) {
96 // should probably limit size here; oh well, let's just use a big buffer
97 char output_string[128];
98 va_list ap;
99
100 va_start(ap, fmt);
101 kvsprintf(fmt, output_string, 10, ap);
102 va_end(ap);
103
104 DbpString(output_string);
105 }
106
107 // prints HEX & ASCII
108 void Dbhexdump(int len, uint8_t *d, bool bAsci) {
109 int l=0,i;
110 char ascii[9];
111
112 while (len>0) {
113 if (len>8) l=8;
114 else l=len;
115
116 memcpy(ascii,d,l);
117 ascii[l]=0;
118
119 // filter safe ascii
120 for (i=0;i<l;i++)
121 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
122
123 if (bAsci) {
124 Dbprintf("%-8s %*D",ascii,l,d," ");
125 } else {
126 Dbprintf("%*D",l,d," ");
127 }
128
129 len-=8;
130 d+=8;
131 }
132 }
133
134 //-----------------------------------------------------------------------------
135 // Read an ADC channel and block till it completes, then return the result
136 // in ADC units (0 to 1023). Also a routine to average 32 samples and
137 // return that.
138 //-----------------------------------------------------------------------------
139 static int ReadAdc(int ch)
140 {
141 uint32_t d;
142
143 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
144 AT91C_BASE_ADC->ADC_MR =
145 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
146 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
147 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
148
149 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
150 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
151 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
152 //
153 // The maths are:
154 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
155 //
156 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
157 //
158 // Note: with the "historic" values in the comments above, the error was 34% !!!
159
160 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
161
162 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
163
164 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
165 ;
166 d = AT91C_BASE_ADC->ADC_CDR[ch];
167
168 return d;
169 }
170
171 int AvgAdc(int ch) // was static - merlok
172 {
173 int i;
174 int a = 0;
175
176 for(i = 0; i < 32; i++) {
177 a += ReadAdc(ch);
178 }
179
180 return (a + 15) >> 5;
181 }
182
183 void MeasureAntennaTuning(void)
184 {
185 uint8_t LF_Results[256];
186 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
187 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
188
189 LED_B_ON();
190
191 /*
192 * Sweeps the useful LF range of the proxmark from
193 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
194 * read the voltage in the antenna, the result left
195 * in the buffer is a graph which should clearly show
196 * the resonating frequency of your LF antenna
197 * ( hopefully around 95 if it is tuned to 125kHz!)
198 */
199
200 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
202 for (i=255; i>=19; i--) {
203 WDT_HIT();
204 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
205 SpinDelay(20);
206 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
207 if (i==95) vLf125 = adcval; // voltage at 125Khz
208 if (i==89) vLf134 = adcval; // voltage at 134Khz
209
210 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
211 if(LF_Results[i] > peak) {
212 peakv = adcval;
213 peak = LF_Results[i];
214 peakf = i;
215 //ptr = i;
216 }
217 }
218
219 for (i=18; i >= 0; i--) LF_Results[i] = 0;
220
221 LED_A_ON();
222 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
223 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
224 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
225 SpinDelay(20);
226 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
227
228 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
229 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
230 LED_A_OFF();
231 LED_B_OFF();
232 return;
233 }
234
235 void MeasureAntennaTuningHf(void)
236 {
237 int vHf = 0; // in mV
238
239 DbpString("Measuring HF antenna, press button to exit");
240
241 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
242 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
243 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
244
245 for (;;) {
246 SpinDelay(20);
247 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
248
249 Dbprintf("%d mV",vHf);
250 if (BUTTON_PRESS()) break;
251 }
252 DbpString("cancelled");
253
254 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
255
256 }
257
258
259 void ReadMem(int addr)
260 {
261 const uint8_t *data = ((uint8_t *)addr);
262
263 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
264 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
265 }
266
267 /* osimage version information is linked in */
268 extern struct version_information version_information;
269 /* bootrom version information is pointed to from _bootphase1_version_pointer */
270 extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
271 void SendVersion(void)
272 {
273 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
274 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
275
276 /* Try to find the bootrom version information. Expect to find a pointer at
277 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
278 * pointer, then use it.
279 */
280 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
281 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
282 strcat(VersionString, "bootrom version information appears invalid\n");
283 } else {
284 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
285 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
286 }
287
288 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
289 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
290
291 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
292 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
293 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
294 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
295
296 // Send Chip ID and used flash memory
297 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
298 uint32_t compressed_data_section_size = common_area.arg1;
299 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
300 }
301
302 // measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
303 // Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
304 void printUSBSpeed(uint32_t SpeedTestBufferSize)
305 {
306 Dbprintf("USB Speed:");
307 Dbprintf(" Sending %d bytes payload...", SpeedTestBufferSize);
308
309 uint8_t *test_data = BigBuf_get_addr();
310
311 uint32_t start_time = GetTickCount();
312
313 LED_B_ON();
314 for(size_t i=0; i<SpeedTestBufferSize; i += USB_CMD_DATA_SIZE) {
315 size_t len = MIN((SpeedTestBufferSize - i), USB_CMD_DATA_SIZE);
316 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,0,len,0,test_data,len);
317 }
318 LED_B_OFF();
319
320 uint32_t end_time = GetTickCount();
321
322 Dbprintf(" Time elapsed: %dms, USB Transfer Speed PM3 -> Client = %d Bytes/s",
323 end_time - start_time,
324 1000* SpeedTestBufferSize / (end_time - start_time));
325
326 }
327
328 /**
329 * Prints runtime information about the PM3.
330 **/
331 void SendStatus(uint32_t SpeedTestBufferSize)
332 {
333 BigBuf_print_status();
334 Fpga_print_status();
335 printConfig(); //LF Sampling config
336 printUSBSpeed(SpeedTestBufferSize);
337 Dbprintf("Various");
338 Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL);
339 Dbprintf(" ToSendMax........%d",ToSendMax);
340 Dbprintf(" ToSendBit........%d",ToSendBit);
341
342 cmd_send(CMD_ACK,1,0,0,0,0);
343 }
344
345 #if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
346
347 #define OPTS 2
348
349 void StandAloneMode()
350 {
351 DbpString("Stand-alone mode! No PC necessary.");
352 // Oooh pretty -- notify user we're in elite samy mode now
353 LED(LED_RED, 200);
354 LED(LED_ORANGE, 200);
355 LED(LED_GREEN, 200);
356 LED(LED_ORANGE, 200);
357 LED(LED_RED, 200);
358 LED(LED_ORANGE, 200);
359 LED(LED_GREEN, 200);
360 LED(LED_ORANGE, 200);
361 LED(LED_RED, 200);
362
363 }
364
365 #endif
366
367
368
369 #ifdef WITH_ISO14443a_StandAlone
370 void StandAloneMode14a()
371 {
372 StandAloneMode();
373 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
374
375 int selected = 0;
376 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
377 int cardRead[OPTS] = {0};
378 uint8_t readUID[10] = {0};
379 uint32_t uid_1st[OPTS]={0};
380 uint32_t uid_2nd[OPTS]={0};
381 uint32_t uid_tmp1 = 0;
382 uint32_t uid_tmp2 = 0;
383 iso14a_card_select_t hi14a_card[OPTS];
384
385 LED(selected + 1, 0);
386
387 for (;;)
388 {
389 usb_poll();
390 WDT_HIT();
391 SpinDelay(300);
392
393 if (iGotoRecord == 1 || cardRead[selected] == 0)
394 {
395 iGotoRecord = 0;
396 LEDsoff();
397 LED(selected + 1, 0);
398 LED(LED_RED2, 0);
399
400 // record
401 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
402 /* need this delay to prevent catching some weird data */
403 SpinDelay(500);
404 /* Code for reading from 14a tag */
405 uint8_t uid[10] ={0};
406 uint32_t cuid;
407 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
408
409 for ( ; ; )
410 {
411 WDT_HIT();
412 if (BUTTON_PRESS()) {
413 if (cardRead[selected]) {
414 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
415 break;
416 }
417 else if (cardRead[(selected+1)%OPTS]) {
418 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
419 selected = (selected+1)%OPTS;
420 break; // playing = 1;
421 }
422 else {
423 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
424 SpinDelay(300);
425 }
426 }
427 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid))
428 continue;
429 else
430 {
431 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
432 memcpy(readUID,uid,10*sizeof(uint8_t));
433 uint8_t *dst = (uint8_t *)&uid_tmp1;
434 // Set UID byte order
435 for (int i=0; i<4; i++)
436 dst[i] = uid[3-i];
437 dst = (uint8_t *)&uid_tmp2;
438 for (int i=0; i<4; i++)
439 dst[i] = uid[7-i];
440 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
441 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
442 }
443 else {
444 if (uid_tmp2) {
445 Dbprintf("Bank[%d] received a 7-byte UID",selected);
446 uid_1st[selected] = (uid_tmp1)>>8;
447 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
448 }
449 else {
450 Dbprintf("Bank[%d] received a 4-byte UID",selected);
451 uid_1st[selected] = uid_tmp1;
452 uid_2nd[selected] = uid_tmp2;
453 }
454 break;
455 }
456 }
457 }
458 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
459 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
460 LEDsoff();
461 LED(LED_GREEN, 200);
462 LED(LED_ORANGE, 200);
463 LED(LED_GREEN, 200);
464 LED(LED_ORANGE, 200);
465
466 LEDsoff();
467 LED(selected + 1, 0);
468
469 // Next state is replay:
470 playing = 1;
471
472 cardRead[selected] = 1;
473 }
474 /* MF Classic UID clone */
475 else if (iGotoClone==1)
476 {
477 iGotoClone=0;
478 LEDsoff();
479 LED(selected + 1, 0);
480 LED(LED_ORANGE, 250);
481
482
483 // record
484 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
485
486 // wait for button to be released
487 while(BUTTON_PRESS())
488 {
489 // Delay cloning until card is in place
490 WDT_HIT();
491 }
492 Dbprintf("Starting clone. [Bank: %u]", selected);
493 // need this delay to prevent catching some weird data
494 SpinDelay(500);
495 // Begin clone function here:
496 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
497 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
498 memcpy(c.d.asBytes, data, 16);
499 SendCommand(&c);
500
501 Block read is similar:
502 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
503 We need to imitate that call with blockNo 0 to set a uid.
504
505 The get and set commands are handled in this file:
506 // Work with "magic Chinese" card
507 case CMD_MIFARE_CSETBLOCK:
508 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
509 break;
510 case CMD_MIFARE_CGETBLOCK:
511 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
512 break;
513
514 mfCSetUID provides example logic for UID set workflow:
515 -Read block0 from card in field with MifareCGetBlock()
516 -Configure new values without replacing reserved bytes
517 memcpy(block0, uid, 4); // Copy UID bytes from byte array
518 // Mifare UID BCC
519 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
520 Bytes 5-7 are reserved SAK and ATQA for mifare classic
521 -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
522 */
523 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
524 // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
525 MifareCGetBlock(0x3F, 1, 0, oldBlock0);
526 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
527 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
528 playing = 1;
529 }
530 else {
531 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
532 memcpy(newBlock0,oldBlock0,16);
533 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
534
535 newBlock0[0] = uid_1st[selected]>>24;
536 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
537 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
538 newBlock0[3] = 0xFF & (uid_1st[selected]);
539 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
540 // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
541 MifareCSetBlock(0, 0xFF,0, newBlock0);
542 MifareCGetBlock(0x3F, 1, 0, testBlock0);
543 if (memcmp(testBlock0,newBlock0,16)==0)
544 {
545 DbpString("Cloned successfull!");
546 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
547 playing = 0;
548 iGotoRecord = 1;
549 selected = (selected+1) % OPTS;
550 }
551 else {
552 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
553 playing = 1;
554 }
555 }
556 LEDsoff();
557 LED(selected + 1, 0);
558
559 }
560 // Change where to record (or begin playing)
561 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
562 {
563 LEDsoff();
564 LED(selected + 1, 0);
565
566 // Begin transmitting
567 if (playing)
568 {
569 LED(LED_GREEN, 0);
570 DbpString("Playing");
571 for ( ; ; ) {
572 WDT_HIT();
573 int button_action = BUTTON_HELD(1000);
574 if (button_action == 0) { // No button action, proceed with sim
575 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
576 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
577 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
578 DbpString("Mifare Classic");
579 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
580 }
581 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
582 DbpString("Mifare Ultralight");
583 SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
584 }
585 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
586 DbpString("Mifare DESFire");
587 SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
588 }
589 else {
590 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
591 SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
592 }
593 }
594 else if (button_action == BUTTON_SINGLE_CLICK) {
595 selected = (selected + 1) % OPTS;
596 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
597 iGotoRecord = 1;
598 break;
599 }
600 else if (button_action == BUTTON_HOLD) {
601 Dbprintf("Playtime over. Begin cloning...");
602 iGotoClone = 1;
603 break;
604 }
605 WDT_HIT();
606 }
607
608 /* We pressed a button so ignore it here with a delay */
609 SpinDelay(300);
610 LEDsoff();
611 LED(selected + 1, 0);
612 }
613 else
614 while(BUTTON_PRESS())
615 WDT_HIT();
616 }
617 }
618 }
619 #elif WITH_LF
620 // samy's sniff and repeat routine
621 void SamyRun()
622 {
623 StandAloneMode();
624 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
625
626 int high[OPTS], low[OPTS];
627 int selected = 0;
628 int playing = 0;
629 int cardRead = 0;
630
631 // Turn on selected LED
632 LED(selected + 1, 0);
633
634 for (;;)
635 {
636 usb_poll();
637 WDT_HIT();
638
639 // Was our button held down or pressed?
640 int button_pressed = BUTTON_HELD(1000);
641 SpinDelay(300);
642
643 // Button was held for a second, begin recording
644 if (button_pressed > 0 && cardRead == 0)
645 {
646 LEDsoff();
647 LED(selected + 1, 0);
648 LED(LED_RED2, 0);
649
650 // record
651 DbpString("Starting recording");
652
653 // wait for button to be released
654 while(BUTTON_PRESS())
655 WDT_HIT();
656
657 /* need this delay to prevent catching some weird data */
658 SpinDelay(500);
659
660 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
661 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
662
663 LEDsoff();
664 LED(selected + 1, 0);
665 // Finished recording
666
667 // If we were previously playing, set playing off
668 // so next button push begins playing what we recorded
669 playing = 0;
670
671 cardRead = 1;
672
673 }
674
675 else if (button_pressed > 0 && cardRead == 1)
676 {
677 LEDsoff();
678 LED(selected + 1, 0);
679 LED(LED_ORANGE, 0);
680
681 // record
682 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
683
684 // wait for button to be released
685 while(BUTTON_PRESS())
686 WDT_HIT();
687
688 /* need this delay to prevent catching some weird data */
689 SpinDelay(500);
690
691 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
692 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
693
694 LEDsoff();
695 LED(selected + 1, 0);
696 // Finished recording
697
698 // If we were previously playing, set playing off
699 // so next button push begins playing what we recorded
700 playing = 0;
701
702 cardRead = 0;
703
704 }
705
706 // Change where to record (or begin playing)
707 else if (button_pressed)
708 {
709 // Next option if we were previously playing
710 if (playing)
711 selected = (selected + 1) % OPTS;
712 playing = !playing;
713
714 LEDsoff();
715 LED(selected + 1, 0);
716
717 // Begin transmitting
718 if (playing)
719 {
720 LED(LED_GREEN, 0);
721 DbpString("Playing");
722 // wait for button to be released
723 while(BUTTON_PRESS())
724 WDT_HIT();
725 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
726 CmdHIDsimTAG(high[selected], low[selected], 0);
727 DbpString("Done playing");
728 if (BUTTON_HELD(1000) > 0)
729 {
730 DbpString("Exiting");
731 LEDsoff();
732 return;
733 }
734
735 /* We pressed a button so ignore it here with a delay */
736 SpinDelay(300);
737
738 // when done, we're done playing, move to next option
739 selected = (selected + 1) % OPTS;
740 playing = !playing;
741 LEDsoff();
742 LED(selected + 1, 0);
743 }
744 else
745 while(BUTTON_PRESS())
746 WDT_HIT();
747 }
748 }
749 }
750
751 #endif
752 /*
753 OBJECTIVE
754 Listen and detect an external reader. Determine the best location
755 for the antenna.
756
757 INSTRUCTIONS:
758 Inside the ListenReaderField() function, there is two mode.
759 By default, when you call the function, you will enter mode 1.
760 If you press the PM3 button one time, you will enter mode 2.
761 If you press the PM3 button a second time, you will exit the function.
762
763 DESCRIPTION OF MODE 1:
764 This mode just listens for an external reader field and lights up green
765 for HF and/or red for LF. This is the original mode of the detectreader
766 function.
767
768 DESCRIPTION OF MODE 2:
769 This mode will visually represent, using the LEDs, the actual strength of the
770 current compared to the maximum current detected. Basically, once you know
771 what kind of external reader is present, it will help you spot the best location to place
772 your antenna. You will probably not get some good results if there is a LF and a HF reader
773 at the same place! :-)
774
775 LIGHT SCHEME USED:
776 */
777 static const char LIGHT_SCHEME[] = {
778 0x0, /* ---- | No field detected */
779 0x1, /* X--- | 14% of maximum current detected */
780 0x2, /* -X-- | 29% of maximum current detected */
781 0x4, /* --X- | 43% of maximum current detected */
782 0x8, /* ---X | 57% of maximum current detected */
783 0xC, /* --XX | 71% of maximum current detected */
784 0xE, /* -XXX | 86% of maximum current detected */
785 0xF, /* XXXX | 100% of maximum current detected */
786 };
787 static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
788
789 void ListenReaderField(int limit)
790 {
791 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
792 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
793 int mode=1, display_val, display_max, i;
794
795 #define LF_ONLY 1
796 #define HF_ONLY 2
797 #define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
798
799
800 // switch off FPGA - we don't want to measure our own signal
801 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
802 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
803
804 LEDsoff();
805
806 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
807
808 if(limit != HF_ONLY) {
809 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
810 lf_baseline = lf_av;
811 }
812
813 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
814
815 if (limit != LF_ONLY) {
816 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
817 hf_baseline = hf_av;
818 }
819
820 for(;;) {
821 if (BUTTON_PRESS()) {
822 SpinDelay(500);
823 switch (mode) {
824 case 1:
825 mode=2;
826 DbpString("Signal Strength Mode");
827 break;
828 case 2:
829 default:
830 DbpString("Stopped");
831 LEDsoff();
832 return;
833 break;
834 }
835 }
836 WDT_HIT();
837
838 if (limit != HF_ONLY) {
839 if(mode == 1) {
840 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
841 LED_D_ON();
842 else
843 LED_D_OFF();
844 }
845
846 lf_av_new = AvgAdc(ADC_CHAN_LF);
847 // see if there's a significant change
848 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
849 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
850 lf_av = lf_av_new;
851 if (lf_av > lf_max)
852 lf_max = lf_av;
853 }
854 }
855
856 if (limit != LF_ONLY) {
857 if (mode == 1){
858 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
859 LED_B_ON();
860 else
861 LED_B_OFF();
862 }
863
864 hf_av_new = AvgAdc(ADC_CHAN_HF);
865 // see if there's a significant change
866 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
867 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
868 hf_av = hf_av_new;
869 if (hf_av > hf_max)
870 hf_max = hf_av;
871 }
872 }
873
874 if(mode == 2) {
875 if (limit == LF_ONLY) {
876 display_val = lf_av;
877 display_max = lf_max;
878 } else if (limit == HF_ONLY) {
879 display_val = hf_av;
880 display_max = hf_max;
881 } else { /* Pick one at random */
882 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
883 display_val = hf_av;
884 display_max = hf_max;
885 } else {
886 display_val = lf_av;
887 display_max = lf_max;
888 }
889 }
890 for (i=0; i<LIGHT_LEN; i++) {
891 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
892 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
893 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
894 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
895 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
896 break;
897 }
898 }
899 }
900 }
901 }
902
903 void UsbPacketReceived(uint8_t *packet, int len)
904 {
905 UsbCommand *c = (UsbCommand *)packet;
906
907 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
908
909 switch(c->cmd) {
910 #ifdef WITH_LF
911 case CMD_SET_LF_SAMPLING_CONFIG:
912 setSamplingConfig((sample_config *) c->d.asBytes);
913 break;
914 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
915 cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0);
916 break;
917 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
918 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
919 break;
920 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
921 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
922 break;
923 case CMD_HID_DEMOD_FSK:
924 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
925 break;
926 case CMD_HID_SIM_TAG:
927 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
928 break;
929 case CMD_FSK_SIM_TAG:
930 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
931 break;
932 case CMD_ASK_SIM_TAG:
933 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
934 break;
935 case CMD_PSK_SIM_TAG:
936 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
937 break;
938 case CMD_HID_CLONE_TAG:
939 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
940 break;
941 case CMD_IO_DEMOD_FSK:
942 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
943 break;
944 case CMD_IO_CLONE_TAG:
945 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
946 break;
947 case CMD_EM410X_DEMOD:
948 CmdEM410xdemod(c->arg[0], 0, 0, 1);
949 break;
950 case CMD_EM410X_WRITE_TAG:
951 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
952 break;
953 case CMD_READ_TI_TYPE:
954 ReadTItag();
955 break;
956 case CMD_WRITE_TI_TYPE:
957 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
958 break;
959 case CMD_SIMULATE_TAG_125K:
960 LED_A_ON();
961 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
962 LED_A_OFF();
963 break;
964 case CMD_LF_SIMULATE_BIDIR:
965 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
966 break;
967 case CMD_INDALA_CLONE_TAG:
968 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
969 break;
970 case CMD_INDALA_CLONE_TAG_L:
971 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
972 break;
973 case CMD_T55XX_READ_BLOCK:
974 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
975 break;
976 case CMD_T55XX_WRITE_BLOCK:
977 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
978 cmd_send(CMD_ACK,0,0,0,0,0);
979 break;
980 case CMD_T55XX_READ_TRACE:
981 T55xxReadTrace();
982 break;
983 case CMD_PCF7931_READ:
984 ReadPCF7931();
985 cmd_send(CMD_ACK,0,0,0,0,0);
986 break;
987 case CMD_EM4X_READ_WORD:
988 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
989 break;
990 case CMD_EM4X_WRITE_WORD:
991 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
992 break;
993 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
994 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
995 break;
996 #endif
997
998 #ifdef WITH_HITAG
999 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1000 SnoopHitag(c->arg[0]);
1001 break;
1002 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1003 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1004 break;
1005 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1006 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1007 break;
1008 #endif
1009
1010 #ifdef WITH_ISO15693
1011 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1012 AcquireRawAdcSamplesIso15693();
1013 break;
1014 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1015 RecordRawAdcSamplesIso15693();
1016 break;
1017
1018 case CMD_ISO_15693_COMMAND:
1019 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1020 break;
1021
1022 case CMD_ISO_15693_FIND_AFI:
1023 BruteforceIso15693Afi(c->arg[0]);
1024 break;
1025
1026 case CMD_ISO_15693_DEBUG:
1027 SetDebugIso15693(c->arg[0]);
1028 break;
1029
1030 case CMD_READER_ISO_15693:
1031 ReaderIso15693(c->arg[0]);
1032 break;
1033 case CMD_SIMTAG_ISO_15693:
1034 SimTagIso15693(c->arg[0], c->d.asBytes);
1035 break;
1036 #endif
1037
1038 #ifdef WITH_LEGICRF
1039 case CMD_SIMULATE_TAG_LEGIC_RF:
1040 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1041 break;
1042
1043 case CMD_WRITER_LEGIC_RF:
1044 LegicRfWriter(c->arg[1], c->arg[0]);
1045 break;
1046
1047 case CMD_READER_LEGIC_RF:
1048 LegicRfReader(c->arg[0], c->arg[1]);
1049 break;
1050 #endif
1051
1052 #ifdef WITH_ISO14443b
1053 case CMD_READ_SRI512_TAG:
1054 ReadSTMemoryIso14443b(0x0F);
1055 break;
1056 case CMD_READ_SRIX4K_TAG:
1057 ReadSTMemoryIso14443b(0x7F);
1058 break;
1059 case CMD_SNOOP_ISO_14443B:
1060 SnoopIso14443b();
1061 break;
1062 case CMD_SIMULATE_TAG_ISO_14443B:
1063 SimulateIso14443bTag();
1064 break;
1065 case CMD_ISO_14443B_COMMAND:
1066 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1067 break;
1068 #endif
1069
1070 #ifdef WITH_ISO14443a
1071 case CMD_SNOOP_ISO_14443a:
1072 SnoopIso14443a(c->arg[0]);
1073 break;
1074 case CMD_READER_ISO_14443a:
1075 ReaderIso14443a(c);
1076 break;
1077 case CMD_SIMULATE_TAG_ISO_14443a:
1078 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
1079 break;
1080
1081 case CMD_EPA_PACE_COLLECT_NONCE:
1082 EPA_PACE_Collect_Nonce(c);
1083 break;
1084 case CMD_EPA_PACE_REPLAY:
1085 EPA_PACE_Replay(c);
1086 break;
1087
1088 case CMD_READER_MIFARE:
1089 ReaderMifare(c->arg[0]);
1090 break;
1091 case CMD_MIFARE_READBL:
1092 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1093 break;
1094 case CMD_MIFAREU_READBL:
1095 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
1096 break;
1097 case CMD_MIFAREUC_AUTH:
1098 MifareUC_Auth(c->arg[0],c->d.asBytes);
1099 break;
1100 case CMD_MIFAREU_READCARD:
1101 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1102 break;
1103 case CMD_MIFAREUC_SETPWD:
1104 MifareUSetPwd(c->arg[0], c->d.asBytes);
1105 break;
1106 case CMD_MIFARE_READSC:
1107 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1108 break;
1109 case CMD_MIFARE_WRITEBL:
1110 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1111 break;
1112 //case CMD_MIFAREU_WRITEBL_COMPAT:
1113 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1114 //break;
1115 case CMD_MIFAREU_WRITEBL:
1116 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
1117 break;
1118 case CMD_MIFARE_NESTED:
1119 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1120 break;
1121 case CMD_MIFARE_CHKKEYS:
1122 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1123 break;
1124 case CMD_SIMULATE_MIFARE_CARD:
1125 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1126 break;
1127
1128 // emulator
1129 case CMD_MIFARE_SET_DBGMODE:
1130 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1131 break;
1132 case CMD_MIFARE_EML_MEMCLR:
1133 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1134 break;
1135 case CMD_MIFARE_EML_MEMSET:
1136 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1137 break;
1138 case CMD_MIFARE_EML_MEMGET:
1139 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1140 break;
1141 case CMD_MIFARE_EML_CARDLOAD:
1142 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1143 break;
1144
1145 // Work with "magic Chinese" card
1146 case CMD_MIFARE_CSETBLOCK:
1147 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1148 break;
1149 case CMD_MIFARE_CGETBLOCK:
1150 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1151 break;
1152 case CMD_MIFARE_CIDENT:
1153 MifareCIdent();
1154 break;
1155
1156 // mifare sniffer
1157 case CMD_MIFARE_SNIFFER:
1158 SniffMifare(c->arg[0]);
1159 break;
1160
1161 #endif
1162
1163 #ifdef WITH_ICLASS
1164 // Makes use of ISO14443a FPGA Firmware
1165 case CMD_SNOOP_ICLASS:
1166 SnoopIClass();
1167 break;
1168 case CMD_SIMULATE_TAG_ICLASS:
1169 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1170 break;
1171 case CMD_READER_ICLASS:
1172 ReaderIClass(c->arg[0]);
1173 break;
1174 case CMD_READER_ICLASS_REPLAY:
1175 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
1176 break;
1177 case CMD_ICLASS_EML_MEMSET:
1178 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1179 break;
1180 #endif
1181
1182 case CMD_BUFF_CLEAR:
1183 BigBuf_Clear();
1184 break;
1185
1186 case CMD_MEASURE_ANTENNA_TUNING:
1187 MeasureAntennaTuning();
1188 break;
1189
1190 case CMD_MEASURE_ANTENNA_TUNING_HF:
1191 MeasureAntennaTuningHf();
1192 break;
1193
1194 case CMD_LISTEN_READER_FIELD:
1195 ListenReaderField(c->arg[0]);
1196 break;
1197
1198 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1199 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1200 SpinDelay(200);
1201 LED_D_OFF(); // LED D indicates field ON or OFF
1202 break;
1203
1204 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
1205
1206 LED_B_ON();
1207 uint8_t *BigBuf = BigBuf_get_addr();
1208 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
1209 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
1210 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1211 }
1212 // Trigger a finish downloading signal with an ACK frame
1213 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
1214 LED_B_OFF();
1215 break;
1216
1217 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
1218 uint8_t *b = BigBuf_get_addr();
1219 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1220 cmd_send(CMD_ACK,0,0,0,0,0);
1221 break;
1222 }
1223 case CMD_READ_MEM:
1224 ReadMem(c->arg[0]);
1225 break;
1226
1227 case CMD_SET_LF_DIVISOR:
1228 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
1229 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1230 break;
1231
1232 case CMD_SET_ADC_MUX:
1233 switch(c->arg[0]) {
1234 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1235 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1236 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1237 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1238 }
1239 break;
1240
1241 case CMD_VERSION:
1242 SendVersion();
1243 break;
1244 case CMD_STATUS:
1245 SendStatus(c->arg[0]);
1246 break;
1247 case CMD_PING:
1248 cmd_send(CMD_ACK,0,0,0,0,0);
1249 break;
1250 #ifdef WITH_LCD
1251 case CMD_LCD_RESET:
1252 LCDReset();
1253 break;
1254 case CMD_LCD:
1255 LCDSend(c->arg[0]);
1256 break;
1257 #endif
1258 case CMD_SETUP_WRITE:
1259 case CMD_FINISH_WRITE:
1260 case CMD_HARDWARE_RESET:
1261 usb_disable();
1262 SpinDelay(1000);
1263 SpinDelay(1000);
1264 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1265 for(;;) {
1266 // We're going to reset, and the bootrom will take control.
1267 }
1268 break;
1269
1270 case CMD_START_FLASH:
1271 if(common_area.flags.bootrom_present) {
1272 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1273 }
1274 usb_disable();
1275 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1276 for(;;);
1277 break;
1278
1279 case CMD_DEVICE_INFO: {
1280 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1281 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1282 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1283 break;
1284 }
1285 default:
1286 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1287 break;
1288 }
1289 }
1290
1291 void __attribute__((noreturn)) AppMain(void)
1292 {
1293 SpinDelay(100);
1294 clear_trace();
1295 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1296 /* Initialize common area */
1297 memset(&common_area, 0, sizeof(common_area));
1298 common_area.magic = COMMON_AREA_MAGIC;
1299 common_area.version = 1;
1300 }
1301 common_area.flags.osimage_present = 1;
1302
1303 LED_D_OFF();
1304 LED_C_OFF();
1305 LED_B_OFF();
1306 LED_A_OFF();
1307
1308 // Init USB device
1309 usb_enable();
1310
1311 // The FPGA gets its clock from us from PCK0 output, so set that up.
1312 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1313 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1314 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1315 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1316 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1317 AT91C_PMC_PRES_CLK_4;
1318 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1319
1320 // Reset SPI
1321 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1322 // Reset SSC
1323 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1324
1325 // Load the FPGA image, which we have stored in our flash.
1326 // (the HF version by default)
1327 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1328
1329 StartTickCount();
1330
1331 #ifdef WITH_LCD
1332 LCDInit();
1333 #endif
1334
1335 byte_t rx[sizeof(UsbCommand)];
1336 size_t rx_len;
1337
1338 for(;;) {
1339 if (usb_poll()) {
1340 rx_len = usb_read(rx,sizeof(UsbCommand));
1341 if (rx_len) {
1342 UsbPacketReceived(rx,rx_len);
1343 }
1344 }
1345 WDT_HIT();
1346
1347 #ifdef WITH_LF
1348 #ifndef WITH_ISO14443a_StandAlone
1349 if (BUTTON_HELD(1000) > 0)
1350 SamyRun();
1351 #endif
1352 #endif
1353 #ifdef WITH_ISO14443a
1354 #ifdef WITH_ISO14443a_StandAlone
1355 if (BUTTON_HELD(1000) > 0)
1356 StandAloneMode14a();
1357 #endif
1358 #endif
1359 }
1360 }
Impressum, Datenschutz