1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 // Modified by Greg Jones, Jan 2009
4 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
5 // Modified by piwi, Oct 2018
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support ISO 15693. This includes both the reader software and
12 // the `fake tag' modes.
13 //-----------------------------------------------------------------------------
15 // The ISO 15693 describes two transmission modes from reader to tag, and four
16 // transmission modes from tag to reader. As of Oct 2018 this code supports
17 // both reader modes and the high speed variant with one subcarrier from card to reader.
18 // As long as the card fully support ISO 15693 this is no problem, since the
19 // reader chooses both data rates, but some non-standard tags do not.
20 // For card simulation, the code supports both high and low speed modes with one subcarrier.
22 // VCD (reader) -> VICC (tag)
24 // data rate: 1,66 kbit/s (fc/8192)
25 // used for long range
27 // data rate: 26,48 kbit/s (fc/512)
28 // used for short range, high speed
30 // VICC (tag) -> VCD (reader)
32 // ASK / one subcarrier (423,75 khz)
33 // FSK / two subcarriers (423,75 khz && 484,28 khz)
34 // Data Rates / Modes:
35 // low ASK: 6,62 kbit/s
36 // low FSK: 6.67 kbit/s
37 // high ASK: 26,48 kbit/s
38 // high FSK: 26,69 kbit/s
39 //-----------------------------------------------------------------------------
43 // *) UID is always used "transmission order" (LSB), which is reverse to display order
45 // TODO / BUGS / ISSUES:
46 // *) signal decoding is unable to detect collisions.
47 // *) add anti-collision support for inventory-commands
48 // *) read security status of a block
49 // *) sniffing and simulation do not support two subcarrier modes.
50 // *) remove or refactor code under "deprecated"
51 // *) document all the functions
55 #include "proxmark3.h"
59 #include "iso15693tools.h"
60 #include "protocols.h"
63 #include "fpgaloader.h"
65 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
67 // Delays in SSP_CLK ticks.
68 // SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
69 #define DELAY_READER_TO_ARM 8
70 #define DELAY_ARM_TO_READER 0
71 //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
72 #define DELAY_ARM_TO_TAG 16
73 #define DELAY_TAG_TO_ARM 32
74 //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when snooping. All values should be multiples of 16
75 #define DELAY_TAG_TO_ARM_SNOOP 32
76 #define DELAY_READER_TO_ARM_SNOOP 32
81 ///////////////////////////////////////////////////////////////////////
82 // ISO 15693 Part 2 - Air Interface
83 // This section basically contains transmission and receiving of bits
84 ///////////////////////////////////////////////////////////////////////
87 #define ISO15693_DMA_BUFFER_SIZE 128 // must be a power of 2
88 #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
89 #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
92 // specific LogTrace function for ISO15693: the duration needs to be scaled because otherwise it won't fit into a uint16_t
93 bool LogTrace_ISO15693(const uint8_t *btBytes
, uint16_t iLen
, uint32_t timestamp_start
, uint32_t timestamp_end
, uint8_t *parity
, bool readerToTag
) {
94 uint32_t duration
= timestamp_end
- timestamp_start
;
96 timestamp_end
= timestamp_start
+ duration
;
97 return LogTrace(btBytes
, iLen
, timestamp_start
, timestamp_end
, parity
, readerToTag
);
101 // ---------------------------
103 // ---------------------------
105 // prepare data using "1 out of 4" code for later transmission
106 // resulting data rate is 26.48 kbit/s (fc/512)
108 // n ... length of data
109 void CodeIso15693AsReader(uint8_t *cmd
, int n
) {
114 ToSend
[++ToSendMax
] = 0x84; //10000100
117 for (int i
= 0; i
< n
; i
++) {
118 for (int j
= 0; j
< 8; j
+= 2) {
119 int these
= (cmd
[i
] >> j
) & 0x03;
122 ToSend
[++ToSendMax
] = 0x40; //01000000
125 ToSend
[++ToSendMax
] = 0x10; //00010000
128 ToSend
[++ToSendMax
] = 0x04; //00000100
131 ToSend
[++ToSendMax
] = 0x01; //00000001
138 ToSend
[++ToSendMax
] = 0x20; //0010 + 0000 padding
143 // encode data using "1 out of 256" scheme
144 // data rate is 1,66 kbit/s (fc/8192)
145 // is designed for more robust communication over longer distances
146 static void CodeIso15693AsReader256(uint8_t *cmd
, int n
)
151 ToSend
[++ToSendMax
] = 0x81; //10000001
154 for(int i
= 0; i
< n
; i
++) {
155 for (int j
= 0; j
<= 255; j
++) {
167 ToSend
[++ToSendMax
] = 0x20; //0010 + 0000 padding
173 // static uint8_t encode4Bits(const uint8_t b) {
174 // uint8_t c = b & 0xF;
175 // // OTA, the least significant bits first
176 // // The columns are
177 // // 1 - Bit value to send
178 // // 2 - Reversed (big-endian)
179 // // 3 - Manchester Encoded
184 // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
185 // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
186 // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
187 // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
188 // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
189 // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
190 // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
191 // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
192 // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
193 // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
194 // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
195 // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
196 // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
197 // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
198 // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
199 // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
204 static const uint8_t encode_4bits
[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 };
206 void CodeIso15693AsTag(uint8_t *cmd
, size_t len
) {
208 * SOF comprises 3 parts;
209 * * An unmodulated time of 56.64 us
210 * * 24 pulses of 423.75 kHz (fc/32)
211 * * A logic 1, which starts with an unmodulated time of 18.88us
212 * followed by 8 pulses of 423.75kHz (fc/32)
214 * EOF comprises 3 parts:
215 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
217 * - 24 pulses of fc/32
218 * - An unmodulated time of 56.64 us
220 * A logic 0 starts with 8 pulses of fc/32
221 * followed by an unmodulated time of 256/fc (~18,88us).
223 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
224 * 8 pulses of fc/32 (also 18.88us)
226 * A bit here becomes 8 pulses of fc/32. Therefore:
227 * The SOF can be written as 00011101 = 0x1D
228 * The EOF can be written as 10111000 = 0xb8
237 ToSend
[++ToSendMax
] = 0x1D; // 00011101
240 for (int i
= 0; i
< len
; i
++) {
241 ToSend
[++ToSendMax
] = encode_4bits
[cmd
[i
] & 0xF];
242 ToSend
[++ToSendMax
] = encode_4bits
[cmd
[i
] >> 4];
246 ToSend
[++ToSendMax
] = 0xB8; // 10111000
252 // Transmit the command (to the tag) that was placed in cmd[].
253 void TransmitTo15693Tag(const uint8_t *cmd
, int len
, uint32_t *start_time
) {
255 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SEND_FULL_MOD
);
257 if (*start_time
< DELAY_ARM_TO_TAG
) {
258 *start_time
= DELAY_ARM_TO_TAG
;
261 *start_time
= (*start_time
- DELAY_ARM_TO_TAG
) & 0xfffffff0;
263 if (GetCountSspClk() > *start_time
) { // we may miss the intended time
264 *start_time
= (GetCountSspClk() + 16) & 0xfffffff0; // next possible time
267 while (GetCountSspClk() < *start_time
)
271 for (int c
= 0; c
< len
; c
++) {
272 uint8_t data
= cmd
[c
];
273 for (int i
= 0; i
< 8; i
++) {
274 uint16_t send_word
= (data
& 0x80) ? 0xffff : 0x0000;
275 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
276 AT91C_BASE_SSC
->SSC_THR
= send_word
;
277 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
278 AT91C_BASE_SSC
->SSC_THR
= send_word
;
286 *start_time
= *start_time
+ DELAY_ARM_TO_TAG
;
291 //-----------------------------------------------------------------------------
292 // Transmit the tag response (to the reader) that was placed in cmd[].
293 //-----------------------------------------------------------------------------
294 void TransmitTo15693Reader(const uint8_t *cmd
, size_t len
, uint32_t *start_time
, uint32_t slot_time
, bool slow
) {
295 // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
296 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_424K
);
298 uint32_t modulation_start_time
= *start_time
- DELAY_ARM_TO_READER
+ 3 * 8; // no need to transfer the unmodulated start of SOF
300 while (GetCountSspClk() > (modulation_start_time
& 0xfffffff8) + 3) { // we will miss the intended time
302 modulation_start_time
+= slot_time
; // use next available slot
304 modulation_start_time
= (modulation_start_time
& 0xfffffff8) + 8; // next possible time
308 while (GetCountSspClk() < (modulation_start_time
& 0xfffffff8))
311 uint8_t shift_delay
= modulation_start_time
& 0x00000007;
313 *start_time
= modulation_start_time
+ DELAY_ARM_TO_READER
- 3 * 8;
316 uint8_t bits_to_shift
= 0x00;
317 uint8_t bits_to_send
= 0x00;
318 for (size_t c
= 0; c
< len
; c
++) {
319 for (int i
= (c
==0?4:7); i
>= 0; i
--) {
320 uint8_t cmd_bits
= ((cmd
[c
] >> i
) & 0x01) ? 0xff : 0x00;
321 for (int j
= 0; j
< (slow
?4:1); ) {
322 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
323 bits_to_send
= bits_to_shift
<< (8 - shift_delay
) | cmd_bits
>> shift_delay
;
324 AT91C_BASE_SSC
->SSC_THR
= bits_to_send
;
325 bits_to_shift
= cmd_bits
;
332 // send the remaining bits, padded with 0:
333 bits_to_send
= bits_to_shift
<< (8 - shift_delay
);
335 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
336 AT91C_BASE_SSC
->SSC_THR
= bits_to_send
;
344 static void jam(void) {
345 // send a short burst to jam the reader signal
349 //=============================================================================
350 // An ISO 15693 decoder for tag responses (one subcarrier only).
351 // Uses cross correlation to identify each bit and EOF.
352 // This function is called 8 times per bit (every 2 subcarrier cycles).
353 // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
354 // i.e. function is called every 4,72us
356 // LED C -> ON once we have received the SOF and are expecting the rest.
357 // LED C -> OFF once we have received EOF or are unsynced
359 // Returns: true if we received a EOF
360 // false if we are still waiting for some more
361 //=============================================================================
363 #define NOISE_THRESHOLD 160 // don't try to correlate noise
364 #define MAX_PREVIOUS_AMPLITUDE (-1 - NOISE_THRESHOLD)
366 typedef struct DecodeTag
{
369 STATE_TAG_SOF_RISING_EDGE
,
371 STATE_TAG_SOF_HIGH_END
,
372 STATE_TAG_RECEIVING_DATA
,
391 uint16_t previous_amplitude
;
395 static int inline __attribute__((always_inline
)) Handle15693SamplesFromTag(uint16_t amplitude
, DecodeTag_t
*restrict DecodeTag
) {
396 switch (DecodeTag
->state
) {
397 case STATE_TAG_SOF_LOW
:
398 // waiting for a rising edge
399 if (amplitude
> NOISE_THRESHOLD
+ DecodeTag
->previous_amplitude
) {
400 if (DecodeTag
->posCount
> 10) {
401 DecodeTag
->threshold_sof
= amplitude
- DecodeTag
->previous_amplitude
; // to be divided by 2
402 DecodeTag
->threshold_half
= 0;
403 DecodeTag
->state
= STATE_TAG_SOF_RISING_EDGE
;
405 DecodeTag
->posCount
= 0;
408 DecodeTag
->posCount
++;
409 DecodeTag
->previous_amplitude
= amplitude
;
413 case STATE_TAG_SOF_RISING_EDGE
:
414 if (amplitude
> DecodeTag
->threshold_sof
+ DecodeTag
->previous_amplitude
) { // edge still rising
415 if (amplitude
> DecodeTag
->threshold_sof
+ DecodeTag
->threshold_sof
) { // steeper edge, take this as time reference
416 DecodeTag
->posCount
= 1;
418 DecodeTag
->posCount
= 2;
420 DecodeTag
->threshold_sof
= (amplitude
- DecodeTag
->previous_amplitude
) / 2;
422 DecodeTag
->posCount
= 2;
423 DecodeTag
->threshold_sof
= DecodeTag
->threshold_sof
/2;
425 // DecodeTag->posCount = 2;
426 DecodeTag
->state
= STATE_TAG_SOF_HIGH
;
429 case STATE_TAG_SOF_HIGH
:
430 // waiting for 10 times high. Take average over the last 8
431 if (amplitude
> DecodeTag
->threshold_sof
) {
432 DecodeTag
->posCount
++;
433 if (DecodeTag
->posCount
> 2) {
434 DecodeTag
->threshold_half
+= amplitude
; // keep track of average high value
436 if (DecodeTag
->posCount
== 10) {
437 DecodeTag
->threshold_half
>>= 2; // (4 times 1/2 average)
438 DecodeTag
->state
= STATE_TAG_SOF_HIGH_END
;
440 } else { // high phase was too short
441 DecodeTag
->posCount
= 1;
442 DecodeTag
->previous_amplitude
= amplitude
;
443 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
447 case STATE_TAG_SOF_HIGH_END
:
448 // check for falling edge
449 if (DecodeTag
->posCount
== 13 && amplitude
< DecodeTag
->threshold_sof
) {
450 DecodeTag
->lastBit
= SOF_PART1
; // detected 1st part of SOF (12 samples low and 12 samples high)
451 DecodeTag
->shiftReg
= 0;
452 DecodeTag
->bitCount
= 0;
454 DecodeTag
->sum1
= amplitude
;
456 DecodeTag
->posCount
= 2;
457 DecodeTag
->state
= STATE_TAG_RECEIVING_DATA
;
458 // FpgaDisableTracing(); // DEBUGGING
459 // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
461 // DecodeTag->threshold_sof,
462 // DecodeTag->threshold_half/4,
463 // DecodeTag->previous_amplitude); // DEBUGGING
466 DecodeTag
->posCount
++;
467 if (DecodeTag
->posCount
> 13) { // high phase too long
468 DecodeTag
->posCount
= 0;
469 DecodeTag
->previous_amplitude
= amplitude
;
470 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
476 case STATE_TAG_RECEIVING_DATA
:
477 // FpgaDisableTracing(); // DEBUGGING
478 // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
480 // DecodeTag->threshold_sof,
481 // DecodeTag->threshold_half/4,
482 // DecodeTag->previous_amplitude); // DEBUGGING
483 if (DecodeTag
->posCount
== 1) {
487 if (DecodeTag
->posCount
<= 4) {
488 DecodeTag
->sum1
+= amplitude
;
490 DecodeTag
->sum2
+= amplitude
;
492 if (DecodeTag
->posCount
== 8) {
493 if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
> DecodeTag
->threshold_half
) { // modulation in both halves
494 if (DecodeTag
->lastBit
== LOGIC0
) { // this was already part of EOF
495 DecodeTag
->state
= STATE_TAG_EOF
;
497 DecodeTag
->posCount
= 0;
498 DecodeTag
->previous_amplitude
= amplitude
;
499 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
502 } else if (DecodeTag
->sum1
< DecodeTag
->threshold_half
&& DecodeTag
->sum2
> DecodeTag
->threshold_half
) { // modulation in second half
504 if (DecodeTag
->lastBit
== SOF_PART1
) { // still part of SOF
505 DecodeTag
->lastBit
= SOF_PART2
; // SOF completed
507 DecodeTag
->lastBit
= LOGIC1
;
508 DecodeTag
->shiftReg
>>= 1;
509 DecodeTag
->shiftReg
|= 0x80;
510 DecodeTag
->bitCount
++;
511 if (DecodeTag
->bitCount
== 8) {
512 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
514 // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
515 if (DecodeTag
->len
> DecodeTag
->max_len
) {
516 // buffer overflow, give up
520 DecodeTag
->bitCount
= 0;
521 DecodeTag
->shiftReg
= 0;
524 } else if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // modulation in first half
526 if (DecodeTag
->lastBit
== SOF_PART1
) { // incomplete SOF
527 DecodeTag
->posCount
= 0;
528 DecodeTag
->previous_amplitude
= amplitude
;
529 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
532 DecodeTag
->lastBit
= LOGIC0
;
533 DecodeTag
->shiftReg
>>= 1;
534 DecodeTag
->bitCount
++;
535 if (DecodeTag
->bitCount
== 8) {
536 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
538 // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
539 if (DecodeTag
->len
> DecodeTag
->max_len
) {
540 // buffer overflow, give up
541 DecodeTag
->posCount
= 0;
542 DecodeTag
->previous_amplitude
= amplitude
;
543 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
546 DecodeTag
->bitCount
= 0;
547 DecodeTag
->shiftReg
= 0;
550 } else { // no modulation
551 if (DecodeTag
->lastBit
== SOF_PART2
) { // only SOF (this is OK for iClass)
555 DecodeTag
->posCount
= 0;
556 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
560 DecodeTag
->posCount
= 0;
562 DecodeTag
->posCount
++;
566 if (DecodeTag
->posCount
== 1) {
570 if (DecodeTag
->posCount
<= 4) {
571 DecodeTag
->sum1
+= amplitude
;
573 DecodeTag
->sum2
+= amplitude
;
575 if (DecodeTag
->posCount
== 8) {
576 if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // modulation in first half
577 DecodeTag
->posCount
= 0;
578 DecodeTag
->state
= STATE_TAG_EOF_TAIL
;
580 DecodeTag
->posCount
= 0;
581 DecodeTag
->previous_amplitude
= amplitude
;
582 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
586 DecodeTag
->posCount
++;
589 case STATE_TAG_EOF_TAIL
:
590 if (DecodeTag
->posCount
== 1) {
594 if (DecodeTag
->posCount
<= 4) {
595 DecodeTag
->sum1
+= amplitude
;
597 DecodeTag
->sum2
+= amplitude
;
599 if (DecodeTag
->posCount
== 8) {
600 if (DecodeTag
->sum1
< DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // no modulation in both halves
604 DecodeTag
->posCount
= 0;
605 DecodeTag
->previous_amplitude
= amplitude
;
606 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
610 DecodeTag
->posCount
++;
618 static void DecodeTagInit(DecodeTag_t
*DecodeTag
, uint8_t *data
, uint16_t max_len
) {
619 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
620 DecodeTag
->posCount
= 0;
621 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
622 DecodeTag
->output
= data
;
623 DecodeTag
->max_len
= max_len
;
627 static void DecodeTagReset(DecodeTag_t
*DecodeTag
) {
628 DecodeTag
->posCount
= 0;
629 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
630 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
635 * Receive and decode the tag response, also log to tracebuffer
637 int GetIso15693AnswerFromTag(uint8_t* response
, uint16_t max_len
, uint16_t timeout
, uint32_t *eof_time
) {
642 uint16_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
644 // the Decoder data structure
645 DecodeTag_t DecodeTag
= { 0 };
646 DecodeTagInit(&DecodeTag
, response
, max_len
);
648 // wait for last transfer to complete
649 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
651 // And put the FPGA in the appropriate mode
652 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
654 // Setup and start DMA.
655 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
656 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
657 uint32_t dma_start_time
= 0;
658 uint16_t *upTo
= dmaBuf
;
661 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
663 if (behindBy
== 0) continue;
667 // DMA has transferred the very first data
668 dma_start_time
= GetCountSspClk() & 0xfffffff0;
671 uint16_t tagdata
= *upTo
++;
673 if(upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
674 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
675 if (behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
676 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
681 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
682 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
683 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
686 if (Handle15693SamplesFromTag(tagdata
, &DecodeTag
)) {
687 *eof_time
= dma_start_time
+ samples
*16 - DELAY_TAG_TO_ARM
; // end of EOF
688 if (DecodeTag
.lastBit
== SOF_PART2
) {
689 *eof_time
-= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
691 if (DecodeTag
.len
> DecodeTag
.max_len
) {
692 ret
= -2; // buffer overflow
697 if (samples
> timeout
&& DecodeTag
.state
< STATE_TAG_RECEIVING_DATA
) {
706 if (DEBUG
) Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d",
707 samples
, ret
, DecodeTag
.state
, DecodeTag
.lastBit
, DecodeTag
.len
, DecodeTag
.bitCount
, DecodeTag
.posCount
);
713 uint32_t sof_time
= *eof_time
714 - DecodeTag
.len
* 8 * 8 * 16 // time for byte transfers
715 - 32 * 16 // time for SOF transfer
716 - (DecodeTag
.lastBit
!= SOF_PART2
?32*16:0); // time for EOF transfer
718 if (DEBUG
) Dbprintf("timing: sof_time = %d, eof_time = %d", sof_time
, *eof_time
);
720 LogTrace_ISO15693(DecodeTag
.output
, DecodeTag
.len
, sof_time
*4, *eof_time
*4, NULL
, false);
722 return DecodeTag
.len
;
726 //=============================================================================
727 // An ISO15693 decoder for reader commands.
729 // This function is called 4 times per bit (every 2 subcarrier cycles).
730 // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
732 // LED B -> ON once we have received the SOF and are expecting the rest.
733 // LED B -> OFF once we have received EOF or are in error state or unsynced
735 // Returns: true if we received a EOF
736 // false if we are still waiting for some more
737 //=============================================================================
739 typedef struct DecodeReader
{
741 STATE_READER_UNSYNCD
,
742 STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
,
743 STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
,
744 STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
,
745 STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
,
746 STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
,
747 STATE_READER_RECEIVE_DATA_1_OUT_OF_4
,
748 STATE_READER_RECEIVE_DATA_1_OUT_OF_256
761 uint8_t jam_search_len
;
762 uint8_t *jam_search_string
;
766 static void DecodeReaderInit(DecodeReader_t
* DecodeReader
, uint8_t *data
, uint16_t max_len
, uint8_t jam_search_len
, uint8_t *jam_search_string
) {
767 DecodeReader
->output
= data
;
768 DecodeReader
->byteCountMax
= max_len
;
769 DecodeReader
->state
= STATE_READER_UNSYNCD
;
770 DecodeReader
->byteCount
= 0;
771 DecodeReader
->bitCount
= 0;
772 DecodeReader
->posCount
= 1;
773 DecodeReader
->shiftReg
= 0;
774 DecodeReader
->jam_search_len
= jam_search_len
;
775 DecodeReader
->jam_search_string
= jam_search_string
;
779 static void DecodeReaderReset(DecodeReader_t
* DecodeReader
) {
780 DecodeReader
->state
= STATE_READER_UNSYNCD
;
784 static int inline __attribute__((always_inline
)) Handle15693SampleFromReader(bool bit
, DecodeReader_t
*restrict DecodeReader
) {
785 switch (DecodeReader
->state
) {
786 case STATE_READER_UNSYNCD
:
787 // wait for unmodulated carrier
789 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
793 case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
:
795 // we went low, so this could be the beginning of a SOF
796 DecodeReader
->posCount
= 1;
797 DecodeReader
->state
= STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
;
801 case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
:
802 DecodeReader
->posCount
++;
803 if (bit
) { // detected rising edge
804 if (DecodeReader
->posCount
< 4) { // rising edge too early (nominally expected at 5)
805 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
807 DecodeReader
->state
= STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
;
810 if (DecodeReader
->posCount
> 5) { // stayed low for too long
811 DecodeReaderReset(DecodeReader
);
813 // do nothing, keep waiting
818 case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
:
819 DecodeReader
->posCount
++;
820 if (!bit
) { // detected a falling edge
821 if (DecodeReader
->posCount
< 20) { // falling edge too early (nominally expected at 21 earliest)
822 DecodeReaderReset(DecodeReader
);
823 } else if (DecodeReader
->posCount
< 23) { // SOF for 1 out of 4 coding
824 DecodeReader
->Coding
= CODING_1_OUT_OF_4
;
825 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
826 } else if (DecodeReader
->posCount
< 28) { // falling edge too early (nominally expected at 29 latest)
827 DecodeReaderReset(DecodeReader
);
828 } else { // SOF for 1 out of 256 coding
829 DecodeReader
->Coding
= CODING_1_OUT_OF_256
;
830 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
833 if (DecodeReader
->posCount
> 29) { // stayed high for too long
834 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
836 // do nothing, keep waiting
841 case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
:
842 DecodeReader
->posCount
++;
843 if (bit
) { // detected rising edge
844 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
845 if (DecodeReader
->posCount
< 32) { // rising edge too early (nominally expected at 33)
846 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
848 DecodeReader
->posCount
= 1;
849 DecodeReader
->bitCount
= 0;
850 DecodeReader
->byteCount
= 0;
851 DecodeReader
->sum1
= 1;
852 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_256
;
855 } else { // CODING_1_OUT_OF_4
856 if (DecodeReader
->posCount
< 24) { // rising edge too early (nominally expected at 25)
857 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
859 DecodeReader
->posCount
= 1;
860 DecodeReader
->state
= STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
;
864 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
865 if (DecodeReader
->posCount
> 34) { // signal stayed low for too long
866 DecodeReaderReset(DecodeReader
);
868 // do nothing, keep waiting
870 } else { // CODING_1_OUT_OF_4
871 if (DecodeReader
->posCount
> 26) { // signal stayed low for too long
872 DecodeReaderReset(DecodeReader
);
874 // do nothing, keep waiting
880 case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
:
881 DecodeReader
->posCount
++;
883 if (DecodeReader
->posCount
== 9) {
884 DecodeReader
->posCount
= 1;
885 DecodeReader
->bitCount
= 0;
886 DecodeReader
->byteCount
= 0;
887 DecodeReader
->sum1
= 1;
888 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_4
;
891 // do nothing, keep waiting
893 } else { // unexpected falling edge
894 DecodeReaderReset(DecodeReader
);
898 case STATE_READER_RECEIVE_DATA_1_OUT_OF_4
:
899 DecodeReader
->posCount
++;
900 if (DecodeReader
->posCount
== 1) {
901 DecodeReader
->sum1
= bit
?1:0;
902 } else if (DecodeReader
->posCount
<= 4) {
903 if (bit
) DecodeReader
->sum1
++;
904 } else if (DecodeReader
->posCount
== 5) {
905 DecodeReader
->sum2
= bit
?1:0;
907 if (bit
) DecodeReader
->sum2
++;
909 if (DecodeReader
->posCount
== 8) {
910 DecodeReader
->posCount
= 0;
911 if (DecodeReader
->sum1
<= 1 && DecodeReader
->sum2
>= 3) { // EOF
912 LED_B_OFF(); // Finished receiving
913 DecodeReaderReset(DecodeReader
);
914 if (DecodeReader
->byteCount
!= 0) {
917 } else if (DecodeReader
->sum1
>= 3 && DecodeReader
->sum2
<= 1) { // detected a 2bit position
918 DecodeReader
->shiftReg
>>= 2;
919 DecodeReader
->shiftReg
|= (DecodeReader
->bitCount
<< 6);
921 if (DecodeReader
->bitCount
== 15) { // we have a full byte
922 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
923 if (DecodeReader
->byteCount
== DecodeReader
->jam_search_len
) {
924 if (!memcmp(DecodeReader
->output
, DecodeReader
->jam_search_string
, DecodeReader
->jam_search_len
)) {
925 jam(); // send a jamming signal
926 Dbprintf("JAMMING!");
929 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
930 // buffer overflow, give up
932 DecodeReaderReset(DecodeReader
);
934 DecodeReader
->bitCount
= 0;
935 DecodeReader
->shiftReg
= 0;
937 DecodeReader
->bitCount
++;
942 case STATE_READER_RECEIVE_DATA_1_OUT_OF_256
:
943 DecodeReader
->posCount
++;
944 if (DecodeReader
->posCount
== 1) {
945 DecodeReader
->sum1
= bit
?1:0;
946 } else if (DecodeReader
->posCount
<= 4) {
947 if (bit
) DecodeReader
->sum1
++;
948 } else if (DecodeReader
->posCount
== 5) {
949 DecodeReader
->sum2
= bit
?1:0;
951 DecodeReader
->sum2
++;
953 if (DecodeReader
->posCount
== 8) {
954 DecodeReader
->posCount
= 0;
955 if (DecodeReader
->sum1
<= 1 && DecodeReader
->sum2
>= 3) { // EOF
956 LED_B_OFF(); // Finished receiving
957 DecodeReaderReset(DecodeReader
);
958 if (DecodeReader
->byteCount
!= 0) {
961 } else if (DecodeReader
->sum1
>= 3 && DecodeReader
->sum2
<= 1) { // detected the bit position
962 DecodeReader
->shiftReg
= DecodeReader
->bitCount
;
964 if (DecodeReader
->bitCount
== 255) { // we have a full byte
965 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
966 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
967 // buffer overflow, give up
969 DecodeReaderReset(DecodeReader
);
972 DecodeReader
->bitCount
++;
978 DecodeReaderReset(DecodeReader
);
986 //-----------------------------------------------------------------------------
987 // Receive a command (from the reader to us, where we are the simulated tag),
988 // and store it in the given buffer, up to the given maximum length. Keeps
989 // spinning, waiting for a well-framed command, until either we get one
990 // (returns len) or someone presses the pushbutton on the board (returns -1).
992 // Assume that we're called with the SSC (to the FPGA) and ADC path set
994 //-----------------------------------------------------------------------------
996 int GetIso15693CommandFromReader(uint8_t *received
, size_t max_len
, uint32_t *eof_time
) {
998 bool gotFrame
= false;
1001 uint8_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
1003 // the decoder data structure
1004 DecodeReader_t DecodeReader
= {0};
1005 DecodeReaderInit(&DecodeReader
, received
, max_len
, 0, NULL
);
1007 // wait for last transfer to complete
1008 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
1011 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1013 // clear receive register and wait for next transfer
1014 uint32_t temp
= AT91C_BASE_SSC
->SSC_RHR
;
1016 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)) ;
1018 uint32_t dma_start_time
= GetCountSspClk() & 0xfffffff8;
1020 // Setup and start DMA.
1021 FpgaSetupSscDma(dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1022 uint8_t *upTo
= dmaBuf
;
1025 uint16_t behindBy
= ((uint8_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
1027 if (behindBy
== 0) continue;
1030 if (upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1031 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
1032 if (behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
1033 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
1037 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1038 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1039 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
1042 for (int i
= 7; i
>= 0; i
--) {
1043 if (Handle15693SampleFromReader((b
>> i
) & 0x01, &DecodeReader
)) {
1044 *eof_time
= dma_start_time
+ samples
- DELAY_READER_TO_ARM
; // end of EOF
1055 if (BUTTON_PRESS()) {
1056 DecodeReader
.byteCount
= -1;
1063 FpgaDisableSscDma();
1065 if (DEBUG
) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
1066 samples
, gotFrame
, DecodeReader
.state
, DecodeReader
.byteCount
, DecodeReader
.bitCount
, DecodeReader
.posCount
);
1068 if (DecodeReader
.byteCount
> 0) {
1069 uint32_t sof_time
= *eof_time
1070 - DecodeReader
.byteCount
* (DecodeReader
.Coding
==CODING_1_OUT_OF_4
?128:2048) // time for byte transfers
1071 - 32 // time for SOF transfer
1072 - 16; // time for EOF transfer
1073 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, sof_time
*32, *eof_time
*32, NULL
, true);
1076 return DecodeReader
.byteCount
;
1080 // Encode (into the ToSend buffers) an identify request, which is the first
1081 // thing that you must send to a tag to get a response.
1082 static void BuildIdentifyRequest(void)
1087 // one sub-carrier, inventory, 1 slot, fast rate
1088 // AFI is at bit 5 (1<<4) when doing an INVENTORY
1089 cmd
[0] = (1 << 2) | (1 << 5) | (1 << 1);
1090 // inventory command code
1095 crc
= Iso15693Crc(cmd
, 3);
1096 cmd
[3] = crc
& 0xff;
1099 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1103 //-----------------------------------------------------------------------------
1104 // Start to read an ISO 15693 tag. We send an identify request, then wait
1105 // for the response. The response is not demodulated, just left in the buffer
1106 // so that it can be downloaded to a PC and processed there.
1107 //-----------------------------------------------------------------------------
1108 void AcquireRawAdcSamplesIso15693(void)
1112 uint8_t *dest
= BigBuf_get_addr();
1114 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1115 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1117 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1118 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1120 BuildIdentifyRequest();
1122 // Give the tags time to energize
1125 // Now send the command
1126 uint32_t start_time
= 0;
1127 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1129 // wait for last transfer to complete
1130 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
)) ;
1132 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
1134 for(int c
= 0; c
< 4000; ) {
1135 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1136 uint16_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1141 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1146 void SnoopIso15693(uint8_t jam_search_len
, uint8_t *jam_search_string
) {
1150 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1155 // The DMA buffer, used to stream samples from the FPGA
1156 uint16_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
1158 // Count of samples received so far, so that we can include timing
1159 // information in the trace buffer.
1162 DecodeTag_t DecodeTag
= {0};
1163 uint8_t response
[ISO15693_MAX_RESPONSE_LENGTH
];
1164 DecodeTagInit(&DecodeTag
, response
, sizeof(response
));
1166 DecodeReader_t DecodeReader
= {0};
1167 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1168 DecodeReaderInit(&DecodeReader
, cmd
, sizeof(cmd
), jam_search_len
, jam_search_string
);
1170 // Print some debug information about the buffer sizes
1172 Dbprintf("Snooping buffers initialized:");
1173 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1174 Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH
);
1175 Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH
);
1176 Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE
* sizeof(uint16_t));
1178 Dbprintf("Snoop started. Press PM3 Button to stop.");
1180 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SNOOP_AMPLITUDE
);
1182 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1183 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1185 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1187 bool TagIsActive
= false;
1188 bool ReaderIsActive
= false;
1189 bool ExpectTagAnswer
= false;
1190 uint32_t dma_start_time
= 0;
1191 uint16_t *upTo
= dmaBuf
;
1193 uint16_t max_behindBy
= 0;
1195 // And now we loop, receiving samples.
1197 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
1198 if (behindBy
> max_behindBy
) {
1199 max_behindBy
= behindBy
;
1202 if (behindBy
== 0) continue;
1206 // DMA has transferred the very first data
1207 dma_start_time
= GetCountSspClk() & 0xfffffff0;
1210 uint16_t snoopdata
= *upTo
++;
1212 if (upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1213 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
1214 if (behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
1215 FpgaDisableTracing();
1216 Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy
, samples
);
1219 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1220 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1221 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
1223 if (BUTTON_PRESS()) {
1224 DbpString("Snoop stopped.");
1230 if (!TagIsActive
) { // no need to try decoding reader data if the tag is sending
1231 if (Handle15693SampleFromReader(snoopdata
& 0x02, &DecodeReader
)) {
1232 // FpgaDisableSscDma();
1233 uint32_t eof_time
= dma_start_time
+ samples
*16 + 8 - DELAY_READER_TO_ARM_SNOOP
; // end of EOF
1234 if (DecodeReader
.byteCount
> 0) {
1235 uint32_t sof_time
= eof_time
1236 - DecodeReader
.byteCount
* (DecodeReader
.Coding
==CODING_1_OUT_OF_4
?128*16:2048*16) // time for byte transfers
1237 - 32*16 // time for SOF transfer
1238 - 16*16; // time for EOF transfer
1239 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, sof_time
*4, eof_time
*4, NULL
, true);
1241 /* And ready to receive another command. */
1242 DecodeReaderReset(&DecodeReader
);
1243 /* And also reset the demod code, which might have been */
1244 /* false-triggered by the commands from the reader. */
1245 DecodeTagReset(&DecodeTag
);
1246 ReaderIsActive
= false;
1247 ExpectTagAnswer
= true;
1250 // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1252 } else if (Handle15693SampleFromReader(snoopdata
& 0x01, &DecodeReader
)) {
1253 // FpgaDisableSscDma();
1254 uint32_t eof_time
= dma_start_time
+ samples
*16 + 16 - DELAY_READER_TO_ARM_SNOOP
; // end of EOF
1255 if (DecodeReader
.byteCount
> 0) {
1256 uint32_t sof_time
= eof_time
1257 - DecodeReader
.byteCount
* (DecodeReader
.Coding
==CODING_1_OUT_OF_4
?128*16:2048*16) // time for byte transfers
1258 - 32*16 // time for SOF transfer
1259 - 16*16; // time for EOF transfer
1260 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, sof_time
*4, eof_time
*4, NULL
, true);
1262 /* And ready to receive another command. */
1263 DecodeReaderReset(&DecodeReader
);
1264 /* And also reset the demod code, which might have been */
1265 /* false-triggered by the commands from the reader. */
1266 DecodeTagReset(&DecodeTag
);
1267 ReaderIsActive
= false;
1268 ExpectTagAnswer
= true;
1271 // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1274 ReaderIsActive
= (DecodeReader
.state
>= STATE_READER_RECEIVE_DATA_1_OUT_OF_4
);
1278 if (!ReaderIsActive
&& ExpectTagAnswer
) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
1279 if (Handle15693SamplesFromTag(snoopdata
>> 2, &DecodeTag
)) {
1280 // FpgaDisableSscDma();
1281 uint32_t eof_time
= dma_start_time
+ samples
*16 - DELAY_TAG_TO_ARM_SNOOP
; // end of EOF
1282 if (DecodeTag
.lastBit
== SOF_PART2
) {
1283 eof_time
-= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
1285 uint32_t sof_time
= eof_time
1286 - DecodeTag
.len
* 8 * 8 * 16 // time for byte transfers
1287 - 32 * 16 // time for SOF transfer
1288 - (DecodeTag
.lastBit
!= SOF_PART2
?32*16:0); // time for EOF transfer
1289 LogTrace_ISO15693(DecodeTag
.output
, DecodeTag
.len
, sof_time
*4, eof_time
*4, NULL
, false);
1290 // And ready to receive another response.
1291 DecodeTagReset(&DecodeTag
);
1292 DecodeReaderReset(&DecodeReader
);
1293 ExpectTagAnswer
= false;
1294 TagIsActive
= false;
1297 // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
1300 TagIsActive
= (DecodeTag
.state
>= STATE_TAG_RECEIVING_DATA
);
1306 FpgaDisableSscDma();
1310 DbpString("Snoop statistics:");
1311 Dbprintf(" ExpectTagAnswer: %d, TagIsActive: %d, ReaderIsActive: %d", ExpectTagAnswer
, TagIsActive
, ReaderIsActive
);
1312 Dbprintf(" DecodeTag State: %d", DecodeTag
.state
);
1313 Dbprintf(" DecodeTag byteCnt: %d", DecodeTag
.len
);
1314 Dbprintf(" DecodeTag posCount: %d", DecodeTag
.posCount
);
1315 Dbprintf(" DecodeReader State: %d", DecodeReader
.state
);
1316 Dbprintf(" DecodeReader byteCnt: %d", DecodeReader
.byteCount
);
1317 Dbprintf(" DecodeReader posCount: %d", DecodeReader
.posCount
);
1318 Dbprintf(" Trace length: %d", BigBuf_get_traceLen());
1319 Dbprintf(" Max behindBy: %d", max_behindBy
);
1323 // Initialize the proxmark as iso15k reader
1324 void Iso15693InitReader() {
1325 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1327 // Start from off (no field generated)
1329 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1332 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1333 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1335 // Give the tags time to energize
1337 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1341 ///////////////////////////////////////////////////////////////////////
1342 // ISO 15693 Part 3 - Air Interface
1343 // This section basically contains transmission and receiving of bits
1344 ///////////////////////////////////////////////////////////////////////
1347 // uid is in transmission order (which is reverse of display order)
1348 static void BuildReadBlockRequest(uint8_t *uid
, uint8_t blockNumber
)
1353 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1354 // followed by the block data
1355 cmd
[0] = ISO15693_REQ_OPTION
| ISO15693_REQ_ADDRESS
| ISO15693_REQ_DATARATE_HIGH
;
1356 // READ BLOCK command code
1357 cmd
[1] = ISO15693_READBLOCK
;
1358 // UID may be optionally specified here
1367 cmd
[9] = uid
[7]; // 0xe0; // always e0 (not exactly unique)
1368 // Block number to read
1369 cmd
[10] = blockNumber
;
1371 crc
= Iso15693Crc(cmd
, 11); // the crc needs to be calculated over 11 bytes
1372 cmd
[11] = crc
& 0xff;
1375 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1379 // Now the VICC>VCD responses when we are simulating a tag
1380 static void BuildInventoryResponse(uint8_t *uid
)
1386 cmd
[0] = 0; // No error, no protocol format extension
1387 cmd
[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
1389 cmd
[2] = uid
[7]; //0x32;
1390 cmd
[3] = uid
[6]; //0x4b;
1391 cmd
[4] = uid
[5]; //0x03;
1392 cmd
[5] = uid
[4]; //0x01;
1393 cmd
[6] = uid
[3]; //0x00;
1394 cmd
[7] = uid
[2]; //0x10;
1395 cmd
[8] = uid
[1]; //0x05;
1396 cmd
[9] = uid
[0]; //0xe0;
1398 crc
= Iso15693Crc(cmd
, 10);
1399 cmd
[10] = crc
& 0xff;
1402 CodeIso15693AsTag(cmd
, sizeof(cmd
));
1405 // Universal Method for sending to and recv bytes from a tag
1406 // init ... should we initialize the reader?
1407 // speed ... 0 low speed, 1 hi speed
1408 // *recv will contain the tag's answer
1409 // return: length of received data, or -1 for timeout
1410 int SendDataTag(uint8_t *send
, int sendlen
, bool init
, int speed
, uint8_t *recv
, uint16_t max_recv_len
, uint32_t start_time
, uint32_t *eof_time
) {
1413 Iso15693InitReader();
1420 // low speed (1 out of 256)
1421 CodeIso15693AsReader256(send
, sendlen
);
1423 // high speed (1 out of 4)
1424 CodeIso15693AsReader(send
, sendlen
);
1427 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1429 // Now wait for a response
1431 answerLen
= GetIso15693AnswerFromTag(recv
, max_recv_len
, ISO15693_READER_TIMEOUT
, eof_time
);
1438 // --------------------------------------------------------------------
1440 // --------------------------------------------------------------------
1442 // Decodes a message from a tag and displays its metadata and content
1443 #define DBD15STATLEN 48
1444 void DbdecodeIso15693Answer(int len
, uint8_t *d
) {
1445 char status
[DBD15STATLEN
+1]={0};
1449 if (d
[0] & ISO15693_RES_EXT
)
1450 strncat(status
,"ProtExt ", DBD15STATLEN
);
1451 if (d
[0] & ISO15693_RES_ERROR
) {
1453 strncat(status
,"Error ", DBD15STATLEN
);
1456 strncat(status
,"01:notSupp", DBD15STATLEN
);
1459 strncat(status
,"02:notRecog", DBD15STATLEN
);
1462 strncat(status
,"03:optNotSupp", DBD15STATLEN
);
1465 strncat(status
,"0f:noInfo", DBD15STATLEN
);
1468 strncat(status
,"10:doesn'tExist", DBD15STATLEN
);
1471 strncat(status
,"11:lockAgain", DBD15STATLEN
);
1474 strncat(status
,"12:locked", DBD15STATLEN
);
1477 strncat(status
,"13:progErr", DBD15STATLEN
);
1480 strncat(status
,"14:lockErr", DBD15STATLEN
);
1483 strncat(status
,"unknownErr", DBD15STATLEN
);
1485 strncat(status
," ", DBD15STATLEN
);
1487 strncat(status
,"NoErr ", DBD15STATLEN
);
1490 crc
=Iso15693Crc(d
,len
-2);
1491 if ( (( crc
& 0xff ) == d
[len
-2]) && (( crc
>> 8 ) == d
[len
-1]) )
1492 strncat(status
,"CrcOK",DBD15STATLEN
);
1494 strncat(status
,"CrcFail!",DBD15STATLEN
);
1496 Dbprintf("%s",status
);
1502 ///////////////////////////////////////////////////////////////////////
1503 // Functions called via USB/Client
1504 ///////////////////////////////////////////////////////////////////////
1506 void SetDebugIso15693(uint32_t debug
) {
1508 Dbprintf("Iso15693 Debug is now %s",DEBUG
?"on":"off");
1513 //---------------------------------------------------------------------------------------
1514 // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
1515 // all demodulation performed in arm rather than host. - greg
1516 //---------------------------------------------------------------------------------------
1517 void ReaderIso15693(uint32_t parameter
) {
1524 uint8_t TagUID
[8] = {0x00};
1526 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1528 uint8_t answer
[ISO15693_MAX_RESPONSE_LENGTH
];
1530 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1532 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1534 // Start from off (no field generated)
1535 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1538 // Give the tags time to energize
1540 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1545 // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
1546 // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
1548 // Now send the IDENTIFY command
1549 BuildIdentifyRequest();
1550 uint32_t start_time
= 0;
1551 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1553 // Now wait for a response
1555 answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2, &eof_time
) ;
1556 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1558 if (answerLen
>=12) // we should do a better check than this
1560 TagUID
[0] = answer
[2];
1561 TagUID
[1] = answer
[3];
1562 TagUID
[2] = answer
[4];
1563 TagUID
[3] = answer
[5];
1564 TagUID
[4] = answer
[6];
1565 TagUID
[5] = answer
[7];
1566 TagUID
[6] = answer
[8]; // IC Manufacturer code
1567 TagUID
[7] = answer
[9]; // always E0
1571 Dbprintf("%d octets read from IDENTIFY request:", answerLen
);
1572 DbdecodeIso15693Answer(answerLen
, answer
);
1573 Dbhexdump(answerLen
, answer
, false);
1576 if (answerLen
>= 12)
1577 Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
1578 TagUID
[7],TagUID
[6],TagUID
[5],TagUID
[4],
1579 TagUID
[3],TagUID
[2],TagUID
[1],TagUID
[0]);
1582 // Dbprintf("%d octets read from SELECT request:", answerLen2);
1583 // DbdecodeIso15693Answer(answerLen2,answer2);
1584 // Dbhexdump(answerLen2,answer2,true);
1586 // Dbprintf("%d octets read from XXX request:", answerLen3);
1587 // DbdecodeIso15693Answer(answerLen3,answer3);
1588 // Dbhexdump(answerLen3,answer3,true);
1591 if (answerLen
>= 12 && DEBUG
) {
1592 for (int i
= 0; i
< 32; i
++) { // sanity check, assume max 32 pages
1593 BuildReadBlockRequest(TagUID
, i
);
1594 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1595 int answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2, &eof_time
);
1596 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1597 if (answerLen
> 0) {
1598 Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i
, answerLen
);
1599 DbdecodeIso15693Answer(answerLen
, answer
);
1600 Dbhexdump(answerLen
, answer
, false);
1601 if ( *((uint32_t*) answer
) == 0x07160101 ) break; // exit on NoPageErr
1606 // for the time being, switch field off to protect rdv4.0
1607 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1608 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1615 // Simulate an ISO15693 TAG.
1616 // For Inventory command: print command and send Inventory Response with given UID
1617 // TODO: interpret other reader commands and send appropriate response
1618 void SimTagIso15693(uint32_t parameter
, uint8_t *uid
) {
1622 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1623 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1624 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1625 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1629 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1631 // Build a suitable response to the reader INVENTORY command
1632 BuildInventoryResponse(uid
);
1635 while (!BUTTON_PRESS()) {
1636 uint32_t eof_time
= 0, start_time
= 0;
1637 int cmd_len
= GetIso15693CommandFromReader(cmd
, sizeof(cmd
), &eof_time
);
1639 if ((cmd_len
>= 5) && (cmd
[0] & ISO15693_REQ_INVENTORY
) && (cmd
[1] == ISO15693_INVENTORY
)) { // TODO: check more flags
1640 bool slow
= !(cmd
[0] & ISO15693_REQ_DATARATE_HIGH
);
1641 start_time
= eof_time
+ DELAY_ISO15693_VCD_TO_VICC_SIM
;
1642 TransmitTo15693Reader(ToSend
, ToSendMax
, &start_time
, 0, slow
);
1645 Dbprintf("%d bytes read from reader:", cmd_len
);
1646 Dbhexdump(cmd_len
, cmd
, false);
1649 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1655 // Since there is no standardized way of reading the AFI out of a tag, we will brute force it
1656 // (some manufactures offer a way to read the AFI, though)
1657 void BruteforceIso15693Afi(uint32_t speed
)
1662 uint8_t recv
[ISO15693_MAX_RESPONSE_LENGTH
];
1663 int datalen
= 0, recvlen
= 0;
1666 // first without AFI
1667 // Tags should respond without AFI and with AFI=0 even when AFI is active
1669 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_SLOT1
;
1670 data
[1] = ISO15693_INVENTORY
;
1671 data
[2] = 0; // mask length
1672 datalen
= Iso15693AddCrc(data
,3);
1673 uint32_t start_time
= GetCountSspClk();
1674 recvlen
= SendDataTag(data
, datalen
, true, speed
, recv
, sizeof(recv
), 0, &eof_time
);
1675 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1678 Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL
, &recv
[2]));
1683 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_AFI
| ISO15693_REQINV_SLOT1
;
1684 data
[1] = ISO15693_INVENTORY
;
1686 data
[3] = 0; // mask length
1688 for (int i
= 0; i
< 256; i
++) {
1690 datalen
= Iso15693AddCrc(data
,4);
1691 recvlen
= SendDataTag(data
, datalen
, false, speed
, recv
, sizeof(recv
), start_time
, &eof_time
);
1692 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1694 if (recvlen
>= 12) {
1695 Dbprintf("AFI=%i UID=%s", i
, Iso15693sprintUID(NULL
, &recv
[2]));
1698 Dbprintf("AFI Bruteforcing done.");
1700 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1706 // Allows to directly send commands to the tag via the client
1707 void DirectTag15693Command(uint32_t datalen
, uint32_t speed
, uint32_t recv
, uint8_t data
[]) {
1712 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1717 Dbhexdump(datalen
, data
, false);
1720 recvlen
= SendDataTag(data
, datalen
, true, speed
, (recv
?recvbuf
:NULL
), sizeof(recvbuf
), 0, &eof_time
);
1722 // for the time being, switch field off to protect rdv4.0
1723 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1724 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1731 Dbhexdump(recvlen
, recvbuf
, false);
1732 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1735 if (recvlen
> ISO15693_MAX_RESPONSE_LENGTH
) {
1736 recvlen
= ISO15693_MAX_RESPONSE_LENGTH
;
1738 cmd_send(CMD_ACK
, recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1744 //-----------------------------------------------------------------------------
1745 // Work with "magic Chinese" card.
1747 //-----------------------------------------------------------------------------
1749 // Set the UID to the tag (based on Iceman work).
1750 void SetTag15693Uid(uint8_t *uid
) {
1754 uint8_t cmd
[4][9] = {
1755 {0x02, 0x21, 0x3e, 0x00, 0x00, 0x00, 0x00},
1756 {0x02, 0x21, 0x3f, 0x69, 0x96, 0x00, 0x00},
1764 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1767 // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
1773 // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
1779 for (int i
= 0; i
< 4; i
++) {
1781 crc
= Iso15693Crc(cmd
[i
], 7);
1782 cmd
[i
][7] = crc
& 0xff;
1783 cmd
[i
][8] = crc
>> 8;
1787 Dbhexdump(sizeof(cmd
[i
]), cmd
[i
], false);
1790 recvlen
= SendDataTag(cmd
[i
], sizeof(cmd
[i
]), true, 1, recvbuf
, sizeof(recvbuf
), 0, &eof_time
);
1795 Dbhexdump(recvlen
, recvbuf
, false);
1796 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1800 cmd_send(CMD_ACK
, recvlen
>ISO15693_MAX_RESPONSE_LENGTH
?ISO15693_MAX_RESPONSE_LENGTH
:recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1808 // --------------------------------------------------------------------
1809 // -- Misc & deprecated functions
1810 // --------------------------------------------------------------------
1814 // do not use; has a fix UID
1815 static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
1820 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1821 // followed by the block data
1822 // one sub-carrier, inventory, 1 slot, fast rate
1823 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1824 // System Information command code
1826 // UID may be optionally specified here
1835 cmd[9]= 0xe0; // always e0 (not exactly unique)
1837 crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
1838 cmd[10] = crc & 0xff;
1841 CodeIso15693AsReader(cmd, sizeof(cmd));
1845 // do not use; has a fix UID
1846 static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
1851 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1852 // followed by the block data
1853 // one sub-carrier, inventory, 1 slot, fast rate
1854 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1855 // READ Multi BLOCK command code
1857 // UID may be optionally specified here
1866 cmd[9]= 0xe0; // always e0 (not exactly unique)
1867 // First Block number to read
1869 // Number of Blocks to read
1870 cmd[11] = 0x2f; // read quite a few
1872 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1873 cmd[12] = crc & 0xff;
1876 CodeIso15693AsReader(cmd, sizeof(cmd));
1879 // do not use; has a fix UID
1880 static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
1885 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1886 // followed by the block data
1887 // one sub-carrier, inventory, 1 slot, fast rate
1888 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1889 // READ BLOCK command code
1891 // UID may be optionally specified here
1900 cmd[9]= 0xe0; // always e0 (not exactly unique)
1906 // cmd[13] = 0x00; //Now the CRC
1907 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1908 cmd[12] = crc & 0xff;
1911 CodeIso15693AsReader(cmd, sizeof(cmd));
1914 // do not use; has a fix UID
1915 static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
1920 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1921 // followed by the block data
1922 // one sub-carrier, inventory, 1 slot, fast rate
1923 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1924 // READ BLOCK command code
1926 // UID may be optionally specified here
1935 cmd[9]= 0xe0; // always e0 (not exactly unique)
1937 cmd[10] = 0x05; // for custom codes this must be manufacturer code
1941 // cmd[13] = 0x00; //Now the CRC
1942 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1943 cmd[12] = crc & 0xff;
1946 CodeIso15693AsReader(cmd, sizeof(cmd));