1 //-----------------------------------------------------------------------------
3 // Jonathan Westhues, April 2006
4 //-----------------------------------------------------------------------------
6 module hi_read_rx_xcorr(
7 pck0, ck_1356meg, ck_1356megb,
8 pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
10 ssp_frame, ssp_din, ssp_dout, ssp_clk,
15 input pck0, ck_1356meg, ck_1356megb;
16 output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
20 output ssp_frame, ssp_din, ssp_clk;
21 input cross_hi, cross_lo;
25 // Carrier is steady on through this, unless we're snooping.
26 assign pwr_hi = ck_1356megb & (~snoop);
27 assign pwr_oe1 = 1'b0;
28 assign pwr_oe3 = 1'b0;
29 assign pwr_oe4 = 1'b0;
31 wire adc_clk = ck_1356megb;
33 // When we're a reader, we just need to do the BPSK demod; but when we're an
34 // eavesdropper, we also need to pick out the commands sent by the reader,
35 // using AM. Do this the same way that we do it for the simulated tag.
36 reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev;
37 reg [11:0] has_been_low_for;
38 always @(negedge adc_clk)
40 if(& adc_d[7:0]) after_hysteresis <= 1'b1;
41 else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0;
45 has_been_low_for <= 7'b0;
49 if(has_been_low_for == 12'd4095)
51 has_been_low_for <= 12'd0;
52 after_hysteresis <= 1'b1;
55 has_been_low_for <= has_been_low_for + 1;
59 // Let us report a correlation every 4 subcarrier cycles, or 4*16 samples,
60 // so we need a 6-bit counter.
62 // And a couple of registers in which to accumulate the correlations.
63 // we would add at most 32 times adc_d, the result can be held in 13 bits.
64 // Need one additional bit because it can be negative as well
65 reg signed [13:0] corr_i_accum;
66 reg signed [13:0] corr_q_accum;
67 reg signed [7:0] corr_i_out;
68 reg signed [7:0] corr_q_out;
69 // clock and frame signal for communication to ARM
75 // ADC data appears on the rising edge, so sample it on the falling edge
76 always @(negedge adc_clk)
78 corr_i_cnt <= corr_i_cnt + 1;
80 // These are the correlators: we correlate against in-phase and quadrature
81 // versions of our reference signal, and keep the (signed) result to
82 // send out later over the SSP.
83 if(corr_i_cnt == 7'd0)
87 // 7 most significant bits of tag signal (signed), 1 bit reader signal:
88 corr_i_out <= {corr_i_accum[13:7], after_hysteresis_prev_prev};
89 corr_q_out <= {corr_q_accum[13:7], after_hysteresis_prev};
90 after_hysteresis_prev_prev <= after_hysteresis;
94 // 8 most significant bits of tag signal
95 corr_i_out <= corr_i_accum[13:6];
96 corr_q_out <= corr_q_accum[13:6];
99 corr_i_accum <= adc_d;
100 corr_q_accum <= adc_d;
105 corr_i_accum <= corr_i_accum - adc_d;
107 corr_i_accum <= corr_i_accum + adc_d;
109 if(corr_i_cnt[3] == corr_i_cnt[2]) // phase shifted by pi/2
110 corr_q_accum <= corr_q_accum + adc_d;
112 corr_q_accum <= corr_q_accum - adc_d;
116 // The logic in hi_simulate.v reports 4 samples per bit. We report two
117 // (I, Q) pairs per bit, so we should do 2 samples per pair.
118 if(corr_i_cnt == 6'd31)
119 after_hysteresis_prev <= after_hysteresis;
121 // Then the result from last time is serialized and send out to the ARM.
122 // We get one report each cycle, and each report is 16 bits, so the
123 // ssp_clk should be the adc_clk divided by 64/16 = 4.
125 if(corr_i_cnt[1:0] == 2'b10)
128 if(corr_i_cnt[1:0] == 2'b00)
131 // Don't shift if we just loaded new data, obviously.
132 if(corr_i_cnt != 7'd0)
134 corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]};
135 corr_q_out[7:1] <= corr_q_out[6:0];
139 // set ssp_frame signal for corr_i_cnt = 0..3 and corr_i_cnt = 32..35
140 // (send two frames with 8 Bits each)
141 if(corr_i_cnt[5:2] == 4'b0000 || corr_i_cnt[5:2] == 4'b1000)
148 assign ssp_din = corr_i_out[7];
150 assign dbg = corr_i_cnt[3];
153 assign pwr_lo = 1'b0;
154 assign pwr_oe2 = 1'b0;