1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
4 // Gerhard de Koning Gans - May 2011
5 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support iClass.
12 //-----------------------------------------------------------------------------
13 // Based on ISO14443a implementation. Still in experimental phase.
14 // Contribution made during a security research at Radboud University Nijmegen
16 // Please feel free to contribute and extend iClass support!!
17 //-----------------------------------------------------------------------------
21 // We still have sometimes a demodulation error when snooping iClass communication.
22 // The resulting trace of a read-block-03 command may look something like this:
24 // + 22279: : 0c 03 e8 01
26 // ...with an incorrect answer...
28 // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
30 // We still left the error signalling bytes in the traces like 0xbb
32 // A correct trace should look like this:
34 // + 21112: : 0c 03 e8 01
35 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
37 //-----------------------------------------------------------------------------
39 #include "proxmark3.h"
45 // Needed for CRC in emulation mode;
46 // same construction as in ISO 14443;
47 // different initial value (CRC_ICLASS)
48 #include "iso14443crc.h"
49 #include "iso15693tools.h"
51 #include "protocols.h"
52 static int timeout
= 4096;
55 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
);
57 //-----------------------------------------------------------------------------
58 // The software UART that receives commands from the reader, and its state
60 //-----------------------------------------------------------------------------
64 STATE_START_OF_COMMUNICATION
,
84 static RAMFUNC
int OutOfNDecoding(int bit
)
90 Uart
.bitBuffer
= bit
^ 0xFF0;
95 Uart
.bitBuffer
^= bit
;
99 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
102 if(Uart.byteCnt > 15) { return TRUE; }
108 if(Uart
.state
!= STATE_UNSYNCD
) {
111 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
117 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
123 if(bit
!= bitright
) { bit
= bitright
; }
126 // So, now we only have to deal with *bit*, lets see...
127 if(Uart
.posCnt
== 1) {
128 // measurement first half bitperiod
130 // Drop in first half means that we are either seeing
133 if(Uart
.nOutOfCnt
== 1) {
134 // End of Communication
135 Uart
.state
= STATE_UNSYNCD
;
137 if(Uart
.byteCnt
== 0) {
138 // Its not straightforward to show single EOFs
139 // So just leave it and do not return TRUE
140 Uart
.output
[0] = 0xf0;
147 else if(Uart
.state
!= STATE_START_OF_COMMUNICATION
) {
148 // When not part of SOF or EOF, it is an error
149 Uart
.state
= STATE_UNSYNCD
;
156 // measurement second half bitperiod
157 // Count the bitslot we are in... (ISO 15693)
161 if(Uart
.dropPosition
) {
162 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
168 // It is an error if we already have seen a drop in current frame
169 Uart
.state
= STATE_UNSYNCD
;
173 Uart
.dropPosition
= Uart
.nOutOfCnt
;
180 if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
&& Uart
.OutOfCnt
== 4) {
183 if(Uart
.state
== STATE_START_OF_COMMUNICATION
) {
184 if(Uart
.dropPosition
== 4) {
185 Uart
.state
= STATE_RECEIVING
;
188 else if(Uart
.dropPosition
== 3) {
189 Uart
.state
= STATE_RECEIVING
;
191 //Uart.output[Uart.byteCnt] = 0xdd;
195 Uart
.state
= STATE_UNSYNCD
;
198 Uart
.dropPosition
= 0;
203 if(!Uart
.dropPosition
) {
204 Uart
.state
= STATE_UNSYNCD
;
213 //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
214 //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
216 Uart
.shiftReg
^= ((Uart
.dropPosition
& 0x03) << 6);
218 Uart
.dropPosition
= 0;
220 if(Uart
.bitCnt
== 8) {
221 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
229 else if(Uart
.nOutOfCnt
== Uart
.OutOfCnt
) {
232 if(!Uart
.dropPosition
) {
233 Uart
.state
= STATE_UNSYNCD
;
239 Uart
.output
[Uart
.byteCnt
] = (Uart
.dropPosition
& 0xff);
244 Uart
.dropPosition
= 0;
249 Uart.output[Uart.byteCnt] = 0xAA;
251 Uart.output[Uart.byteCnt] = error & 0xFF;
253 Uart.output[Uart.byteCnt] = 0xAA;
255 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
257 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
259 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
261 Uart.output[Uart.byteCnt] = 0xAA;
269 bit
= Uart
.bitBuffer
& 0xf0;
271 bit
^= 0x0F; // drops become 1s ;-)
273 // should have been high or at least (4 * 128) / fc
274 // according to ISO this should be at least (9 * 128 + 20) / fc
275 if(Uart
.highCnt
== 8) {
276 // we went low, so this could be start of communication
277 // it turns out to be safer to choose a less significant
278 // syncbit... so we check whether the neighbour also represents the drop
279 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
280 Uart
.syncBit
= bit
& 8;
282 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
283 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
284 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
285 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
286 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
287 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
290 // the first half bit period is expected in next sample
295 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
298 Uart
.state
= STATE_START_OF_COMMUNICATION
;
302 Uart
.OutOfCnt
= 4; // Start at 1/4, could switch to 1/256
303 Uart
.dropPosition
= 0;
312 if(Uart
.highCnt
< 8) {
321 //=============================================================================
323 //=============================================================================
328 DEMOD_START_OF_COMMUNICATION
,
329 DEMOD_START_OF_COMMUNICATION2
,
330 DEMOD_START_OF_COMMUNICATION3
,
334 DEMOD_END_OF_COMMUNICATION
,
335 DEMOD_END_OF_COMMUNICATION2
,
358 static RAMFUNC
int ManchesterDecoding(int v
)
365 Demod
.buffer
= Demod
.buffer2
;
366 Demod
.buffer2
= Demod
.buffer3
;
374 if(Demod
.state
==DEMOD_UNSYNCD
) {
375 Demod
.output
[Demod
.len
] = 0xfa;
378 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
381 Demod
.syncBit
= 0x08;
388 Demod
.syncBit
= 0x04;
395 Demod
.syncBit
= 0x02;
398 if(bit
& 0x01 && Demod
.syncBit
) {
399 Demod
.syncBit
= 0x01;
404 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
405 Demod
.sub
= SUB_FIRST_HALF
;
410 //if(trigger) LED_A_OFF(); // Not useful in this case...
411 switch(Demod
.syncBit
) {
412 case 0x08: Demod
.samples
= 3; break;
413 case 0x04: Demod
.samples
= 2; break;
414 case 0x02: Demod
.samples
= 1; break;
415 case 0x01: Demod
.samples
= 0; break;
417 // SOF must be long burst... otherwise stay unsynced!!!
418 if(!(Demod
.buffer
& Demod
.syncBit
) || !(Demod
.buffer2
& Demod
.syncBit
)) {
419 Demod
.state
= DEMOD_UNSYNCD
;
423 // SOF must be long burst... otherwise stay unsynced!!!
424 if(!(Demod
.buffer2
& Demod
.syncBit
) || !(Demod
.buffer3
& Demod
.syncBit
)) {
425 Demod
.state
= DEMOD_UNSYNCD
;
435 modulation
= bit
& Demod
.syncBit
;
436 modulation
|= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
440 if(Demod
.posCount
==0) {
443 Demod
.sub
= SUB_FIRST_HALF
;
446 Demod
.sub
= SUB_NONE
;
451 /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
452 if(Demod.state!=DEMOD_ERROR_WAIT) {
453 Demod.state = DEMOD_ERROR_WAIT;
454 Demod.output[Demod.len] = 0xaa;
458 //else if(modulation) {
460 if(Demod
.sub
== SUB_FIRST_HALF
) {
461 Demod
.sub
= SUB_BOTH
;
464 Demod
.sub
= SUB_SECOND_HALF
;
467 else if(Demod
.sub
== SUB_NONE
) {
468 if(Demod
.state
== DEMOD_SOF_COMPLETE
) {
469 Demod
.output
[Demod
.len
] = 0x0f;
471 Demod
.state
= DEMOD_UNSYNCD
;
476 Demod
.state
= DEMOD_ERROR_WAIT
;
479 /*if(Demod.state!=DEMOD_ERROR_WAIT) {
480 Demod.state = DEMOD_ERROR_WAIT;
481 Demod.output[Demod.len] = 0xaa;
486 switch(Demod
.state
) {
487 case DEMOD_START_OF_COMMUNICATION
:
488 if(Demod
.sub
== SUB_BOTH
) {
489 //Demod.state = DEMOD_MANCHESTER_D;
490 Demod
.state
= DEMOD_START_OF_COMMUNICATION2
;
492 Demod
.sub
= SUB_NONE
;
495 Demod
.output
[Demod
.len
] = 0xab;
496 Demod
.state
= DEMOD_ERROR_WAIT
;
500 case DEMOD_START_OF_COMMUNICATION2
:
501 if(Demod
.sub
== SUB_SECOND_HALF
) {
502 Demod
.state
= DEMOD_START_OF_COMMUNICATION3
;
505 Demod
.output
[Demod
.len
] = 0xab;
506 Demod
.state
= DEMOD_ERROR_WAIT
;
510 case DEMOD_START_OF_COMMUNICATION3
:
511 if(Demod
.sub
== SUB_SECOND_HALF
) {
512 // Demod.state = DEMOD_MANCHESTER_D;
513 Demod
.state
= DEMOD_SOF_COMPLETE
;
514 //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
518 Demod
.output
[Demod
.len
] = 0xab;
519 Demod
.state
= DEMOD_ERROR_WAIT
;
523 case DEMOD_SOF_COMPLETE
:
524 case DEMOD_MANCHESTER_D
:
525 case DEMOD_MANCHESTER_E
:
526 // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
527 // 00001111 = 1 (0 in 14443)
528 if(Demod
.sub
== SUB_SECOND_HALF
) { // SUB_FIRST_HALF
530 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
531 Demod
.state
= DEMOD_MANCHESTER_D
;
533 else if(Demod
.sub
== SUB_FIRST_HALF
) { // SUB_SECOND_HALF
535 Demod
.shiftReg
>>= 1;
536 Demod
.state
= DEMOD_MANCHESTER_E
;
538 else if(Demod
.sub
== SUB_BOTH
) {
539 Demod
.state
= DEMOD_MANCHESTER_F
;
542 Demod
.state
= DEMOD_ERROR_WAIT
;
547 case DEMOD_MANCHESTER_F
:
548 // Tag response does not need to be a complete byte!
549 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
550 if(Demod
.bitCount
> 1) { // was > 0, do not interpret last closing bit, is part of EOF
551 Demod
.shiftReg
>>= (9 - Demod
.bitCount
); // right align data
552 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
556 Demod
.state
= DEMOD_UNSYNCD
;
560 Demod
.output
[Demod
.len
] = 0xad;
561 Demod
.state
= DEMOD_ERROR_WAIT
;
566 case DEMOD_ERROR_WAIT
:
567 Demod
.state
= DEMOD_UNSYNCD
;
571 Demod
.output
[Demod
.len
] = 0xdd;
572 Demod
.state
= DEMOD_UNSYNCD
;
576 /*if(Demod.bitCount>=9) {
577 Demod.output[Demod.len] = Demod.shiftReg & 0xff;
580 Demod.parityBits <<= 1;
581 Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
586 if(Demod
.bitCount
>=8) {
587 Demod
.shiftReg
>>= 1;
588 Demod
.output
[Demod
.len
] = (Demod
.shiftReg
& 0xff);
595 Demod
.output
[Demod
.len
] = 0xBB;
597 Demod
.output
[Demod
.len
] = error
& 0xFF;
599 Demod
.output
[Demod
.len
] = 0xBB;
601 Demod
.output
[Demod
.len
] = bit
& 0xFF;
603 Demod
.output
[Demod
.len
] = Demod
.buffer
& 0xFF;
606 Demod
.output
[Demod
.len
] = Demod
.buffer2
& 0xFF;
608 Demod
.output
[Demod
.len
] = Demod
.syncBit
& 0xFF;
610 Demod
.output
[Demod
.len
] = 0xBB;
617 } // end (state != UNSYNCED)
622 //=============================================================================
623 // Finally, a `sniffer' for iClass communication
624 // Both sides of communication!
625 //=============================================================================
627 //-----------------------------------------------------------------------------
628 // Record the sequence of commands sent by the reader to the tag, with
629 // triggering so that we start recording at the point that the tag is moved
631 //-----------------------------------------------------------------------------
632 void RAMFUNC
SnoopIClass(void)
636 // We won't start recording the frames that we acquire until we trigger;
637 // a good trigger condition to get started is probably when we see a
638 // response from the tag.
639 //int triggered = FALSE; // FALSE to wait first for card
641 // The command (reader -> tag) that we're receiving.
642 // The length of a received command will in most cases be no more than 18 bytes.
643 // So 32 should be enough!
644 #define ICLASS_BUFFER_SIZE 32
645 uint8_t readerToTagCmd
[ICLASS_BUFFER_SIZE
];
646 // The response (tag -> reader) that we're receiving.
647 uint8_t tagToReaderResponse
[ICLASS_BUFFER_SIZE
];
649 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
651 // free all BigBuf memory
653 // The DMA buffer, used to stream samples from the FPGA
654 uint8_t *dmaBuf
= BigBuf_malloc(DMA_BUFFER_SIZE
);
658 iso14a_set_trigger(FALSE
);
665 // Count of samples received so far, so that we can include timing
666 // information in the trace buffer.
670 // Set up the demodulator for tag -> reader responses.
671 Demod
.output
= tagToReaderResponse
;
673 Demod
.state
= DEMOD_UNSYNCD
;
675 // Setup for the DMA.
678 lastRxCounter
= DMA_BUFFER_SIZE
;
679 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
681 // And the reader -> tag commands
682 memset(&Uart
, 0, sizeof(Uart
));
683 Uart
.output
= readerToTagCmd
;
684 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
685 Uart
.state
= STATE_UNSYNCD
;
687 // And put the FPGA in the appropriate mode
688 // Signal field is off with the appropriate LED
690 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
691 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
693 uint32_t time_0
= GetCountSspClk();
694 uint32_t time_start
= 0;
695 uint32_t time_stop
= 0;
702 // And now we loop, receiving samples.
706 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
708 if(behindBy
> maxBehindBy
) {
709 maxBehindBy
= behindBy
;
710 if(behindBy
> (9 * DMA_BUFFER_SIZE
/ 10)) {
711 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
715 if(behindBy
< 1) continue;
721 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
722 upTo
-= DMA_BUFFER_SIZE
;
723 lastRxCounter
+= DMA_BUFFER_SIZE
;
724 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
725 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
732 decbyte
^= (1 << (3 - div
));
735 // FOR READER SIDE COMMUMICATION...
738 decbyter
^= (smpl
& 0x30);
742 if((div
+ 1) % 2 == 0) {
744 if(OutOfNDecoding((smpl
& 0xF0) >> 4)) {
745 rsamples
= samples
- Uart
.samples
;
746 time_stop
= (GetCountSspClk()-time_0
) << 4;
749 //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break;
750 //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break;
752 uint8_t parity
[MAX_PARITY_SIZE
];
753 GetParity(Uart
.output
, Uart
.byteCnt
, parity
);
754 LogTrace(Uart
.output
,Uart
.byteCnt
, time_start
, time_stop
, parity
, TRUE
);
758 /* And ready to receive another command. */
759 Uart
.state
= STATE_UNSYNCD
;
760 /* And also reset the demod code, which might have been */
761 /* false-triggered by the commands from the reader. */
762 Demod
.state
= DEMOD_UNSYNCD
;
766 time_start
= (GetCountSspClk()-time_0
) << 4;
773 if(ManchesterDecoding(smpl
& 0x0F)) {
774 time_stop
= (GetCountSspClk()-time_0
) << 4;
776 rsamples
= samples
- Demod
.samples
;
780 uint8_t parity
[MAX_PARITY_SIZE
];
781 GetParity(Demod
.output
, Demod
.len
, parity
);
782 LogTrace(Demod
.output
, Demod
.len
, time_start
, time_stop
, parity
, FALSE
);
785 // And ready to receive another response.
786 memset(&Demod
, 0, sizeof(Demod
));
787 Demod
.output
= tagToReaderResponse
;
788 Demod
.state
= DEMOD_UNSYNCD
;
791 time_start
= (GetCountSspClk()-time_0
) << 4;
800 DbpString("cancelled_a");
805 DbpString("COMMAND FINISHED");
807 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
808 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
811 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
812 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
813 Dbprintf("%x %x %x", Uart
.byteCntMax
, BigBuf_get_traceLen(), (int)Uart
.output
[0]);
820 void rotateCSN(uint8_t* originalCSN
, uint8_t* rotatedCSN
) {
822 for(i
= 0; i
< 8; i
++) {
823 rotatedCSN
[i
] = (originalCSN
[i
] >> 3) | (originalCSN
[(i
+1)%8] << 5);
827 //-----------------------------------------------------------------------------
828 // Wait for commands from reader
829 // Stop when button is pressed
830 // Or return TRUE when command is captured
831 //-----------------------------------------------------------------------------
832 static int GetIClassCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
834 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
835 // only, since we are receiving, not transmitting).
836 // Signal field is off with the appropriate LED
838 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
840 // Now run a `software UART' on the stream of incoming samples.
841 Uart
.output
= received
;
842 Uart
.byteCntMax
= maxLen
;
843 Uart
.state
= STATE_UNSYNCD
;
848 if(BUTTON_PRESS()) return FALSE
;
850 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
851 AT91C_BASE_SSC
->SSC_THR
= 0x00;
853 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
854 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
856 if(OutOfNDecoding(b
& 0x0f)) {
864 static uint8_t encode4Bits(const uint8_t b
)
867 // OTA, the least significant bits first
869 // 1 - Bit value to send
870 // 2 - Reversed (big-endian)
876 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
877 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
878 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
879 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
880 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
881 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
882 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
883 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
884 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
885 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
886 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
887 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
888 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
889 case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
890 case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
891 default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
896 //-----------------------------------------------------------------------------
897 // Prepare tag messages
898 //-----------------------------------------------------------------------------
899 static void CodeIClassTagAnswer(const uint8_t *cmd
, int len
)
903 * SOF comprises 3 parts;
904 * * An unmodulated time of 56.64 us
905 * * 24 pulses of 423.75 KHz (fc/32)
906 * * A logic 1, which starts with an unmodulated time of 18.88us
907 * followed by 8 pulses of 423.75kHz (fc/32)
910 * EOF comprises 3 parts:
911 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
913 * - 24 pulses of fc/32
914 * - An unmodulated time of 56.64 us
917 * A logic 0 starts with 8 pulses of fc/32
918 * followed by an unmodulated time of 256/fc (~18,88us).
920 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
921 * 8 pulses of fc/32 (also 18.88us)
923 * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
925 * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
926 * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
928 * In this mode the SOF can be written as 00011101 = 0x1D
929 * The EOF can be written as 10111000 = 0xb8
940 ToSend
[++ToSendMax
] = 0x1D;
942 for(i
= 0; i
< len
; i
++) {
944 ToSend
[++ToSendMax
] = encode4Bits(b
& 0xF); //Least significant half
945 ToSend
[++ToSendMax
] = encode4Bits((b
>>4) & 0xF);//Most significant half
949 ToSend
[++ToSendMax
] = 0xB8;
950 //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
951 // Convert from last byte pos to length
956 static void CodeIClassTagSOF()
958 //So far a dummy implementation, not used
959 //int lastProxToAirDuration =0;
963 ToSend
[++ToSendMax
] = 0x1D;
964 // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
966 // Convert from last byte pos to length
969 #define MODE_SIM_CSN 0
970 #define MODE_EXIT_AFTER_MAC 1
971 #define MODE_FULLSIM 2
973 int doIClassSimulation(int simulationMode
, uint8_t *reader_mac_buf
);
975 * @brief SimulateIClass simulates an iClass card.
976 * @param arg0 type of simulation
977 * - 0 uses the first 8 bytes in usb data as CSN
978 * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
979 * in the usb data. This mode collects MAC from the reader, in order to do an offline
980 * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
981 * - Other : Uses the default CSN (031fec8af7ff12e0)
982 * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
986 void SimulateIClass(uint32_t arg0
, uint32_t arg1
, uint32_t arg2
, uint8_t *datain
)
988 uint32_t simType
= arg0
;
989 uint32_t numberOfCSNS
= arg1
;
990 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
992 // Enable and clear the trace
995 //Use the emulator memory for SIM
996 uint8_t *emulator
= BigBuf_get_EM_addr();
999 // Use the CSN from commandline
1000 memcpy(emulator
, datain
, 8);
1001 doIClassSimulation(MODE_SIM_CSN
,NULL
);
1002 }else if(simType
== 1)
1005 uint8_t csn_crc
[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
1006 // Use the CSN from commandline
1007 memcpy(emulator
, csn_crc
, 8);
1008 doIClassSimulation(MODE_SIM_CSN
,NULL
);
1010 else if(simType
== 2)
1013 uint8_t mac_responses
[USB_CMD_DATA_SIZE
] = { 0 };
1014 Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS
);
1015 // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
1016 // in order to collect MAC's from the reader. This can later be used in an offlne-attack
1017 // in order to obtain the keys, as in the "dismantling iclass"-paper.
1019 for( ; i
< numberOfCSNS
&& i
*8+8 < USB_CMD_DATA_SIZE
; i
++)
1021 // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
1023 memcpy(emulator
, datain
+(i
*8), 8);
1024 if(doIClassSimulation(MODE_EXIT_AFTER_MAC
,mac_responses
+i
*8))
1026 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1027 return; // Button pressed
1030 cmd_send(CMD_ACK
,CMD_SIMULATE_TAG_ICLASS
,i
,0,mac_responses
,i
*8);
1032 }else if(simType
== 3){
1033 //This is 'full sim' mode, where we use the emulator storage for data.
1034 doIClassSimulation(MODE_FULLSIM
, NULL
);
1037 // We may want a mode here where we hardcode the csns to use (from proxclone).
1038 // That will speed things up a little, but not required just yet.
1039 Dbprintf("The mode is not implemented, reserved for future use");
1041 Dbprintf("Done...");
1046 * @brief Does the actual simulation
1047 * @param csn - csn to use
1048 * @param breakAfterMacReceived if true, returns after reader MAC has been received.
1050 int doIClassSimulation( int simulationMode
, uint8_t *reader_mac_buf
)
1052 // free eventually allocated BigBuf memory
1053 BigBuf_free_keep_EM();
1055 uint8_t *csn
= BigBuf_get_EM_addr();
1056 uint8_t *emulator
= csn
;
1057 uint8_t sof_data
[] = { 0x0F} ;
1058 // CSN followed by two CRC bytes
1059 uint8_t anticoll_data
[10] = { 0 };
1060 uint8_t csn_data
[10] = { 0 };
1061 memcpy(csn_data
,csn
,sizeof(csn_data
));
1062 Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1064 // Construct anticollision-CSN
1065 rotateCSN(csn_data
,anticoll_data
);
1067 // Compute CRC on both CSNs
1068 ComputeCrc14443(CRC_ICLASS
, anticoll_data
, 8, &anticoll_data
[8], &anticoll_data
[9]);
1069 ComputeCrc14443(CRC_ICLASS
, csn_data
, 8, &csn_data
[8], &csn_data
[9]);
1072 uint8_t card_challenge_data
[8] = { 0x00 };
1073 if(simulationMode
== MODE_FULLSIM
)
1075 //Card challenge, a.k.a e-purse is on block 2
1076 memcpy(card_challenge_data
,emulator
+ (8 * 2) , 8);
1083 // Tag anticoll. CSN
1084 // Reader 81 anticoll. CSN
1087 uint8_t *modulated_response
;
1088 int modulated_response_size
;
1089 uint8_t* trace_data
= NULL
;
1090 int trace_data_size
= 0;
1093 // Respond SOF -- takes 1 bytes
1094 uint8_t *resp_sof
= BigBuf_malloc(2);
1097 // Anticollision CSN (rotated CSN)
1098 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1099 uint8_t *resp_anticoll
= BigBuf_malloc(28);
1100 int resp_anticoll_len
;
1103 // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
1104 uint8_t *resp_csn
= BigBuf_malloc(30);
1108 // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
1109 uint8_t *resp_cc
= BigBuf_malloc(20);
1112 uint8_t *receivedCmd
= BigBuf_malloc(MAX_FRAME_SIZE
);
1113 memset(receivedCmd
, 0x44, MAX_FRAME_SIZE
);
1116 // Prepare card messages
1119 // First card answer: SOF
1121 memcpy(resp_sof
, ToSend
, ToSendMax
); resp_sof_Len
= ToSendMax
;
1123 // Anticollision CSN
1124 CodeIClassTagAnswer(anticoll_data
, sizeof(anticoll_data
));
1125 memcpy(resp_anticoll
, ToSend
, ToSendMax
); resp_anticoll_len
= ToSendMax
;
1128 CodeIClassTagAnswer(csn_data
, sizeof(csn_data
));
1129 memcpy(resp_csn
, ToSend
, ToSendMax
); resp_csn_len
= ToSendMax
;
1132 CodeIClassTagAnswer(card_challenge_data
, sizeof(card_challenge_data
));
1133 memcpy(resp_cc
, ToSend
, ToSendMax
); resp_cc_len
= ToSendMax
;
1135 //This is used for responding to READ-block commands
1136 uint8_t *data_response
= BigBuf_malloc(8 * 2 + 2);
1138 // Start from off (no field generated)
1139 //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1141 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
1144 // We need to listen to the high-frequency, peak-detected path.
1145 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1148 // To control where we are in the protocol
1150 uint32_t time_0
= GetCountSspClk();
1151 uint32_t t2r_time
=0;
1152 uint32_t r2t_time
=0;
1155 bool buttonPressed
= false;
1161 // Can be used to get a trigger for an oscilloscope..
1164 if(!GetIClassCommandFromReader(receivedCmd
, &len
, 100)) {
1165 buttonPressed
= true;
1168 r2t_time
= GetCountSspClk();
1172 // Okay, look at the command now.
1173 if(receivedCmd
[0] == ICLASS_CMD_ACTALL
) {
1174 // Reader in anticollission phase
1175 modulated_response
= resp_sof
; modulated_response_size
= resp_sof_Len
; //order = 1;
1176 trace_data
= sof_data
;
1177 trace_data_size
= sizeof(sof_data
);
1178 } else if(receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 1) {
1179 // Reader asks for anticollission CSN
1180 modulated_response
= resp_anticoll
; modulated_response_size
= resp_anticoll_len
; //order = 2;
1181 trace_data
= anticoll_data
;
1182 trace_data_size
= sizeof(anticoll_data
);
1183 //DbpString("Reader requests anticollission CSN:");
1184 } else if(receivedCmd
[0] == ICLASS_CMD_SELECT
) {
1185 // Reader selects anticollission CSN.
1186 // Tag sends the corresponding real CSN
1187 modulated_response
= resp_csn
; modulated_response_size
= resp_csn_len
; //order = 3;
1188 trace_data
= csn_data
;
1189 trace_data_size
= sizeof(csn_data
);
1190 //DbpString("Reader selects anticollission CSN:");
1191 } else if(receivedCmd
[0] == ICLASS_CMD_READCHECK_KD
) {
1192 // Read e-purse (88 02)
1193 modulated_response
= resp_cc
; modulated_response_size
= resp_cc_len
; //order = 4;
1194 trace_data
= card_challenge_data
;
1195 trace_data_size
= sizeof(card_challenge_data
);
1197 } else if(receivedCmd
[0] == ICLASS_CMD_CHECK
) {
1198 // Reader random and reader MAC!!!
1199 if(simulationMode
== MODE_FULLSIM
)
1200 { //This is what we must do..
1201 //Reader just sent us NR and MAC(k,cc * nr)
1202 //The diversified key should be stored on block 3
1203 //However, from a typical dump, the key will not be there
1204 uint8_t *diversified_key
= { 0 };
1205 //Get the diversified key from emulator memory
1206 memcpy(diversified_key
, emulator
+(8*3),8);
1207 uint8_t ccnr
[12] = { 0 };
1208 //Put our cc there (block 2)
1209 memcpy(ccnr
, emulator
+ (8 * 2), 8);
1211 memcpy(ccnr
+8, receivedCmd
+1,4);
1213 doMAC(ccnr
,diversified_key
, trace_data
);
1214 trace_data_size
= 4;
1215 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1216 memcpy(data_response
, ToSend
, ToSendMax
);
1217 modulated_response
= data_response
;
1218 modulated_response_size
= ToSendMax
;
1220 { //Not fullsim, we don't respond
1221 // We do not know what to answer, so lets keep quiet
1222 modulated_response
= resp_sof
; modulated_response_size
= 0;
1224 trace_data_size
= 0;
1225 if (simulationMode
== MODE_EXIT_AFTER_MAC
){
1227 Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
1228 ,csn
[0],csn
[1],csn
[2],csn
[3],csn
[4],csn
[5],csn
[6],csn
[7]);
1229 Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len
,
1230 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1231 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1232 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1233 if (reader_mac_buf
!= NULL
)
1235 memcpy(reader_mac_buf
,receivedCmd
+1,8);
1241 } else if(receivedCmd
[0] == ICLASS_CMD_HALT
&& len
== 1) {
1242 // Reader ends the session
1243 modulated_response
= resp_sof
; modulated_response_size
= 0; //order = 0;
1245 trace_data_size
= 0;
1246 } else if(simulationMode
== MODE_FULLSIM
&& receivedCmd
[0] == ICLASS_CMD_READ_OR_IDENTIFY
&& len
== 4){
1248 uint16_t blk
= receivedCmd
[1];
1249 trace_data
= emulator
+(blk
<< 3);
1250 trace_data_size
= 8;
1251 CodeIClassTagAnswer(trace_data
, trace_data_size
);
1252 memcpy(data_response
, ToSend
, ToSendMax
);
1253 modulated_response
= data_response
;
1254 modulated_response_size
= ToSendMax
;
1257 //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
1258 // Never seen this command before
1259 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1261 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1262 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1263 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1265 modulated_response
= resp_sof
; modulated_response_size
= 0; //order = 0;
1267 trace_data_size
= 0;
1270 if(cmdsRecvd
> 100) {
1271 //DbpString("100 commands later...");
1278 A legit tag has about 380us delay between reader EOT and tag SOF.
1280 if(modulated_response_size
> 0) {
1281 SendIClassAnswer(modulated_response
, modulated_response_size
, 1);
1282 t2r_time
= GetCountSspClk();
1286 uint8_t parity
[MAX_PARITY_SIZE
];
1287 GetParity(receivedCmd
, len
, parity
);
1288 LogTrace(receivedCmd
,len
, (r2t_time
-time_0
)<< 4, (r2t_time
-time_0
) << 4, parity
, TRUE
);
1290 if (trace_data
!= NULL
) {
1291 GetParity(trace_data
, trace_data_size
, parity
);
1292 LogTrace(trace_data
, trace_data_size
, (t2r_time
-time_0
) << 4, (t2r_time
-time_0
) << 4, parity
, FALSE
);
1295 DbpString("Trace full");
1300 memset(receivedCmd
, 0x44, MAX_FRAME_SIZE
);
1303 //Dbprintf("%x", cmdsRecvd);
1310 DbpString("Button pressed");
1312 return buttonPressed
;
1315 static int SendIClassAnswer(uint8_t *resp
, int respLen
, int delay
)
1317 int i
= 0, d
=0;//, u = 0, d = 0;
1320 //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
1321 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT
);
1323 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1325 while(!BUTTON_PRESS()) {
1326 if((AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)){
1327 b
= AT91C_BASE_SSC
->SSC_RHR
; (void) b
;
1329 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)){
1342 AT91C_BASE_SSC
->SSC_THR
= b
;
1345 // if (i > respLen +4) break;
1346 if (i
> respLen
+1) break;
1354 //-----------------------------------------------------------------------------
1355 // Transmit the command (to the tag) that was placed in ToSend[].
1356 //-----------------------------------------------------------------------------
1357 static void TransmitIClassCommand(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1360 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1361 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1366 if(*wait
< 10) *wait
= 10;
1368 for(c
= 0; c
< *wait
;) {
1369 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1370 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1373 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1374 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1384 bool firstpart
= TRUE
;
1387 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1389 // DOUBLE THE SAMPLES!
1391 sendbyte
= (cmd
[c
] & 0xf0) | (cmd
[c
] >> 4);
1394 sendbyte
= (cmd
[c
] & 0x0f) | (cmd
[c
] << 4);
1397 if(sendbyte
== 0xff) {
1400 AT91C_BASE_SSC
->SSC_THR
= sendbyte
;
1401 firstpart
= !firstpart
;
1407 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1408 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1413 if (samples
) *samples
= (c
+ *wait
) << 3;
1417 //-----------------------------------------------------------------------------
1418 // Prepare iClass reader command to send to FPGA
1419 //-----------------------------------------------------------------------------
1420 void CodeIClassCommand(const uint8_t * cmd
, int len
)
1427 // Start of Communication: 1 out of 4
1428 ToSend
[++ToSendMax
] = 0xf0;
1429 ToSend
[++ToSendMax
] = 0x00;
1430 ToSend
[++ToSendMax
] = 0x0f;
1431 ToSend
[++ToSendMax
] = 0x00;
1433 // Modulate the bytes
1434 for (i
= 0; i
< len
; i
++) {
1436 for(j
= 0; j
< 4; j
++) {
1437 for(k
= 0; k
< 4; k
++) {
1439 ToSend
[++ToSendMax
] = 0x0f;
1442 ToSend
[++ToSendMax
] = 0x00;
1449 // End of Communication
1450 ToSend
[++ToSendMax
] = 0x00;
1451 ToSend
[++ToSendMax
] = 0x00;
1452 ToSend
[++ToSendMax
] = 0xf0;
1453 ToSend
[++ToSendMax
] = 0x00;
1455 // Convert from last character reference to length
1459 void ReaderTransmitIClass(uint8_t* frame
, int len
)
1464 // This is tied to other size changes
1465 CodeIClassCommand(frame
,len
);
1468 TransmitIClassCommand(ToSend
, ToSendMax
, &samples
, &wait
);
1472 // Store reader command in buffer
1474 uint8_t par
[MAX_PARITY_SIZE
];
1475 GetParity(frame
, len
, par
);
1476 LogTrace(frame
, len
, rsamples
, rsamples
, par
, TRUE
);
1480 //-----------------------------------------------------------------------------
1481 // Wait a certain time for tag response
1482 // If a response is captured return TRUE
1483 // If it takes too long return FALSE
1484 //-----------------------------------------------------------------------------
1485 static int GetIClassAnswer(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1487 // buffer needs to be 512 bytes
1490 // Set FPGA mode to "reader listen mode", no modulation (listen
1491 // only, since we are receiving, not transmitting).
1492 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1494 // Now get the answer from the card
1495 Demod
.output
= receivedResponse
;
1497 Demod
.state
= DEMOD_UNSYNCD
;
1500 if (elapsed
) *elapsed
= 0;
1508 if(BUTTON_PRESS()) return FALSE
;
1510 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1511 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1512 if (elapsed
) (*elapsed
)++;
1514 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1515 if(c
< timeout
) { c
++; } else { return FALSE
; }
1516 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1520 if(ManchesterDecoding(b
& 0x0f)) {
1528 int ReaderReceiveIClass(uint8_t* receivedAnswer
)
1531 if (!GetIClassAnswer(receivedAnswer
,160,&samples
,0)) return FALSE
;
1532 rsamples
+= samples
;
1534 uint8_t parity
[MAX_PARITY_SIZE
];
1535 GetParity(receivedAnswer
, Demod
.len
, parity
);
1536 LogTrace(receivedAnswer
,Demod
.len
,rsamples
,rsamples
,parity
,FALSE
);
1538 if(samples
== 0) return FALSE
;
1542 void setupIclassReader()
1544 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1545 // Reset trace buffer
1551 // Start from off (no field generated)
1552 // Signal field is off with the appropriate LED
1554 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1557 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1559 // Now give it time to spin up.
1560 // Signal field is on with the appropriate LED
1561 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1567 size_t sendCmdGetResponseWithRetries(uint8_t* command
, size_t cmdsize
, uint8_t* resp
, uint8_t expected_size
, uint8_t retries
)
1569 while(retries
-- > 0)
1571 ReaderTransmitIClass(command
, cmdsize
);
1572 if(expected_size
== ReaderReceiveIClass(resp
)){
1580 * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
1581 * @param card_data where the CSN and CC are stored for return
1584 * 2 = Got CSN and CC
1586 uint8_t handshakeIclassTag(uint8_t *card_data
)
1588 static uint8_t act_all
[] = { 0x0a };
1589 static uint8_t identify
[] = { 0x0c };
1590 static uint8_t select
[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1591 static uint8_t readcheck_cc
[]= { 0x88, 0x02 };
1592 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1594 uint8_t read_status
= 0;
1597 ReaderTransmitIClass(act_all
, 1);
1599 if(!ReaderReceiveIClass(resp
)) return read_status
;//Fail
1601 ReaderTransmitIClass(identify
, 1);
1602 //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
1603 uint8_t len
= ReaderReceiveIClass(resp
);
1604 if(len
!= 10) return read_status
;//Fail
1606 //Copy the Anti-collision CSN to our select-packet
1607 memcpy(&select
[1],resp
,8);
1609 ReaderTransmitIClass(select
, sizeof(select
));
1610 //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
1611 len
= ReaderReceiveIClass(resp
);
1612 if(len
!= 10) return read_status
;//Fail
1614 //Success - level 1, we got CSN
1615 //Save CSN in response data
1616 memcpy(card_data
,resp
,8);
1618 //Flag that we got to at least stage 1, read CSN
1621 // Card selected, now read e-purse (cc)
1622 ReaderTransmitIClass(readcheck_cc
, sizeof(readcheck_cc
));
1623 if(ReaderReceiveIClass(resp
) == 8) {
1624 //Save CC (e-purse) in response data
1625 memcpy(card_data
+8,resp
,8);
1634 // Reader iClass Anticollission
1635 void ReaderIClass(uint8_t arg0
) {
1637 uint8_t card_data
[24]={0};
1638 uint8_t last_csn
[8]={0};
1641 bool abort_after_read
= arg0
& FLAG_ICLASS_READER_ONLY_ONCE
;
1642 bool get_cc
= arg0
& FLAG_ICLASS_READER_GET_CC
;
1644 setupIclassReader();
1646 size_t datasize
= 0;
1647 while(!BUTTON_PRESS())
1651 DbpString("Trace full");
1656 read_status
= handshakeIclassTag(card_data
);
1658 if(read_status
== 0) continue;
1659 if(read_status
== 1) datasize
= 8;
1660 if(read_status
== 2) datasize
= 16;
1662 //Todo, read the public blocks 1,5 aswell:
1664 // 0 : CSN (we already have)
1665 // 1 : Configuration
1666 // 2 : e-purse (we already have)
1668 // 5 Application issuer area
1670 //Then we can 'ship' back the 8 * 5 bytes of data,
1671 // with 0xFF:s in block 3 and 4.
1674 //Send back to client, but don't bother if we already sent this
1675 if(memcmp(last_csn
, card_data
, 8) != 0)
1678 if(!get_cc
|| (get_cc
&& read_status
== 2))
1680 cmd_send(CMD_ACK
,read_status
,0,0,card_data
,datasize
);
1681 if(abort_after_read
) {
1685 //Save that we already sent this....
1686 memcpy(last_csn
, card_data
, 8);
1688 //If 'get_cc' was specified and we didn't get a CC, we'll just keep trying...
1692 cmd_send(CMD_ACK
,0,0,0,card_data
, 0);
1696 void ReaderIClass_Replay(uint8_t arg0
, uint8_t *MAC
) {
1698 uint8_t card_data
[USB_CMD_DATA_SIZE
]={0};
1699 uint16_t block_crc_LUT
[255] = {0};
1701 {//Generate a lookup table for block crc
1702 for(int block
= 0; block
< 255; block
++){
1704 block_crc_LUT
[block
] = iclass_crc16(&bl
,1);
1707 //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
1709 uint8_t check
[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1710 uint8_t read
[] = { 0x0c, 0x00, 0x00, 0x00 };
1716 static struct memory_t
{
1724 uint8_t resp
[ICLASS_BUFFER_SIZE
];
1726 setupIclassReader();
1729 while(!BUTTON_PRESS()) {
1734 DbpString("Trace full");
1738 uint8_t read_status
= handshakeIclassTag(card_data
);
1739 if(read_status
< 2) continue;
1741 //for now replay captured auth (as cc not updated)
1742 memcpy(check
+5,MAC
,4);
1744 if(sendCmdGetResponseWithRetries(check
, sizeof(check
),resp
, 4, 5))
1746 Dbprintf("Error: Authentication Fail!");
1750 //first get configuration block (block 1)
1751 crc
= block_crc_LUT
[1];
1754 read
[3] = crc
& 0xff;
1756 if(sendCmdGetResponseWithRetries(read
, sizeof(read
),resp
, 10, 10))
1758 Dbprintf("Dump config (block 1) failed");
1763 memory
.k16
= (mem
& 0x80);
1764 memory
.book
= (mem
& 0x20);
1765 memory
.k2
= (mem
& 0x8);
1766 memory
.lockauth
= (mem
& 0x2);
1767 memory
.keyaccess
= (mem
& 0x1);
1769 cardsize
= memory
.k16
? 255 : 32;
1771 //Set card_data to all zeroes, we'll fill it with data
1772 memset(card_data
,0x0,USB_CMD_DATA_SIZE
);
1773 uint8_t failedRead
=0;
1774 uint32_t stored_data_length
=0;
1775 //then loop around remaining blocks
1776 for(int block
=0; block
< cardsize
; block
++){
1779 crc
= block_crc_LUT
[block
];
1781 read
[3] = crc
& 0xff;
1783 if(!sendCmdGetResponseWithRetries(read
, sizeof(read
), resp
, 10, 10))
1785 Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
1786 block
, resp
[0], resp
[1], resp
[2],
1787 resp
[3], resp
[4], resp
[5],
1790 //Fill up the buffer
1791 memcpy(card_data
+stored_data_length
,resp
,8);
1792 stored_data_length
+= 8;
1793 if(stored_data_length
+8 > USB_CMD_DATA_SIZE
)
1794 {//Time to send this off and start afresh
1796 stored_data_length
,//data length
1797 failedRead
,//Failed blocks?
1799 card_data
, stored_data_length
);
1801 stored_data_length
= 0;
1807 stored_data_length
+=8;//Otherwise, data becomes misaligned
1808 Dbprintf("Failed to dump block %d", block
);
1812 //Send off any remaining data
1813 if(stored_data_length
> 0)
1816 stored_data_length
,//data length
1817 failedRead
,//Failed blocks?
1819 card_data
, stored_data_length
);
1821 //If we got here, let's break
1824 //Signal end of transmission
1834 //2. Create Read method (cut-down from above) based off responses from 1.
1835 // Since we have the MAC could continue to use replay function.
1836 //3. Create Write method
1838 void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) {
1839 uint8_t act_all[] = { 0x0a };
1840 uint8_t identify[] = { 0x0c };
1841 uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1842 uint8_t readcheck_cc[]= { 0x88, 0x02 };
1843 uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1844 uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
1845 uint8_t write[] = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
1849 uint8_t* resp = (((uint8_t *)BigBuf) + 3560);
1851 // Reset trace buffer
1852 memset(trace, 0x44, RECV_CMD_OFFSET);
1857 // Start from off (no field generated)
1858 // Signal field is off with the appropriate LED
1860 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1863 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1865 // Now give it time to spin up.
1866 // Signal field is on with the appropriate LED
1867 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1872 for(int i=0;i<1;i++) {
1874 if(traceLen > TRACE_SIZE) {
1875 DbpString("Trace full");
1879 if (BUTTON_PRESS()) break;
1882 ReaderTransmitIClass(act_all, 1);
1884 if(ReaderReceiveIClass(resp)) {
1885 ReaderTransmitIClass(identify, 1);
1886 if(ReaderReceiveIClass(resp) == 10) {
1888 memcpy(&select[1],resp,8);
1889 ReaderTransmitIClass(select, sizeof(select));
1891 if(ReaderReceiveIClass(resp) == 10) {
1892 Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
1893 resp[0], resp[1], resp[2],
1894 resp[3], resp[4], resp[5],
1898 Dbprintf("Readcheck on Sector 2");
1899 ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
1900 if(ReaderReceiveIClass(resp) == 8) {
1901 Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x",
1902 resp[0], resp[1], resp[2],
1903 resp[3], resp[4], resp[5],
1906 Dbprintf("Authenticate");
1907 //for now replay captured auth (as cc not updated)
1908 memcpy(check+5,MAC,4);
1909 Dbprintf(" AA: %02x %02x %02x %02x",
1910 check[5], check[6], check[7],check[8]);
1911 ReaderTransmitIClass(check, sizeof(check));
1912 if(ReaderReceiveIClass(resp) == 4) {
1913 Dbprintf(" AR: %02x %02x %02x %02x",
1914 resp[0], resp[1], resp[2],resp[3]);
1916 Dbprintf("Error: Authentication Fail!");
1919 Dbprintf("Write Block");
1921 //read configuration for max block number
1924 uint8_t *blockno=&read[1];
1925 crc = iclass_crc16((char *)blockno,1);
1927 read[3] = crc & 0xff;
1928 while(!read_success){
1929 ReaderTransmitIClass(read, sizeof(read));
1930 if(ReaderReceiveIClass(resp) == 10) {
1933 memory.k16= (mem & 0x80);
1934 memory.book= (mem & 0x20);
1935 memory.k2= (mem & 0x8);
1936 memory.lockauth= (mem & 0x2);
1937 memory.keyaccess= (mem & 0x1);
1946 memcpy(write+1,blockNo,1);
1947 memcpy(write+2,data,8);
1948 memcpy(write+10,mac,4);
1949 while(!send_success){
1950 ReaderTransmitIClass(write, sizeof(write));
1951 if(ReaderReceiveIClass(resp) == 10) {