]> git.zerfleddert.de Git - proxmark3-svn/blob - armsrc/iso14443a.c
ac839cfdc081049ac8ceccaa784c41306158c04e
[proxmark3-svn] / armsrc / iso14443a.c
1 //-----------------------------------------------------------------------------
2 // Merlok - June 2011, 2012
3 // Gerhard de Koning Gans - May 2008
4 // Hagen Fritsch - June 2010
5 //
6 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
7 // at your option, any later version. See the LICENSE.txt file for the text of
8 // the license.
9 //-----------------------------------------------------------------------------
10 // Routines to support ISO 14443 type A.
11 //-----------------------------------------------------------------------------
12
13 #include "proxmark3.h"
14 #include "apps.h"
15 #include "util.h"
16 #include "string.h"
17 #include "cmd.h"
18
19 #include "iso14443crc.h"
20 #include "iso14443a.h"
21 #include "crapto1.h"
22 #include "mifareutil.h"
23 #include "BigBuf.h"
24 static uint32_t iso14a_timeout;
25 int rsamples = 0;
26 uint8_t trigger = 0;
27 // the block number for the ISO14443-4 PCB
28 static uint8_t iso14_pcb_blocknum = 0;
29
30 //
31 // ISO14443 timing:
32 //
33 // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles
34 #define REQUEST_GUARD_TIME (7000/16 + 1)
35 // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles
36 #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1)
37 // bool LastCommandWasRequest = FALSE;
38
39 //
40 // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz)
41 //
42 // When the PM acts as reader and is receiving tag data, it takes
43 // 3 ticks delay in the AD converter
44 // 16 ticks until the modulation detector completes and sets curbit
45 // 8 ticks until bit_to_arm is assigned from curbit
46 // 8*16 ticks for the transfer from FPGA to ARM
47 // 4*16 ticks until we measure the time
48 // - 8*16 ticks because we measure the time of the previous transfer
49 #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16)
50
51 // When the PM acts as a reader and is sending, it takes
52 // 4*16 ticks until we can write data to the sending hold register
53 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
54 // 8 ticks until the first transfer starts
55 // 8 ticks later the FPGA samples the data
56 // 1 tick to assign mod_sig_coil
57 #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1)
58
59 // When the PM acts as tag and is receiving it takes
60 // 2 ticks delay in the RF part (for the first falling edge),
61 // 3 ticks for the A/D conversion,
62 // 8 ticks on average until the start of the SSC transfer,
63 // 8 ticks until the SSC samples the first data
64 // 7*16 ticks to complete the transfer from FPGA to ARM
65 // 8 ticks until the next ssp_clk rising edge
66 // 4*16 ticks until we measure the time
67 // - 8*16 ticks because we measure the time of the previous transfer
68 #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16)
69
70 // The FPGA will report its internal sending delay in
71 uint16_t FpgaSendQueueDelay;
72 // the 5 first bits are the number of bits buffered in mod_sig_buf
73 // the last three bits are the remaining ticks/2 after the mod_sig_buf shift
74 #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1)
75
76 // When the PM acts as tag and is sending, it takes
77 // 4*16 ticks until we can write data to the sending hold register
78 // 8*16 ticks until the SHR is transferred to the Sending Shift Register
79 // 8 ticks until the first transfer starts
80 // 8 ticks later the FPGA samples the data
81 // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf)
82 // + 1 tick to assign mod_sig_coil
83 #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1)
84
85 // When the PM acts as sniffer and is receiving tag data, it takes
86 // 3 ticks A/D conversion
87 // 14 ticks to complete the modulation detection
88 // 8 ticks (on average) until the result is stored in to_arm
89 // + the delays in transferring data - which is the same for
90 // sniffing reader and tag data and therefore not relevant
91 #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8)
92
93 // When the PM acts as sniffer and is receiving reader data, it takes
94 // 2 ticks delay in analogue RF receiver (for the falling edge of the
95 // start bit, which marks the start of the communication)
96 // 3 ticks A/D conversion
97 // 8 ticks on average until the data is stored in to_arm.
98 // + the delays in transferring data - which is the same for
99 // sniffing reader and tag data and therefore not relevant
100 #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8)
101
102 //variables used for timing purposes:
103 //these are in ssp_clk cycles:
104 static uint32_t NextTransferTime;
105 static uint32_t LastTimeProxToAirStart;
106 static uint32_t LastProxToAirDuration;
107
108
109
110 // CARD TO READER - manchester
111 // Sequence D: 11110000 modulation with subcarrier during first half
112 // Sequence E: 00001111 modulation with subcarrier during second half
113 // Sequence F: 00000000 no modulation with subcarrier
114 // READER TO CARD - miller
115 // Sequence X: 00001100 drop after half a period
116 // Sequence Y: 00000000 no drop
117 // Sequence Z: 11000000 drop at start
118 #define SEC_D 0xf0
119 #define SEC_E 0x0f
120 #define SEC_F 0x00
121 #define SEC_X 0x0c
122 #define SEC_Y 0x00
123 #define SEC_Z 0xc0
124
125 const uint8_t OddByteParity[256] = {
126 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
127 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
128 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
129 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
130 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
131 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
132 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
133 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
134 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
135 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
136 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
137 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
138 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
139 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
140 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
141 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
142 };
143
144
145 void iso14a_set_trigger(bool enable) {
146 trigger = enable;
147 }
148
149
150 void iso14a_set_timeout(uint32_t timeout) {
151 iso14a_timeout = timeout;
152 if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
153 }
154
155
156 void iso14a_set_ATS_timeout(uint8_t *ats) {
157
158 uint8_t tb1;
159 uint8_t fwi;
160 uint32_t fwt;
161
162 if (ats[0] > 1) { // there is a format byte T0
163 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1)
164 if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1)
165 tb1 = ats[3];
166 } else {
167 tb1 = ats[2];
168 }
169 fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI)
170 fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc
171
172 iso14a_set_timeout(fwt/(8*16));
173 }
174 }
175 }
176
177
178 //-----------------------------------------------------------------------------
179 // Generate the parity value for a byte sequence
180 //
181 //-----------------------------------------------------------------------------
182 byte_t oddparity (const byte_t bt)
183 {
184 return OddByteParity[bt];
185 }
186
187 void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par)
188 {
189 uint16_t paritybit_cnt = 0;
190 uint16_t paritybyte_cnt = 0;
191 uint8_t parityBits = 0;
192
193 for (uint16_t i = 0; i < iLen; i++) {
194 // Generate the parity bits
195 parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt));
196 if (paritybit_cnt == 7) {
197 par[paritybyte_cnt] = parityBits; // save 8 Bits parity
198 parityBits = 0; // and advance to next Parity Byte
199 paritybyte_cnt++;
200 paritybit_cnt = 0;
201 } else {
202 paritybit_cnt++;
203 }
204 }
205
206 // save remaining parity bits
207 par[paritybyte_cnt] = parityBits;
208
209 }
210
211 void AppendCrc14443a(uint8_t* data, int len)
212 {
213 ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
214 }
215
216 //=============================================================================
217 // ISO 14443 Type A - Miller decoder
218 //=============================================================================
219 // Basics:
220 // This decoder is used when the PM3 acts as a tag.
221 // The reader will generate "pauses" by temporarily switching of the field.
222 // At the PM3 antenna we will therefore measure a modulated antenna voltage.
223 // The FPGA does a comparison with a threshold and would deliver e.g.:
224 // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 .......
225 // The Miller decoder needs to identify the following sequences:
226 // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0")
227 // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information")
228 // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1")
229 // Note 1: the bitstream may start at any time. We therefore need to sync.
230 // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence.
231 //-----------------------------------------------------------------------------
232 static tUart Uart;
233
234 // Lookup-Table to decide if 4 raw bits are a modulation.
235 // We accept two or three consecutive "0" in any position with the rest "1"
236 const bool Mod_Miller_LUT[] = {
237 TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE,
238 TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE
239 };
240 #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
241 #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
242
243 void UartReset()
244 {
245 Uart.state = STATE_UNSYNCD;
246 Uart.bitCount = 0;
247 Uart.len = 0; // number of decoded data bytes
248 Uart.parityLen = 0; // number of decoded parity bytes
249 Uart.shiftReg = 0; // shiftreg to hold decoded data bits
250 Uart.parityBits = 0; // holds 8 parity bits
251 Uart.twoBits = 0x0000; // buffer for 2 Bits
252 Uart.highCnt = 0;
253 Uart.startTime = 0;
254 Uart.endTime = 0;
255 }
256
257 void UartInit(uint8_t *data, uint8_t *parity)
258 {
259 Uart.output = data;
260 Uart.parity = parity;
261 UartReset();
262 }
263
264 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
265 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
266 {
267
268 Uart.twoBits = (Uart.twoBits << 8) | bit;
269
270 if (Uart.state == STATE_UNSYNCD) { // not yet synced
271
272 if (Uart.highCnt < 2) { // wait for a stable unmodulated signal
273 if (Uart.twoBits == 0xffff) {
274 Uart.highCnt++;
275 } else {
276 Uart.highCnt = 0;
277 }
278 } else {
279 Uart.syncBit = 0xFFFF; // not set
280 // we look for a ...1111111100x11111xxxxxx pattern (the start bit)
281 if ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8; // mask is 11x11111 xxxxxxxx,
282 // check for 00x11111 xxxxxxxx
283 else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7; // both masks shifted right one bit, left padded with '1'
284 else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6; // ...
285 else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5;
286 else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4;
287 else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3;
288 else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2;
289 else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1;
290 if (Uart.syncBit != 0xFFFF) { // found a sync bit
291 Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
292 Uart.startTime -= Uart.syncBit;
293 Uart.endTime = Uart.startTime;
294 Uart.state = STATE_START_OF_COMMUNICATION;
295 }
296 }
297
298 } else {
299
300 if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {
301 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error
302 UartReset();
303 } else { // Modulation in first half = Sequence Z = logic "0"
304 if (Uart.state == STATE_MILLER_X) { // error - must not follow after X
305 UartReset();
306 } else {
307 Uart.bitCount++;
308 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
309 Uart.state = STATE_MILLER_Z;
310 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6;
311 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
312 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
313 Uart.parityBits <<= 1; // make room for the parity bit
314 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
315 Uart.bitCount = 0;
316 Uart.shiftReg = 0;
317 if((Uart.len&0x0007) == 0) { // every 8 data bytes
318 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
319 Uart.parityBits = 0;
320 }
321 }
322 }
323 }
324 } else {
325 if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1"
326 Uart.bitCount++;
327 Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg
328 Uart.state = STATE_MILLER_X;
329 Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2;
330 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
331 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
332 Uart.parityBits <<= 1; // make room for the new parity bit
333 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
334 Uart.bitCount = 0;
335 Uart.shiftReg = 0;
336 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
337 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
338 Uart.parityBits = 0;
339 }
340 }
341 } else { // no modulation in both halves - Sequence Y
342 if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication
343 Uart.state = STATE_UNSYNCD;
344 Uart.bitCount--; // last "0" was part of EOC sequence
345 Uart.shiftReg <<= 1; // drop it
346 if(Uart.bitCount > 0) { // if we decoded some bits
347 Uart.shiftReg >>= (9 - Uart.bitCount); // right align them
348 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output
349 Uart.parityBits <<= 1; // add a (void) parity bit
350 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits
351 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it
352 return TRUE;
353 } else if (Uart.len & 0x0007) { // there are some parity bits to store
354 Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits
355 Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them
356 }
357 if (Uart.len) {
358 return TRUE; // we are finished with decoding the raw data sequence
359 } else {
360 UartReset(); // Nothing received - start over
361 Uart.highCnt = 1;
362 }
363 }
364 if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC
365 UartReset();
366 Uart.highCnt = 1;
367 } else { // a logic "0"
368 Uart.bitCount++;
369 Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg
370 Uart.state = STATE_MILLER_Y;
371 if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity)
372 Uart.output[Uart.len++] = (Uart.shiftReg & 0xff);
373 Uart.parityBits <<= 1; // make room for the parity bit
374 Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit
375 Uart.bitCount = 0;
376 Uart.shiftReg = 0;
377 if ((Uart.len&0x0007) == 0) { // every 8 data bytes
378 Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits
379 Uart.parityBits = 0;
380 }
381 }
382 }
383 }
384 }
385
386 }
387
388 return FALSE; // not finished yet, need more data
389 }
390
391
392
393 //=============================================================================
394 // ISO 14443 Type A - Manchester decoder
395 //=============================================================================
396 // Basics:
397 // This decoder is used when the PM3 acts as a reader.
398 // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage
399 // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following:
400 // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .......
401 // The Manchester decoder needs to identify the following sequences:
402 // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication")
403 // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0
404 // 8 ticks unmodulated: Sequence F = end of communication
405 // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D
406 // Note 1: the bitstream may start at any time. We therefore need to sync.
407 // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only)
408 static tDemod Demod;
409
410 // Lookup-Table to decide if 4 raw bits are a modulation.
411 // We accept three or four "1" in any position
412 const bool Mod_Manchester_LUT[] = {
413 FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE,
414 FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE
415 };
416
417 #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4])
418 #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)])
419
420
421 void DemodReset()
422 {
423 Demod.state = DEMOD_UNSYNCD;
424 Demod.len = 0; // number of decoded data bytes
425 Demod.parityLen = 0;
426 Demod.shiftReg = 0; // shiftreg to hold decoded data bits
427 Demod.parityBits = 0; //
428 Demod.collisionPos = 0; // Position of collision bit
429 Demod.twoBits = 0xffff; // buffer for 2 Bits
430 Demod.highCnt = 0;
431 Demod.startTime = 0;
432 Demod.endTime = 0;
433 }
434
435 void DemodInit(uint8_t *data, uint8_t *parity)
436 {
437 Demod.output = data;
438 Demod.parity = parity;
439 DemodReset();
440 }
441
442 // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time
443 static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time)
444 {
445
446 Demod.twoBits = (Demod.twoBits << 8) | bit;
447
448 if (Demod.state == DEMOD_UNSYNCD) {
449
450 if (Demod.highCnt < 2) { // wait for a stable unmodulated signal
451 if (Demod.twoBits == 0x0000) {
452 Demod.highCnt++;
453 } else {
454 Demod.highCnt = 0;
455 }
456 } else {
457 Demod.syncBit = 0xFFFF; // not set
458 if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7;
459 else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6;
460 else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5;
461 else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4;
462 else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3;
463 else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2;
464 else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1;
465 else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0;
466 if (Demod.syncBit != 0xFFFF) {
467 Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
468 Demod.startTime -= Demod.syncBit;
469 Demod.bitCount = offset; // number of decoded data bits
470 Demod.state = DEMOD_MANCHESTER_DATA;
471 }
472 }
473
474 } else {
475
476 if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half
477 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision
478 if (!Demod.collisionPos) {
479 Demod.collisionPos = (Demod.len << 3) + Demod.bitCount;
480 }
481 } // modulation in first half only - Sequence D = 1
482 Demod.bitCount++;
483 Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg
484 if(Demod.bitCount == 9) { // if we decoded a full byte (including parity)
485 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
486 Demod.parityBits <<= 1; // make room for the parity bit
487 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
488 Demod.bitCount = 0;
489 Demod.shiftReg = 0;
490 if((Demod.len&0x0007) == 0) { // every 8 data bytes
491 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits
492 Demod.parityBits = 0;
493 }
494 }
495 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4;
496 } else { // no modulation in first half
497 if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0
498 Demod.bitCount++;
499 Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg
500 if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity)
501 Demod.output[Demod.len++] = (Demod.shiftReg & 0xff);
502 Demod.parityBits <<= 1; // make room for the new parity bit
503 Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit
504 Demod.bitCount = 0;
505 Demod.shiftReg = 0;
506 if ((Demod.len&0x0007) == 0) { // every 8 data bytes
507 Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1
508 Demod.parityBits = 0;
509 }
510 }
511 Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1);
512 } else { // no modulation in both halves - End of communication
513 if(Demod.bitCount > 0) { // there are some remaining data bits
514 Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits
515 Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output
516 Demod.parityBits <<= 1; // add a (void) parity bit
517 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
518 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
519 return TRUE;
520 } else if (Demod.len & 0x0007) { // there are some parity bits to store
521 Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits
522 Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them
523 }
524 if (Demod.len) {
525 return TRUE; // we are finished with decoding the raw data sequence
526 } else { // nothing received. Start over
527 DemodReset();
528 }
529 }
530 }
531
532 }
533
534 return FALSE; // not finished yet, need more data
535 }
536
537 //=============================================================================
538 // Finally, a `sniffer' for ISO 14443 Type A
539 // Both sides of communication!
540 //=============================================================================
541
542 //-----------------------------------------------------------------------------
543 // Record the sequence of commands sent by the reader to the tag, with
544 // triggering so that we start recording at the point that the tag is moved
545 // near the reader.
546 //-----------------------------------------------------------------------------
547 void RAMFUNC SnoopIso14443a(uint8_t param) {
548 // param:
549 // bit 0 - trigger from first card answer
550 // bit 1 - trigger from first reader 7-bit request
551
552 LEDsoff();
553
554 // We won't start recording the frames that we acquire until we trigger;
555 // a good trigger condition to get started is probably when we see a
556 // response from the tag.
557 // triggered == FALSE -- to wait first for card
558 bool triggered = !(param & 0x03);
559
560 // Allocate memory from BigBuf for some buffers
561 // free all previous allocations first
562 BigBuf_free();
563
564 // The command (reader -> tag) that we're receiving.
565 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
566 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
567
568 // The response (tag -> reader) that we're receiving.
569 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
570 uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE);
571
572 // The DMA buffer, used to stream samples from the FPGA
573 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
574
575 // init trace buffer
576 clear_trace();
577 set_tracing(TRUE);
578
579 uint8_t *data = dmaBuf;
580 uint8_t previous_data = 0;
581 int maxDataLen = 0;
582 int dataLen = 0;
583 bool TagIsActive = FALSE;
584 bool ReaderIsActive = FALSE;
585
586 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
587
588 // Set up the demodulator for tag -> reader responses.
589 DemodInit(receivedResponse, receivedResponsePar);
590
591 // Set up the demodulator for the reader -> tag commands
592 UartInit(receivedCmd, receivedCmdPar);
593
594 // Setup and start DMA.
595 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
596
597 // And now we loop, receiving samples.
598 for(uint32_t rsamples = 0; TRUE; ) {
599
600 if(BUTTON_PRESS()) {
601 DbpString("cancelled by button");
602 break;
603 }
604
605 LED_A_ON();
606 WDT_HIT();
607
608 int register readBufDataP = data - dmaBuf;
609 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
610 if (readBufDataP <= dmaBufDataP){
611 dataLen = dmaBufDataP - readBufDataP;
612 } else {
613 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP;
614 }
615 // test for length of buffer
616 if(dataLen > maxDataLen) {
617 maxDataLen = dataLen;
618 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
619 Dbprintf("blew circular buffer! dataLen=%d", dataLen);
620 break;
621 }
622 }
623 if(dataLen < 1) continue;
624
625 // primary buffer was stopped( <-- we lost data!
626 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
627 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
628 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
629 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
630 }
631 // secondary buffer sets as primary, secondary buffer was stopped
632 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
633 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
634 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
635 }
636
637 LED_A_OFF();
638
639 if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder
640
641 if(!TagIsActive) { // no need to try decoding reader data if the tag is sending
642 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
643 if (MillerDecoding(readerdata, (rsamples-1)*4)) {
644 LED_C_ON();
645
646 // check - if there is a short 7bit request from reader
647 if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE;
648
649 if(triggered) {
650 if (!LogTrace(receivedCmd,
651 Uart.len,
652 Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
653 Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER,
654 Uart.parity,
655 TRUE)) break;
656 }
657 /* And ready to receive another command. */
658 UartReset();
659 /* And also reset the demod code, which might have been */
660 /* false-triggered by the commands from the reader. */
661 DemodReset();
662 LED_B_OFF();
663 }
664 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
665 }
666
667 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
668 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
669 if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) {
670 LED_B_ON();
671
672 if (!LogTrace(receivedResponse,
673 Demod.len,
674 Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
675 Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER,
676 Demod.parity,
677 FALSE)) break;
678
679 if ((!triggered) && (param & 0x01)) triggered = TRUE;
680
681 // And ready to receive another response.
682 DemodReset();
683 LED_C_OFF();
684 }
685 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
686 }
687 }
688
689 previous_data = *data;
690 rsamples++;
691 data++;
692 if(data == dmaBuf + DMA_BUFFER_SIZE) {
693 data = dmaBuf;
694 }
695 } // main cycle
696
697 DbpString("COMMAND FINISHED");
698
699 FpgaDisableSscDma();
700 Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
701 Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
702 LEDsoff();
703 }
704
705 //-----------------------------------------------------------------------------
706 // Prepare tag messages
707 //-----------------------------------------------------------------------------
708 static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity)
709 {
710 ToSendReset();
711
712 // Correction bit, might be removed when not needed
713 ToSendStuffBit(0);
714 ToSendStuffBit(0);
715 ToSendStuffBit(0);
716 ToSendStuffBit(0);
717 ToSendStuffBit(1); // 1
718 ToSendStuffBit(0);
719 ToSendStuffBit(0);
720 ToSendStuffBit(0);
721
722 // Send startbit
723 ToSend[++ToSendMax] = SEC_D;
724 LastProxToAirDuration = 8 * ToSendMax - 4;
725
726 for(uint16_t i = 0; i < len; i++) {
727 uint8_t b = cmd[i];
728
729 // Data bits
730 for(uint16_t j = 0; j < 8; j++) {
731 if(b & 1) {
732 ToSend[++ToSendMax] = SEC_D;
733 } else {
734 ToSend[++ToSendMax] = SEC_E;
735 }
736 b >>= 1;
737 }
738
739 // Get the parity bit
740 if (parity[i>>3] & (0x80>>(i&0x0007))) {
741 ToSend[++ToSendMax] = SEC_D;
742 LastProxToAirDuration = 8 * ToSendMax - 4;
743 } else {
744 ToSend[++ToSendMax] = SEC_E;
745 LastProxToAirDuration = 8 * ToSendMax;
746 }
747 }
748
749 // Send stopbit
750 ToSend[++ToSendMax] = SEC_F;
751
752 // Convert from last byte pos to length
753 ToSendMax++;
754 }
755
756 static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len)
757 {
758 uint8_t par[MAX_PARITY_SIZE];
759
760 GetParity(cmd, len, par);
761 CodeIso14443aAsTagPar(cmd, len, par);
762 }
763
764
765 static void Code4bitAnswerAsTag(uint8_t cmd)
766 {
767 int i;
768
769 ToSendReset();
770
771 // Correction bit, might be removed when not needed
772 ToSendStuffBit(0);
773 ToSendStuffBit(0);
774 ToSendStuffBit(0);
775 ToSendStuffBit(0);
776 ToSendStuffBit(1); // 1
777 ToSendStuffBit(0);
778 ToSendStuffBit(0);
779 ToSendStuffBit(0);
780
781 // Send startbit
782 ToSend[++ToSendMax] = SEC_D;
783
784 uint8_t b = cmd;
785 for(i = 0; i < 4; i++) {
786 if(b & 1) {
787 ToSend[++ToSendMax] = SEC_D;
788 LastProxToAirDuration = 8 * ToSendMax - 4;
789 } else {
790 ToSend[++ToSendMax] = SEC_E;
791 LastProxToAirDuration = 8 * ToSendMax;
792 }
793 b >>= 1;
794 }
795
796 // Send stopbit
797 ToSend[++ToSendMax] = SEC_F;
798
799 // Convert from last byte pos to length
800 ToSendMax++;
801 }
802
803 //-----------------------------------------------------------------------------
804 // Wait for commands from reader
805 // Stop when button is pressed
806 // Or return TRUE when command is captured
807 //-----------------------------------------------------------------------------
808 static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len)
809 {
810 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
811 // only, since we are receiving, not transmitting).
812 // Signal field is off with the appropriate LED
813 LED_D_OFF();
814 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
815
816 // Now run a `software UART' on the stream of incoming samples.
817 UartInit(received, parity);
818
819 // clear RXRDY:
820 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
821
822 for(;;) {
823 WDT_HIT();
824
825 if(BUTTON_PRESS()) return FALSE;
826
827 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
828 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
829 if(MillerDecoding(b, 0)) {
830 *len = Uart.len;
831 return TRUE;
832 }
833 }
834 }
835 }
836
837 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
838 int EmSend4bitEx(uint8_t resp, bool correctionNeeded);
839 int EmSend4bit(uint8_t resp);
840 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par);
841 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded);
842 int EmSendCmd(uint8_t *resp, uint16_t respLen);
843 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par);
844 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
845 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity);
846
847 static uint8_t* free_buffer_pointer;
848
849 typedef struct {
850 uint8_t* response;
851 size_t response_n;
852 uint8_t* modulation;
853 size_t modulation_n;
854 uint32_t ProxToAirDuration;
855 } tag_response_info_t;
856
857 bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) {
858 // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes
859 // This will need the following byte array for a modulation sequence
860 // 144 data bits (18 * 8)
861 // 18 parity bits
862 // 2 Start and stop
863 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
864 // 1 just for the case
865 // ----------- +
866 // 166 bytes, since every bit that needs to be send costs us a byte
867 //
868
869
870 // Prepare the tag modulation bits from the message
871 CodeIso14443aAsTag(response_info->response,response_info->response_n);
872
873 // Make sure we do not exceed the free buffer space
874 if (ToSendMax > max_buffer_size) {
875 Dbprintf("Out of memory, when modulating bits for tag answer:");
876 Dbhexdump(response_info->response_n,response_info->response,false);
877 return false;
878 }
879
880 // Copy the byte array, used for this modulation to the buffer position
881 memcpy(response_info->modulation,ToSend,ToSendMax);
882
883 // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them
884 response_info->modulation_n = ToSendMax;
885 response_info->ProxToAirDuration = LastProxToAirDuration;
886
887 return true;
888 }
889
890
891 // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit.
892 // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
893 // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits
894 // -> need 273 bytes buffer
895 #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273
896
897 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
898 // Retrieve and store the current buffer index
899 response_info->modulation = free_buffer_pointer;
900
901 // Determine the maximum size we can use from our buffer
902 size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
903
904 // Forward the prepare tag modulation function to the inner function
905 if (prepare_tag_modulation(response_info, max_buffer_size)) {
906 // Update the free buffer offset
907 free_buffer_pointer += ToSendMax;
908 return true;
909 } else {
910 return false;
911 }
912 }
913
914 //-----------------------------------------------------------------------------
915 // Main loop of simulated tag: receive commands from reader, decide what
916 // response to send, and send it.
917 //-----------------------------------------------------------------------------
918 void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
919 {
920 uint8_t sak;
921
922 // The first response contains the ATQA (note: bytes are transmitted in reverse order).
923 uint8_t response1[2];
924
925 switch (tagType) {
926 case 1: { // MIFARE Classic
927 // Says: I am Mifare 1k - original line
928 response1[0] = 0x04;
929 response1[1] = 0x00;
930 sak = 0x08;
931 } break;
932 case 2: { // MIFARE Ultralight
933 // Says: I am a stupid memory tag, no crypto
934 response1[0] = 0x04;
935 response1[1] = 0x00;
936 sak = 0x00;
937 } break;
938 case 3: { // MIFARE DESFire
939 // Says: I am a DESFire tag, ph33r me
940 response1[0] = 0x04;
941 response1[1] = 0x03;
942 sak = 0x20;
943 } break;
944 case 4: { // ISO/IEC 14443-4
945 // Says: I am a javacard (JCOP)
946 response1[0] = 0x04;
947 response1[1] = 0x00;
948 sak = 0x28;
949 } break;
950 case 5: { // MIFARE TNP3XXX
951 // Says: I am a toy
952 response1[0] = 0x01;
953 response1[1] = 0x0f;
954 sak = 0x01;
955 } break;
956 default: {
957 Dbprintf("Error: unkown tagtype (%d)",tagType);
958 return;
959 } break;
960 }
961
962 // The second response contains the (mandatory) first 24 bits of the UID
963 uint8_t response2[5] = {0x00};
964
965 // Check if the uid uses the (optional) part
966 uint8_t response2a[5] = {0x00};
967
968 if (uid_2nd) {
969 response2[0] = 0x88;
970 num_to_bytes(uid_1st,3,response2+1);
971 num_to_bytes(uid_2nd,4,response2a);
972 response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
973
974 // Configure the ATQA and SAK accordingly
975 response1[0] |= 0x40;
976 sak |= 0x04;
977 } else {
978 num_to_bytes(uid_1st,4,response2);
979 // Configure the ATQA and SAK accordingly
980 response1[0] &= 0xBF;
981 sak &= 0xFB;
982 }
983
984 // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
985 response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
986
987 // Prepare the mandatory SAK (for 4 and 7 byte UID)
988 uint8_t response3[3] = {0x00};
989 response3[0] = sak;
990 ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
991
992 // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
993 uint8_t response3a[3] = {0x00};
994 response3a[0] = sak & 0xFB;
995 ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
996
997 uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
998 uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS:
999 // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
1000 // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
1001 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
1002 // TC(1) = 0x02: CID supported, NAD not supported
1003 ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
1004
1005 #define TAG_RESPONSE_COUNT 7
1006 tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
1007 { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type
1008 { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid
1009 { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
1010 { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1
1011 { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2
1012 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce)
1013 { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS
1014 };
1015
1016 // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
1017 // Such a response is less time critical, so we can prepare them on the fly
1018 #define DYNAMIC_RESPONSE_BUFFER_SIZE 64
1019 #define DYNAMIC_MODULATION_BUFFER_SIZE 512
1020 uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
1021 uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
1022 tag_response_info_t dynamic_response_info = {
1023 .response = dynamic_response_buffer,
1024 .response_n = 0,
1025 .modulation = dynamic_modulation_buffer,
1026 .modulation_n = 0
1027 };
1028
1029 BigBuf_free_keep_EM();
1030
1031 // allocate buffers:
1032 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
1033 uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
1034 free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
1035
1036 // clear trace
1037 clear_trace();
1038 set_tracing(TRUE);
1039
1040 // Prepare the responses of the anticollision phase
1041 // there will be not enough time to do this at the moment the reader sends it REQA
1042 for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) {
1043 prepare_allocated_tag_modulation(&responses[i]);
1044 }
1045
1046 int len = 0;
1047
1048 // To control where we are in the protocol
1049 int order = 0;
1050 int lastorder;
1051
1052 // Just to allow some checks
1053 int happened = 0;
1054 int happened2 = 0;
1055 int cmdsRecvd = 0;
1056
1057 // We need to listen to the high-frequency, peak-detected path.
1058 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1059
1060 cmdsRecvd = 0;
1061 tag_response_info_t* p_response;
1062
1063 LED_A_ON();
1064 for(;;) {
1065 // Clean receive command buffer
1066
1067 if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
1068 DbpString("Button press");
1069 break;
1070 }
1071
1072 p_response = NULL;
1073
1074 // Okay, look at the command now.
1075 lastorder = order;
1076 if(receivedCmd[0] == 0x26) { // Received a REQUEST
1077 p_response = &responses[0]; order = 1;
1078 } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
1079 p_response = &responses[0]; order = 6;
1080 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
1081 p_response = &responses[1]; order = 2;
1082 } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
1083 p_response = &responses[2]; order = 20;
1084 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
1085 p_response = &responses[3]; order = 3;
1086 } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
1087 p_response = &responses[4]; order = 30;
1088 } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
1089 EmSendCmdEx(data+(4*receivedCmd[1]),16,false);
1090 // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
1091 // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
1092 p_response = NULL;
1093 } else if(receivedCmd[0] == 0x50) { // Received a HALT
1094
1095 if (tracing) {
1096 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1097 }
1098 p_response = NULL;
1099 } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
1100 p_response = &responses[5]; order = 7;
1101 } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
1102 if (tagType == 1 || tagType == 2) { // RATS not supported
1103 EmSend4bit(CARD_NACK_NA);
1104 p_response = NULL;
1105 } else {
1106 p_response = &responses[6]; order = 70;
1107 }
1108 } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
1109 if (tracing) {
1110 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1111 }
1112 uint32_t nr = bytes_to_num(receivedCmd,4);
1113 uint32_t ar = bytes_to_num(receivedCmd+4,4);
1114 Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
1115 } else {
1116 // Check for ISO 14443A-4 compliant commands, look at left nibble
1117 switch (receivedCmd[0]) {
1118
1119 case 0x0B:
1120 case 0x0A: { // IBlock (command)
1121 dynamic_response_info.response[0] = receivedCmd[0];
1122 dynamic_response_info.response[1] = 0x00;
1123 dynamic_response_info.response[2] = 0x90;
1124 dynamic_response_info.response[3] = 0x00;
1125 dynamic_response_info.response_n = 4;
1126 } break;
1127
1128 case 0x1A:
1129 case 0x1B: { // Chaining command
1130 dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
1131 dynamic_response_info.response_n = 2;
1132 } break;
1133
1134 case 0xaa:
1135 case 0xbb: {
1136 dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
1137 dynamic_response_info.response_n = 2;
1138 } break;
1139
1140 case 0xBA: { //
1141 memcpy(dynamic_response_info.response,"\xAB\x00",2);
1142 dynamic_response_info.response_n = 2;
1143 } break;
1144
1145 case 0xCA:
1146 case 0xC2: { // Readers sends deselect command
1147 memcpy(dynamic_response_info.response,"\xCA\x00",2);
1148 dynamic_response_info.response_n = 2;
1149 } break;
1150
1151 default: {
1152 // Never seen this command before
1153 if (tracing) {
1154 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1155 }
1156 Dbprintf("Received unknown command (len=%d):",len);
1157 Dbhexdump(len,receivedCmd,false);
1158 // Do not respond
1159 dynamic_response_info.response_n = 0;
1160 } break;
1161 }
1162
1163 if (dynamic_response_info.response_n > 0) {
1164 // Copy the CID from the reader query
1165 dynamic_response_info.response[1] = receivedCmd[1];
1166
1167 // Add CRC bytes, always used in ISO 14443A-4 compliant cards
1168 AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
1169 dynamic_response_info.response_n += 2;
1170
1171 if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
1172 Dbprintf("Error preparing tag response");
1173 if (tracing) {
1174 LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
1175 }
1176 break;
1177 }
1178 p_response = &dynamic_response_info;
1179 }
1180 }
1181
1182 // Count number of wakeups received after a halt
1183 if(order == 6 && lastorder == 5) { happened++; }
1184
1185 // Count number of other messages after a halt
1186 if(order != 6 && lastorder == 5) { happened2++; }
1187
1188 if(cmdsRecvd > 999) {
1189 DbpString("1000 commands later...");
1190 break;
1191 }
1192 cmdsRecvd++;
1193
1194 if (p_response != NULL) {
1195 EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52);
1196 // do the tracing for the previous reader request and this tag answer:
1197 uint8_t par[MAX_PARITY_SIZE];
1198 GetParity(p_response->response, p_response->response_n, par);
1199
1200 EmLogTrace(Uart.output,
1201 Uart.len,
1202 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1203 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1204 Uart.parity,
1205 p_response->response,
1206 p_response->response_n,
1207 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1208 (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1209 par);
1210 }
1211
1212 if (!tracing) {
1213 Dbprintf("Trace Full. Simulation stopped.");
1214 break;
1215 }
1216 }
1217
1218 Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
1219 LED_A_OFF();
1220 BigBuf_free_keep_EM();
1221 }
1222
1223
1224 // prepare a delayed transfer. This simply shifts ToSend[] by a number
1225 // of bits specified in the delay parameter.
1226 void PrepareDelayedTransfer(uint16_t delay)
1227 {
1228 uint8_t bitmask = 0;
1229 uint8_t bits_to_shift = 0;
1230 uint8_t bits_shifted = 0;
1231
1232 delay &= 0x07;
1233 if (delay) {
1234 for (uint16_t i = 0; i < delay; i++) {
1235 bitmask |= (0x01 << i);
1236 }
1237 ToSend[ToSendMax++] = 0x00;
1238 for (uint16_t i = 0; i < ToSendMax; i++) {
1239 bits_to_shift = ToSend[i] & bitmask;
1240 ToSend[i] = ToSend[i] >> delay;
1241 ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
1242 bits_shifted = bits_to_shift;
1243 }
1244 }
1245 }
1246
1247
1248 //-------------------------------------------------------------------------------------
1249 // Transmit the command (to the tag) that was placed in ToSend[].
1250 // Parameter timing:
1251 // if NULL: transfer at next possible time, taking into account
1252 // request guard time and frame delay time
1253 // if == 0: transfer immediately and return time of transfer
1254 // if != 0: delay transfer until time specified
1255 //-------------------------------------------------------------------------------------
1256 static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing)
1257 {
1258
1259 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
1260
1261 uint32_t ThisTransferTime = 0;
1262
1263 if (timing) {
1264 if(*timing == 0) { // Measure time
1265 *timing = (GetCountSspClk() + 8) & 0xfffffff8;
1266 } else {
1267 PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
1268 }
1269 if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
1270 while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
1271 LastTimeProxToAirStart = *timing;
1272 } else {
1273 ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8);
1274 while(GetCountSspClk() < ThisTransferTime);
1275 LastTimeProxToAirStart = ThisTransferTime;
1276 }
1277
1278 // clear TXRDY
1279 AT91C_BASE_SSC->SSC_THR = SEC_Y;
1280
1281 uint16_t c = 0;
1282 for(;;) {
1283 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1284 AT91C_BASE_SSC->SSC_THR = cmd[c];
1285 c++;
1286 if(c >= len) {
1287 break;
1288 }
1289 }
1290 }
1291
1292 NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME);
1293 }
1294
1295
1296 //-----------------------------------------------------------------------------
1297 // Prepare reader command (in bits, support short frames) to send to FPGA
1298 //-----------------------------------------------------------------------------
1299 void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity)
1300 {
1301 int i, j;
1302 int last;
1303 uint8_t b;
1304
1305 ToSendReset();
1306
1307 // Start of Communication (Seq. Z)
1308 ToSend[++ToSendMax] = SEC_Z;
1309 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1310 last = 0;
1311
1312 size_t bytecount = nbytes(bits);
1313 // Generate send structure for the data bits
1314 for (i = 0; i < bytecount; i++) {
1315 // Get the current byte to send
1316 b = cmd[i];
1317 size_t bitsleft = MIN((bits-(i*8)),8);
1318
1319 for (j = 0; j < bitsleft; j++) {
1320 if (b & 1) {
1321 // Sequence X
1322 ToSend[++ToSendMax] = SEC_X;
1323 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1324 last = 1;
1325 } else {
1326 if (last == 0) {
1327 // Sequence Z
1328 ToSend[++ToSendMax] = SEC_Z;
1329 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1330 } else {
1331 // Sequence Y
1332 ToSend[++ToSendMax] = SEC_Y;
1333 last = 0;
1334 }
1335 }
1336 b >>= 1;
1337 }
1338
1339 // Only transmit parity bit if we transmitted a complete byte
1340 if (j == 8) {
1341 // Get the parity bit
1342 if (parity[i>>3] & (0x80 >> (i&0x0007))) {
1343 // Sequence X
1344 ToSend[++ToSendMax] = SEC_X;
1345 LastProxToAirDuration = 8 * (ToSendMax+1) - 2;
1346 last = 1;
1347 } else {
1348 if (last == 0) {
1349 // Sequence Z
1350 ToSend[++ToSendMax] = SEC_Z;
1351 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1352 } else {
1353 // Sequence Y
1354 ToSend[++ToSendMax] = SEC_Y;
1355 last = 0;
1356 }
1357 }
1358 }
1359 }
1360
1361 // End of Communication: Logic 0 followed by Sequence Y
1362 if (last == 0) {
1363 // Sequence Z
1364 ToSend[++ToSendMax] = SEC_Z;
1365 LastProxToAirDuration = 8 * (ToSendMax+1) - 6;
1366 } else {
1367 // Sequence Y
1368 ToSend[++ToSendMax] = SEC_Y;
1369 last = 0;
1370 }
1371 ToSend[++ToSendMax] = SEC_Y;
1372
1373 // Convert to length of command:
1374 ToSendMax++;
1375 }
1376
1377 //-----------------------------------------------------------------------------
1378 // Prepare reader command to send to FPGA
1379 //-----------------------------------------------------------------------------
1380 void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity)
1381 {
1382 CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
1383 }
1384
1385
1386 //-----------------------------------------------------------------------------
1387 // Wait for commands from reader
1388 // Stop when button is pressed (return 1) or field was gone (return 2)
1389 // Or return 0 when command is captured
1390 //-----------------------------------------------------------------------------
1391 static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
1392 {
1393 *len = 0;
1394
1395 uint32_t timer = 0, vtime = 0;
1396 int analogCnt = 0;
1397 int analogAVG = 0;
1398
1399 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
1400 // only, since we are receiving, not transmitting).
1401 // Signal field is off with the appropriate LED
1402 LED_D_OFF();
1403 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
1404
1405 // Set ADC to read field strength
1406 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
1407 AT91C_BASE_ADC->ADC_MR =
1408 ADC_MODE_PRESCALE(63) |
1409 ADC_MODE_STARTUP_TIME(1) |
1410 ADC_MODE_SAMPLE_HOLD_TIME(15);
1411 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
1412 // start ADC
1413 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1414
1415 // Now run a 'software UART' on the stream of incoming samples.
1416 UartInit(received, parity);
1417
1418 // Clear RXRDY:
1419 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1420
1421 for(;;) {
1422 WDT_HIT();
1423
1424 if (BUTTON_PRESS()) return 1;
1425
1426 // test if the field exists
1427 if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
1428 analogCnt++;
1429 analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
1430 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
1431 if (analogCnt >= 32) {
1432 if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
1433 vtime = GetTickCount();
1434 if (!timer) timer = vtime;
1435 // 50ms no field --> card to idle state
1436 if (vtime - timer > 50) return 2;
1437 } else
1438 if (timer) timer = 0;
1439 analogCnt = 0;
1440 analogAVG = 0;
1441 }
1442 }
1443
1444 // receive and test the miller decoding
1445 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1446 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1447 if(MillerDecoding(b, 0)) {
1448 *len = Uart.len;
1449 return 0;
1450 }
1451 }
1452
1453 }
1454 }
1455
1456
1457 static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded)
1458 {
1459 uint8_t b;
1460 uint16_t i = 0;
1461 uint32_t ThisTransferTime;
1462
1463 // Modulate Manchester
1464 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
1465
1466 // include correction bit if necessary
1467 if (Uart.parityBits & 0x01) {
1468 correctionNeeded = TRUE;
1469 }
1470 if(correctionNeeded) {
1471 // 1236, so correction bit needed
1472 i = 0;
1473 } else {
1474 i = 1;
1475 }
1476
1477 // clear receiving shift register and holding register
1478 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1479 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1480 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1481 b = AT91C_BASE_SSC->SSC_RHR; (void) b;
1482
1483 // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
1484 for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never
1485 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
1486 if (AT91C_BASE_SSC->SSC_RHR) break;
1487 }
1488
1489 while ((ThisTransferTime = GetCountSspClk()) & 0x00000007);
1490
1491 // Clear TXRDY:
1492 AT91C_BASE_SSC->SSC_THR = SEC_F;
1493
1494 // send cycle
1495 for(; i < respLen; ) {
1496 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1497 AT91C_BASE_SSC->SSC_THR = resp[i++];
1498 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1499 }
1500
1501 if(BUTTON_PRESS()) {
1502 break;
1503 }
1504 }
1505
1506 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
1507 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
1508 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
1509 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
1510 AT91C_BASE_SSC->SSC_THR = SEC_F;
1511 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1512 i++;
1513 }
1514 }
1515
1516 LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
1517
1518 return 0;
1519 }
1520
1521 int EmSend4bitEx(uint8_t resp, bool correctionNeeded){
1522 Code4bitAnswerAsTag(resp);
1523 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1524 // do the tracing for the previous reader request and this tag answer:
1525 uint8_t par[1];
1526 GetParity(&resp, 1, par);
1527 EmLogTrace(Uart.output,
1528 Uart.len,
1529 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1530 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1531 Uart.parity,
1532 &resp,
1533 1,
1534 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1535 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1536 par);
1537 return res;
1538 }
1539
1540 int EmSend4bit(uint8_t resp){
1541 return EmSend4bitEx(resp, false);
1542 }
1543
1544 int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){
1545 CodeIso14443aAsTagPar(resp, respLen, par);
1546 int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
1547 // do the tracing for the previous reader request and this tag answer:
1548 EmLogTrace(Uart.output,
1549 Uart.len,
1550 Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
1551 Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
1552 Uart.parity,
1553 resp,
1554 respLen,
1555 LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
1556 (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
1557 par);
1558 return res;
1559 }
1560
1561 int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){
1562 uint8_t par[MAX_PARITY_SIZE];
1563 GetParity(resp, respLen, par);
1564 return EmSendCmdExPar(resp, respLen, correctionNeeded, par);
1565 }
1566
1567 int EmSendCmd(uint8_t *resp, uint16_t respLen){
1568 uint8_t par[MAX_PARITY_SIZE];
1569 GetParity(resp, respLen, par);
1570 return EmSendCmdExPar(resp, respLen, false, par);
1571 }
1572
1573 int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){
1574 return EmSendCmdExPar(resp, respLen, false, par);
1575 }
1576
1577 bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity,
1578 uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity)
1579 {
1580 if (tracing) {
1581 // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from
1582 // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp.
1583 // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated:
1584 uint16_t reader_modlen = reader_EndTime - reader_StartTime;
1585 uint16_t approx_fdt = tag_StartTime - reader_EndTime;
1586 uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20;
1587 reader_EndTime = tag_StartTime - exact_fdt;
1588 reader_StartTime = reader_EndTime - reader_modlen;
1589 if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) {
1590 return FALSE;
1591 } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE));
1592 } else {
1593 return TRUE;
1594 }
1595 }
1596
1597 //-----------------------------------------------------------------------------
1598 // Wait a certain time for tag response
1599 // If a response is captured return TRUE
1600 // If it takes too long return FALSE
1601 //-----------------------------------------------------------------------------
1602 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
1603 {
1604 uint32_t c;
1605
1606 // Set FPGA mode to "reader listen mode", no modulation (listen
1607 // only, since we are receiving, not transmitting).
1608 // Signal field is on with the appropriate LED
1609 LED_D_ON();
1610 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
1611
1612 // Now get the answer from the card
1613 DemodInit(receivedResponse, receivedResponsePar);
1614
1615 // clear RXRDY:
1616 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1617
1618 c = 0;
1619 for(;;) {
1620 WDT_HIT();
1621
1622 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
1623 b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1624 if(ManchesterDecoding(b, offset, 0)) {
1625 NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
1626 return TRUE;
1627 } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
1628 return FALSE;
1629 }
1630 }
1631 }
1632 }
1633
1634 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
1635 {
1636 CodeIso14443aBitsAsReaderPar(frame, bits, par);
1637
1638 // Send command to tag
1639 TransmitFor14443a(ToSend, ToSendMax, timing);
1640 if(trigger)
1641 LED_A_ON();
1642
1643 // Log reader command in trace buffer
1644 if (tracing) {
1645 LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE);
1646 }
1647 }
1648
1649 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
1650 {
1651 ReaderTransmitBitsPar(frame, len*8, par, timing);
1652 }
1653
1654 void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
1655 {
1656 // Generate parity and redirect
1657 uint8_t par[MAX_PARITY_SIZE];
1658 GetParity(frame, len/8, par);
1659 ReaderTransmitBitsPar(frame, len, par, timing);
1660 }
1661
1662 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
1663 {
1664 // Generate parity and redirect
1665 uint8_t par[MAX_PARITY_SIZE];
1666 GetParity(frame, len, par);
1667 ReaderTransmitBitsPar(frame, len*8, par, timing);
1668 }
1669
1670 int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity)
1671 {
1672 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE;
1673 if (tracing) {
1674 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1675 }
1676 return Demod.len;
1677 }
1678
1679 int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity)
1680 {
1681 if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE;
1682 if (tracing) {
1683 LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE);
1684 }
1685 return Demod.len;
1686 }
1687
1688 /* performs iso14443a anticollision procedure
1689 * fills the uid pointer unless NULL
1690 * fills resp_data unless NULL */
1691 int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) {
1692 uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1693 uint8_t sel_all[] = { 0x93,0x20 };
1694 uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
1695 uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1696 uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller
1697 uint8_t resp_par[MAX_PARITY_SIZE];
1698 byte_t uid_resp[4];
1699 size_t uid_resp_len;
1700
1701 uint8_t sak = 0x04; // cascade uid
1702 int cascade_level = 0;
1703 int len;
1704
1705 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1706 ReaderTransmitBitsPar(wupa,7,0, NULL);
1707
1708 // Receive the ATQA
1709 if(!ReaderReceive(resp, resp_par)) return 0;
1710
1711 if(p_hi14a_card) {
1712 memcpy(p_hi14a_card->atqa, resp, 2);
1713 p_hi14a_card->uidlen = 0;
1714 memset(p_hi14a_card->uid,0,10);
1715 }
1716
1717 // clear uid
1718 if (uid_ptr) {
1719 memset(uid_ptr,0,10);
1720 }
1721
1722 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1723 // which case we need to make a cascade 2 request and select - this is a long UID
1724 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1725 for(; sak & 0x04; cascade_level++) {
1726 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1727 sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
1728
1729 // SELECT_ALL
1730 ReaderTransmit(sel_all, sizeof(sel_all), NULL);
1731 if (!ReaderReceive(resp, resp_par)) return 0;
1732
1733 if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit
1734 memset(uid_resp, 0, 4);
1735 uint16_t uid_resp_bits = 0;
1736 uint16_t collision_answer_offset = 0;
1737 // anti-collision-loop:
1738 while (Demod.collisionPos) {
1739 Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos);
1740 for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point
1741 uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01;
1742 uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8);
1743 }
1744 uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position
1745 uid_resp_bits++;
1746 // construct anticollosion command:
1747 sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits
1748 for (uint16_t i = 0; i <= uid_resp_bits/8; i++) {
1749 sel_uid[2+i] = uid_resp[i];
1750 }
1751 collision_answer_offset = uid_resp_bits%8;
1752 ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL);
1753 if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0;
1754 }
1755 // finally, add the last bits and BCC of the UID
1756 for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) {
1757 uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01;
1758 uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8);
1759 }
1760
1761 } else { // no collision, use the response to SELECT_ALL as current uid
1762 memcpy(uid_resp, resp, 4);
1763 }
1764 uid_resp_len = 4;
1765
1766 // calculate crypto UID. Always use last 4 Bytes.
1767 if(cuid_ptr) {
1768 *cuid_ptr = bytes_to_num(uid_resp, 4);
1769 }
1770
1771 // Construct SELECT UID command
1772 sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC)
1773 memcpy(sel_uid+2, uid_resp, 4); // the UID
1774 sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC
1775 AppendCrc14443a(sel_uid, 7); // calculate and add CRC
1776 ReaderTransmit(sel_uid, sizeof(sel_uid), NULL);
1777
1778 // Receive the SAK
1779 if (!ReaderReceive(resp, resp_par)) return 0;
1780 sak = resp[0];
1781
1782 // Test if more parts of the uid are coming
1783 if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) {
1784 // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
1785 // http://www.nxp.com/documents/application_note/AN10927.pdf
1786 uid_resp[0] = uid_resp[1];
1787 uid_resp[1] = uid_resp[2];
1788 uid_resp[2] = uid_resp[3];
1789
1790 uid_resp_len = 3;
1791 }
1792
1793 if(uid_ptr) {
1794 memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
1795 }
1796
1797 if(p_hi14a_card) {
1798 memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
1799 p_hi14a_card->uidlen += uid_resp_len;
1800 }
1801 }
1802
1803 if(p_hi14a_card) {
1804 p_hi14a_card->sak = sak;
1805 p_hi14a_card->ats_len = 0;
1806 }
1807
1808 // non iso14443a compliant tag
1809 if( (sak & 0x20) == 0) return 2;
1810
1811 // Request for answer to select
1812 AppendCrc14443a(rats, 2);
1813 ReaderTransmit(rats, sizeof(rats), NULL);
1814
1815 if (!(len = ReaderReceive(resp, resp_par))) return 0;
1816
1817
1818 if(p_hi14a_card) {
1819 memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
1820 p_hi14a_card->ats_len = len;
1821 }
1822
1823 // reset the PCB block number
1824 iso14_pcb_blocknum = 0;
1825
1826 // set default timeout based on ATS
1827 iso14a_set_ATS_timeout(resp);
1828
1829 return 1;
1830 }
1831
1832 void iso14443a_setup(uint8_t fpga_minor_mode) {
1833 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1834 // Set up the synchronous serial port
1835 FpgaSetupSsc();
1836 // connect Demodulated Signal to ADC:
1837 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1838
1839 // Signal field is on with the appropriate LED
1840 if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD
1841 || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) {
1842 LED_D_ON();
1843 } else {
1844 LED_D_OFF();
1845 }
1846 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode);
1847
1848 // Start the timer
1849 StartCountSspClk();
1850
1851 DemodReset();
1852 UartReset();
1853 NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
1854 iso14a_set_timeout(1050); // 10ms default
1855 }
1856
1857 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
1858 uint8_t parity[MAX_PARITY_SIZE];
1859 uint8_t real_cmd[cmd_len+4];
1860 real_cmd[0] = 0x0a; //I-Block
1861 // put block number into the PCB
1862 real_cmd[0] |= iso14_pcb_blocknum;
1863 real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1864 memcpy(real_cmd+2, cmd, cmd_len);
1865 AppendCrc14443a(real_cmd,cmd_len+2);
1866
1867 ReaderTransmit(real_cmd, cmd_len+4, NULL);
1868 size_t len = ReaderReceive(data, parity);
1869 uint8_t *data_bytes = (uint8_t *) data;
1870 if (!len)
1871 return 0; //DATA LINK ERROR
1872 // if we received an I- or R(ACK)-Block with a block number equal to the
1873 // current block number, toggle the current block number
1874 else if (len >= 4 // PCB+CID+CRC = 4 bytes
1875 && ((data_bytes[0] & 0xC0) == 0 // I-Block
1876 || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
1877 && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
1878 {
1879 iso14_pcb_blocknum ^= 1;
1880 }
1881
1882 return len;
1883 }
1884
1885 //-----------------------------------------------------------------------------
1886 // Read an ISO 14443a tag. Send out commands and store answers.
1887 //
1888 //-----------------------------------------------------------------------------
1889 void ReaderIso14443a(UsbCommand *c)
1890 {
1891 iso14a_command_t param = c->arg[0];
1892 uint8_t *cmd = c->d.asBytes;
1893 size_t len = c->arg[1] & 0xffff;
1894 size_t lenbits = c->arg[1] >> 16;
1895 uint32_t timeout = c->arg[2];
1896 uint32_t arg0 = 0;
1897 byte_t buf[USB_CMD_DATA_SIZE];
1898 uint8_t par[MAX_PARITY_SIZE];
1899
1900 if(param & ISO14A_CONNECT) {
1901 clear_trace();
1902 }
1903
1904 set_tracing(TRUE);
1905
1906 if(param & ISO14A_REQUEST_TRIGGER) {
1907 iso14a_set_trigger(TRUE);
1908 }
1909
1910 if(param & ISO14A_CONNECT) {
1911 iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
1912 if(!(param & ISO14A_NO_SELECT)) {
1913 iso14a_card_select_t *card = (iso14a_card_select_t*)buf;
1914 arg0 = iso14443a_select_card(NULL,card,NULL);
1915 cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t));
1916 }
1917 }
1918
1919 if(param & ISO14A_SET_TIMEOUT) {
1920 iso14a_set_timeout(timeout);
1921 }
1922
1923 if(param & ISO14A_APDU) {
1924 arg0 = iso14_apdu(cmd, len, buf);
1925 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1926 }
1927
1928 if(param & ISO14A_RAW) {
1929 if(param & ISO14A_APPEND_CRC) {
1930 AppendCrc14443a(cmd,len);
1931 len += 2;
1932 if (lenbits) lenbits += 16;
1933 }
1934 if(lenbits>0) {
1935 GetParity(cmd, lenbits/8, par);
1936 ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
1937 } else {
1938 ReaderTransmit(cmd,len, NULL);
1939 }
1940 arg0 = ReaderReceive(buf, par);
1941 cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
1942 }
1943
1944 if(param & ISO14A_REQUEST_TRIGGER) {
1945 iso14a_set_trigger(FALSE);
1946 }
1947
1948 if(param & ISO14A_NO_DISCONNECT) {
1949 return;
1950 }
1951
1952 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1953 LEDsoff();
1954 }
1955
1956
1957 // Determine the distance between two nonces.
1958 // Assume that the difference is small, but we don't know which is first.
1959 // Therefore try in alternating directions.
1960 int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
1961
1962 uint16_t i;
1963 uint32_t nttmp1, nttmp2;
1964
1965 if (nt1 == nt2) return 0;
1966
1967 nttmp1 = nt1;
1968 nttmp2 = nt2;
1969
1970 for (i = 1; i < 32768; i++) {
1971 nttmp1 = prng_successor(nttmp1, 1);
1972 if (nttmp1 == nt2) return i;
1973 nttmp2 = prng_successor(nttmp2, 1);
1974 if (nttmp2 == nt1) return -i;
1975 }
1976
1977 return(-99999); // either nt1 or nt2 are invalid nonces
1978 }
1979
1980
1981 //-----------------------------------------------------------------------------
1982 // Recover several bits of the cypher stream. This implements (first stages of)
1983 // the algorithm described in "The Dark Side of Security by Obscurity and
1984 // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
1985 // (article by Nicolas T. Courtois, 2009)
1986 //-----------------------------------------------------------------------------
1987 void ReaderMifare(bool first_try)
1988 {
1989 // Mifare AUTH
1990 uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
1991 uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1992 static uint8_t mf_nr_ar3;
1993
1994 uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
1995 uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
1996
1997 // free eventually allocated BigBuf memory. We want all for tracing.
1998 BigBuf_free();
1999
2000 clear_trace();
2001 set_tracing(TRUE);
2002
2003 byte_t nt_diff = 0;
2004 uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
2005 static byte_t par_low = 0;
2006 bool led_on = TRUE;
2007 uint8_t uid[10] ={0};
2008 uint32_t cuid;
2009
2010 uint32_t nt = 0;
2011 uint32_t previous_nt = 0;
2012 static uint32_t nt_attacked = 0;
2013 byte_t par_list[8] = {0x00};
2014 byte_t ks_list[8] = {0x00};
2015
2016 static uint32_t sync_time;
2017 static uint32_t sync_cycles;
2018 int catch_up_cycles = 0;
2019 int last_catch_up = 0;
2020 uint16_t consecutive_resyncs = 0;
2021 int isOK = 0;
2022
2023 if (first_try) {
2024 mf_nr_ar3 = 0;
2025 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2026 sync_time = GetCountSspClk() & 0xfffffff8;
2027 sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
2028 nt_attacked = 0;
2029 nt = 0;
2030 par[0] = 0;
2031 }
2032 else {
2033 // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
2034 mf_nr_ar3++;
2035 mf_nr_ar[3] = mf_nr_ar3;
2036 par[0] = par_low;
2037 }
2038
2039 LED_A_ON();
2040 LED_B_OFF();
2041 LED_C_OFF();
2042
2043
2044 for(uint16_t i = 0; TRUE; i++) {
2045
2046 WDT_HIT();
2047
2048 // Test if the action was cancelled
2049 if(BUTTON_PRESS()) {
2050 break;
2051 }
2052
2053 LED_C_ON();
2054
2055 if(!iso14443a_select_card(uid, NULL, &cuid)) {
2056 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
2057 continue;
2058 }
2059
2060 sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
2061 catch_up_cycles = 0;
2062
2063 // if we missed the sync time already, advance to the next nonce repeat
2064 while(GetCountSspClk() > sync_time) {
2065 sync_time = (sync_time & 0xfffffff8) + sync_cycles;
2066 }
2067
2068 // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
2069 ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
2070
2071 // Receive the (4 Byte) "random" nonce
2072 if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) {
2073 if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
2074 continue;
2075 }
2076
2077 previous_nt = nt;
2078 nt = bytes_to_num(receivedAnswer, 4);
2079
2080 // Transmit reader nonce with fake par
2081 ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
2082
2083 if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
2084 int nt_distance = dist_nt(previous_nt, nt);
2085 if (nt_distance == 0) {
2086 nt_attacked = nt;
2087 }
2088 else {
2089 if (nt_distance == -99999) { // invalid nonce received, try again
2090 continue;
2091 }
2092 sync_cycles = (sync_cycles - nt_distance);
2093 if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
2094 continue;
2095 }
2096 }
2097
2098 if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
2099 catch_up_cycles = -dist_nt(nt_attacked, nt);
2100 if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
2101 catch_up_cycles = 0;
2102 continue;
2103 }
2104 if (catch_up_cycles == last_catch_up) {
2105 consecutive_resyncs++;
2106 }
2107 else {
2108 last_catch_up = catch_up_cycles;
2109 consecutive_resyncs = 0;
2110 }
2111 if (consecutive_resyncs < 3) {
2112 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
2113 }
2114 else {
2115 sync_cycles = sync_cycles + catch_up_cycles;
2116 if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
2117 }
2118 continue;
2119 }
2120
2121 consecutive_resyncs = 0;
2122
2123 // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
2124 if (ReaderReceive(receivedAnswer, receivedAnswerPar))
2125 {
2126 catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
2127
2128 if (nt_diff == 0)
2129 {
2130 par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
2131 }
2132
2133 led_on = !led_on;
2134 if(led_on) LED_B_ON(); else LED_B_OFF();
2135
2136 par_list[nt_diff] = SwapBits(par[0], 8);
2137 ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
2138
2139 // Test if the information is complete
2140 if (nt_diff == 0x07) {
2141 isOK = 1;
2142 break;
2143 }
2144
2145 nt_diff = (nt_diff + 1) & 0x07;
2146 mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
2147 par[0] = par_low;
2148 } else {
2149 if (nt_diff == 0 && first_try)
2150 {
2151 par[0]++;
2152 } else {
2153 par[0] = ((par[0] & 0x1F) + 1) | par_low;
2154 }
2155 }
2156 }
2157
2158
2159 mf_nr_ar[3] &= 0x1F;
2160
2161 byte_t buf[28];
2162 memcpy(buf + 0, uid, 4);
2163 num_to_bytes(nt, 4, buf + 4);
2164 memcpy(buf + 8, par_list, 8);
2165 memcpy(buf + 16, ks_list, 8);
2166 memcpy(buf + 24, mf_nr_ar, 4);
2167
2168 cmd_send(CMD_ACK,isOK,0,0,buf,28);
2169
2170 // Thats it...
2171 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2172 LEDsoff();
2173
2174 set_tracing(FALSE);
2175 }
2176
2177 /**
2178 *MIFARE 1K simulate.
2179 *
2180 *@param flags :
2181 * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
2182 * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
2183 * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
2184 * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
2185 *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite
2186 */
2187 void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
2188 {
2189 int cardSTATE = MFEMUL_NOFIELD;
2190 int _7BUID = 0;
2191 int vHf = 0; // in mV
2192 int res;
2193 uint32_t selTimer = 0;
2194 uint32_t authTimer = 0;
2195 uint16_t len = 0;
2196 uint8_t cardWRBL = 0;
2197 uint8_t cardAUTHSC = 0;
2198 uint8_t cardAUTHKEY = 0xff; // no authentication
2199 uint32_t cardRr = 0;
2200 uint32_t cuid = 0;
2201 //uint32_t rn_enc = 0;
2202 uint32_t ans = 0;
2203 uint32_t cardINTREG = 0;
2204 uint8_t cardINTBLOCK = 0;
2205 struct Crypto1State mpcs = {0, 0};
2206 struct Crypto1State *pcs;
2207 pcs = &mpcs;
2208 uint32_t numReads = 0;//Counts numer of times reader read a block
2209 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2210 uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
2211 uint8_t response[MAX_MIFARE_FRAME_SIZE];
2212 uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
2213
2214 uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
2215 uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
2216 uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
2217 uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
2218 uint8_t rSAK1[] = {0x04, 0xda, 0x17};
2219
2220 uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
2221 uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
2222
2223 //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
2224 // This can be used in a reader-only attack.
2225 // (it can also be retrieved via 'hf 14a list', but hey...
2226 uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0};
2227 uint8_t ar_nr_collected = 0;
2228
2229 // free eventually allocated BigBuf memory but keep Emulator Memory
2230 BigBuf_free_keep_EM();
2231
2232 // clear trace
2233 clear_trace();
2234 set_tracing(TRUE);
2235
2236 // Authenticate response - nonce
2237 uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
2238
2239 //-- Determine the UID
2240 // Can be set from emulator memory, incoming data
2241 // and can be 7 or 4 bytes long
2242 if (flags & FLAG_4B_UID_IN_DATA)
2243 {
2244 // 4B uid comes from data-portion of packet
2245 memcpy(rUIDBCC1,datain,4);
2246 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2247
2248 } else if (flags & FLAG_7B_UID_IN_DATA) {
2249 // 7B uid comes from data-portion of packet
2250 memcpy(&rUIDBCC1[1],datain,3);
2251 memcpy(rUIDBCC2, datain+3, 4);
2252 _7BUID = true;
2253 } else {
2254 // get UID from emul memory
2255 emlGetMemBt(receivedCmd, 7, 1);
2256 _7BUID = !(receivedCmd[0] == 0x00);
2257 if (!_7BUID) { // ---------- 4BUID
2258 emlGetMemBt(rUIDBCC1, 0, 4);
2259 } else { // ---------- 7BUID
2260 emlGetMemBt(&rUIDBCC1[1], 0, 3);
2261 emlGetMemBt(rUIDBCC2, 3, 4);
2262 }
2263 }
2264
2265 /*
2266 * Regardless of what method was used to set the UID, set fifth byte and modify
2267 * the ATQA for 4 or 7-byte UID
2268 */
2269 rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
2270 if (_7BUID) {
2271 rATQA[0] = 0x44;
2272 rUIDBCC1[0] = 0x88;
2273 rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
2274 }
2275
2276 // We need to listen to the high-frequency, peak-detected path.
2277 iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
2278
2279
2280 if (MF_DBGLEVEL >= 1) {
2281 if (!_7BUID) {
2282 Dbprintf("4B UID: %02x%02x%02x%02x",
2283 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
2284 } else {
2285 Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",
2286 rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
2287 rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]);
2288 }
2289 }
2290
2291 bool finished = FALSE;
2292 while (!BUTTON_PRESS() && !finished) {
2293 WDT_HIT();
2294
2295 // find reader field
2296 if (cardSTATE == MFEMUL_NOFIELD) {
2297 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
2298 if (vHf > MF_MINFIELDV) {
2299 cardSTATE_TO_IDLE();
2300 LED_A_ON();
2301 }
2302 }
2303 if(cardSTATE == MFEMUL_NOFIELD) continue;
2304
2305 //Now, get data
2306
2307 res = EmGetCmd(receivedCmd, &len, receivedCmd_par);
2308 if (res == 2) { //Field is off!
2309 cardSTATE = MFEMUL_NOFIELD;
2310 LEDsoff();
2311 continue;
2312 } else if (res == 1) {
2313 break; //return value 1 means button press
2314 }
2315
2316 // REQ or WUP request in ANY state and WUP in HALTED state
2317 if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
2318 selTimer = GetTickCount();
2319 EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
2320 cardSTATE = MFEMUL_SELECT1;
2321
2322 // init crypto block
2323 LED_B_OFF();
2324 LED_C_OFF();
2325 crypto1_destroy(pcs);
2326 cardAUTHKEY = 0xff;
2327 continue;
2328 }
2329
2330 switch (cardSTATE) {
2331 case MFEMUL_NOFIELD:
2332 case MFEMUL_HALTED:
2333 case MFEMUL_IDLE:{
2334 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2335 break;
2336 }
2337 case MFEMUL_SELECT1:{
2338 // select all
2339 if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
2340 if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received");
2341 EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
2342 break;
2343 }
2344
2345 if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 )
2346 {
2347 Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
2348 }
2349 // select card
2350 if (len == 9 &&
2351 (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
2352 EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK));
2353 cuid = bytes_to_num(rUIDBCC1, 4);
2354 if (!_7BUID) {
2355 cardSTATE = MFEMUL_WORK;
2356 LED_B_ON();
2357 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
2358 break;
2359 } else {
2360 cardSTATE = MFEMUL_SELECT2;
2361 }
2362 }
2363 break;
2364 }
2365 case MFEMUL_AUTH1:{
2366 if( len != 8)
2367 {
2368 cardSTATE_TO_IDLE();
2369 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2370 break;
2371 }
2372
2373 uint32_t ar = bytes_to_num(receivedCmd, 4);
2374 uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
2375
2376 //Collect AR/NR
2377 if(ar_nr_collected < 2){
2378 if(ar_nr_responses[2] != ar)
2379 {// Avoid duplicates... probably not necessary, ar should vary.
2380 ar_nr_responses[ar_nr_collected*4] = cuid;
2381 ar_nr_responses[ar_nr_collected*4+1] = nonce;
2382 ar_nr_responses[ar_nr_collected*4+2] = ar;
2383 ar_nr_responses[ar_nr_collected*4+3] = nr;
2384 ar_nr_collected++;
2385 }
2386 }
2387
2388 // --- crypto
2389 crypto1_word(pcs, ar , 1);
2390 cardRr = nr ^ crypto1_word(pcs, 0, 0);
2391
2392 // test if auth OK
2393 if (cardRr != prng_successor(nonce, 64)){
2394 if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
2395 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2396 cardRr, prng_successor(nonce, 64));
2397 // Shouldn't we respond anything here?
2398 // Right now, we don't nack or anything, which causes the
2399 // reader to do a WUPA after a while. /Martin
2400 // -- which is the correct response. /piwi
2401 cardSTATE_TO_IDLE();
2402 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2403 break;
2404 }
2405
2406 ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
2407
2408 num_to_bytes(ans, 4, rAUTH_AT);
2409 // --- crypto
2410 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2411 LED_C_ON();
2412 cardSTATE = MFEMUL_WORK;
2413 if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d",
2414 cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B',
2415 GetTickCount() - authTimer);
2416 break;
2417 }
2418 case MFEMUL_SELECT2:{
2419 if (!len) {
2420 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2421 break;
2422 }
2423 if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
2424 EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
2425 break;
2426 }
2427
2428 // select 2 card
2429 if (len == 9 &&
2430 (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
2431 EmSendCmd(rSAK, sizeof(rSAK));
2432 cuid = bytes_to_num(rUIDBCC2, 4);
2433 cardSTATE = MFEMUL_WORK;
2434 LED_B_ON();
2435 if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
2436 break;
2437 }
2438
2439 // i guess there is a command). go into the work state.
2440 if (len != 4) {
2441 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2442 break;
2443 }
2444 cardSTATE = MFEMUL_WORK;
2445 //goto lbWORK;
2446 //intentional fall-through to the next case-stmt
2447 }
2448
2449 case MFEMUL_WORK:{
2450 if (len == 0) {
2451 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2452 break;
2453 }
2454
2455 bool encrypted_data = (cardAUTHKEY != 0xFF) ;
2456
2457 if(encrypted_data) {
2458 // decrypt seqence
2459 mf_crypto1_decrypt(pcs, receivedCmd, len);
2460 }
2461
2462 if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
2463 authTimer = GetTickCount();
2464 cardAUTHSC = receivedCmd[1] / 4; // received block num
2465 cardAUTHKEY = receivedCmd[0] - 0x60;
2466 crypto1_destroy(pcs);//Added by martin
2467 crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
2468
2469 if (!encrypted_data) { // first authentication
2470 if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2471
2472 crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
2473 num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
2474 } else { // nested authentication
2475 if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY );
2476 ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
2477 num_to_bytes(ans, 4, rAUTH_AT);
2478 }
2479
2480 EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
2481 //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
2482 cardSTATE = MFEMUL_AUTH1;
2483 break;
2484 }
2485
2486 // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
2487 // BUT... ACK --> NACK
2488 if (len == 1 && receivedCmd[0] == CARD_ACK) {
2489 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2490 break;
2491 }
2492
2493 // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
2494 if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
2495 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2496 break;
2497 }
2498
2499 if(len != 4) {
2500 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2501 break;
2502 }
2503
2504 if(receivedCmd[0] == 0x30 // read block
2505 || receivedCmd[0] == 0xA0 // write block
2506 || receivedCmd[0] == 0xC0 // inc
2507 || receivedCmd[0] == 0xC1 // dec
2508 || receivedCmd[0] == 0xC2 // restore
2509 || receivedCmd[0] == 0xB0) { // transfer
2510 if (receivedCmd[1] >= 16 * 4) {
2511 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2512 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2513 break;
2514 }
2515
2516 if (receivedCmd[1] / 4 != cardAUTHSC) {
2517 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2518 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC);
2519 break;
2520 }
2521 }
2522 // read block
2523 if (receivedCmd[0] == 0x30) {
2524 if (MF_DBGLEVEL >= 4) {
2525 Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]);
2526 }
2527 emlGetMem(response, receivedCmd[1], 1);
2528 AppendCrc14443a(response, 16);
2529 mf_crypto1_encrypt(pcs, response, 18, response_par);
2530 EmSendCmdPar(response, 18, response_par);
2531 numReads++;
2532 if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
2533 Dbprintf("%d reads done, exiting", numReads);
2534 finished = true;
2535 }
2536 break;
2537 }
2538 // write block
2539 if (receivedCmd[0] == 0xA0) {
2540 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]);
2541 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2542 cardSTATE = MFEMUL_WRITEBL2;
2543 cardWRBL = receivedCmd[1];
2544 break;
2545 }
2546 // increment, decrement, restore
2547 if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) {
2548 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2549 if (emlCheckValBl(receivedCmd[1])) {
2550 if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
2551 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2552 break;
2553 }
2554 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2555 if (receivedCmd[0] == 0xC1)
2556 cardSTATE = MFEMUL_INTREG_INC;
2557 if (receivedCmd[0] == 0xC0)
2558 cardSTATE = MFEMUL_INTREG_DEC;
2559 if (receivedCmd[0] == 0xC2)
2560 cardSTATE = MFEMUL_INTREG_REST;
2561 cardWRBL = receivedCmd[1];
2562 break;
2563 }
2564 // transfer
2565 if (receivedCmd[0] == 0xB0) {
2566 if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]);
2567 if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
2568 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2569 else
2570 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2571 break;
2572 }
2573 // halt
2574 if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) {
2575 LED_B_OFF();
2576 LED_C_OFF();
2577 cardSTATE = MFEMUL_HALTED;
2578 if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
2579 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2580 break;
2581 }
2582 // RATS
2583 if (receivedCmd[0] == 0xe0) {//RATS
2584 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2585 break;
2586 }
2587 // command not allowed
2588 if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
2589 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2590 break;
2591 }
2592 case MFEMUL_WRITEBL2:{
2593 if (len == 18){
2594 mf_crypto1_decrypt(pcs, receivedCmd, len);
2595 emlSetMem(receivedCmd, cardWRBL, 1);
2596 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
2597 cardSTATE = MFEMUL_WORK;
2598 } else {
2599 cardSTATE_TO_IDLE();
2600 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2601 }
2602 break;
2603 }
2604
2605 case MFEMUL_INTREG_INC:{
2606 mf_crypto1_decrypt(pcs, receivedCmd, len);
2607 memcpy(&ans, receivedCmd, 4);
2608 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2609 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2610 cardSTATE_TO_IDLE();
2611 break;
2612 }
2613 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2614 cardINTREG = cardINTREG + ans;
2615 cardSTATE = MFEMUL_WORK;
2616 break;
2617 }
2618 case MFEMUL_INTREG_DEC:{
2619 mf_crypto1_decrypt(pcs, receivedCmd, len);
2620 memcpy(&ans, receivedCmd, 4);
2621 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2622 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2623 cardSTATE_TO_IDLE();
2624 break;
2625 }
2626 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2627 cardINTREG = cardINTREG - ans;
2628 cardSTATE = MFEMUL_WORK;
2629 break;
2630 }
2631 case MFEMUL_INTREG_REST:{
2632 mf_crypto1_decrypt(pcs, receivedCmd, len);
2633 memcpy(&ans, receivedCmd, 4);
2634 if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
2635 EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
2636 cardSTATE_TO_IDLE();
2637 break;
2638 }
2639 LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
2640 cardSTATE = MFEMUL_WORK;
2641 break;
2642 }
2643 }
2644 }
2645
2646 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2647 LEDsoff();
2648
2649 if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
2650 {
2651 //May just aswell send the collected ar_nr in the response aswell
2652 cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
2653 }
2654
2655 if(flags & FLAG_NR_AR_ATTACK)
2656 {
2657 if(ar_nr_collected > 1) {
2658 Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
2659 Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
2660 ar_nr_responses[0], // UID
2661 ar_nr_responses[1], //NT
2662 ar_nr_responses[2], //AR1
2663 ar_nr_responses[3], //NR1
2664 ar_nr_responses[6], //AR2
2665 ar_nr_responses[7] //NR2
2666 );
2667 } else {
2668 Dbprintf("Failed to obtain two AR/NR pairs!");
2669 if(ar_nr_collected >0) {
2670 Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
2671 ar_nr_responses[0], // UID
2672 ar_nr_responses[1], //NT
2673 ar_nr_responses[2], //AR1
2674 ar_nr_responses[3] //NR1
2675 );
2676 }
2677 }
2678 }
2679 if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen());
2680
2681 }
2682
2683
2684
2685 //-----------------------------------------------------------------------------
2686 // MIFARE sniffer.
2687 //
2688 //-----------------------------------------------------------------------------
2689 void RAMFUNC SniffMifare(uint8_t param) {
2690 // param:
2691 // bit 0 - trigger from first card answer
2692 // bit 1 - trigger from first reader 7-bit request
2693
2694 // C(red) A(yellow) B(green)
2695 LEDsoff();
2696 // init trace buffer
2697 clear_trace();
2698 set_tracing(TRUE);
2699
2700 // The command (reader -> tag) that we're receiving.
2701 // The length of a received command will in most cases be no more than 18 bytes.
2702 // So 32 should be enough!
2703 uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
2704 uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE];
2705 // The response (tag -> reader) that we're receiving.
2706 uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
2707 uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
2708
2709 // As we receive stuff, we copy it from receivedCmd or receivedResponse
2710 // into trace, along with its length and other annotations.
2711 //uint8_t *trace = (uint8_t *)BigBuf;
2712
2713 // free eventually allocated BigBuf memory
2714 BigBuf_free();
2715 // allocate the DMA buffer, used to stream samples from the FPGA
2716 uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
2717 uint8_t *data = dmaBuf;
2718 uint8_t previous_data = 0;
2719 int maxDataLen = 0;
2720 int dataLen = 0;
2721 bool ReaderIsActive = FALSE;
2722 bool TagIsActive = FALSE;
2723
2724 iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER);
2725
2726 // Set up the demodulator for tag -> reader responses.
2727 DemodInit(receivedResponse, receivedResponsePar);
2728
2729 // Set up the demodulator for the reader -> tag commands
2730 UartInit(receivedCmd, receivedCmdPar);
2731
2732 // Setup for the DMA.
2733 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2734
2735 LED_D_OFF();
2736
2737 // init sniffer
2738 MfSniffInit();
2739
2740 // And now we loop, receiving samples.
2741 for(uint32_t sniffCounter = 0; TRUE; ) {
2742
2743 if(BUTTON_PRESS()) {
2744 DbpString("cancelled by button");
2745 break;
2746 }
2747
2748 LED_A_ON();
2749 WDT_HIT();
2750
2751 if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time
2752 // check if a transaction is completed (timeout after 2000ms).
2753 // if yes, stop the DMA transfer and send what we have so far to the client
2754 if (MfSniffSend(2000)) {
2755 // Reset everything - we missed some sniffed data anyway while the DMA was stopped
2756 sniffCounter = 0;
2757 data = dmaBuf;
2758 maxDataLen = 0;
2759 ReaderIsActive = FALSE;
2760 TagIsActive = FALSE;
2761 FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer.
2762 }
2763 }
2764
2765 int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far
2766 int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred
2767 if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred
2768 dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed
2769 } else {
2770 dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed
2771 }
2772 // test for length of buffer
2773 if(dataLen > maxDataLen) { // we are more behind than ever...
2774 maxDataLen = dataLen;
2775 if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) {
2776 Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
2777 break;
2778 }
2779 }
2780 if(dataLen < 1) continue;
2781
2782 // primary buffer was stopped ( <-- we lost data!
2783 if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
2784 AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
2785 AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
2786 Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
2787 }
2788 // secondary buffer sets as primary, secondary buffer was stopped
2789 if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
2790 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
2791 AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
2792 }
2793
2794 LED_A_OFF();
2795
2796 if (sniffCounter & 0x01) {
2797
2798 if(!TagIsActive) { // no need to try decoding tag data if the reader is sending
2799 uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4);
2800 if(MillerDecoding(readerdata, (sniffCounter-1)*4)) {
2801 LED_C_INV();
2802 if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
2803
2804 /* And ready to receive another command. */
2805 UartReset();
2806
2807 /* And also reset the demod code */
2808 DemodReset();
2809 }
2810 ReaderIsActive = (Uart.state != STATE_UNSYNCD);
2811 }
2812
2813 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending
2814 uint8_t tagdata = (previous_data << 4) | (*data & 0x0F);
2815 if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) {
2816 LED_C_INV();
2817
2818 if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break;
2819
2820 // And ready to receive another response.
2821 DemodReset();
2822 }
2823 TagIsActive = (Demod.state != DEMOD_UNSYNCD);
2824 }
2825 }
2826
2827 previous_data = *data;
2828 sniffCounter++;
2829 data++;
2830 if(data == dmaBuf + DMA_BUFFER_SIZE) {
2831 data = dmaBuf;
2832 }
2833
2834 } // main cycle
2835
2836 DbpString("COMMAND FINISHED");
2837
2838 FpgaDisableSscDma();
2839 MfSniffEnd();
2840
2841 Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
2842 LEDsoff();
2843 }
Impressum, Datenschutz