]>
git.zerfleddert.de Git - proxmark3-svn/blob - common/lfdemod.c
ad4721f167a2c592db2962d695b8d919a28e61a0
1 //-----------------------------------------------------------------------------
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
7 //-----------------------------------------------------------------------------
8 // Low frequency commands
9 //-----------------------------------------------------------------------------
16 //takes 1s and 0s and searches for EM410x format - output EM ID
17 uint64_t Em410xDecode(uint8_t *BitStream
, int BitLen
)
19 //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
20 // otherwise could be a void with no arguments
23 uint64_t lo
=0; //hi=0,
26 uint32_t initLoopMax
= 65;
27 if (initLoopMax
>BitLen
) initLoopMax
=BitLen
;
29 for (;i
< initLoopMax
; ++i
) //65 samples should be plenty to find high and low values
31 if (BitStream
[i
] > high
)
33 else if (BitStream
[i
] < low
)
36 if (((high
!=1)||(low
!=0))){ //allow only 1s and 0s
37 // PrintAndLog("no data found");
41 // 111111111 bit pattern represent start of frame
42 uint8_t frame_marker_mask
[] = {1,1,1,1,1,1,1,1,1};
46 while( (idx
+ 64) < BitLen
) {
48 // search for a start of frame marker
49 if ( memcmp(BitStream
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
50 { // frame marker found
51 idx
+=9;//sizeof(frame_marker_mask);
53 for(ii
=0; ii
<5; ++ii
){
54 parityTest
+= BitStream
[(i
*5)+ii
+idx
];
56 if (parityTest
== ((parityTest
>>1)<<1)){
58 for (ii
=0; ii
<4;++ii
){
59 //hi = (hi<<1)|(lo>>31);
60 lo
=(lo
<<1LL)|(BitStream
[(i
*5)+ii
+idx
]);
62 //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo);
63 }else {//parity failed
64 //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]);
67 if (resetCnt
>5)return 0;
69 goto restart
;//continue;
72 //skip last 5 bit parity test for simplicity.
82 //takes 2 arguments - clock and invert both as integers
83 //attempts to demodulate ask while decoding manchester
84 //prints binary found and saves in graphbuffer for further commands
85 int askmandemod(uint8_t * BinStream
, int *BitLen
,int *clk
, int *invert
)
88 int high
= 0, low
= 128;
89 *clk
=DetectASKClock(BinStream
,(size_t)*BitLen
,*clk
); //clock default
93 if (*invert
!= 0 && *invert
!= 1) *invert
=0;
94 uint32_t initLoopMax
= 200;
95 if (initLoopMax
>*BitLen
) initLoopMax
=*BitLen
;
96 // Detect high and lows
97 for (i
= 0; i
< initLoopMax
; ++i
) //200 samples should be enough to find high and low values
99 if (BinStream
[i
] > high
)
101 else if (BinStream
[i
] < low
)
104 if ((high
< 158) ){ //throw away static
105 //PrintAndLog("no data found");
108 //25% fuzz in case highs and lows aren't clipped [marshmellow]
109 high
=(int)((high
-128)*.75)+128;
110 low
= (int)((low
-128)*.75)+128;
112 //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
113 int lastBit
= 0; //set first clock check
114 uint32_t bitnum
= 0; //output counter
115 int tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
116 if (*clk
==32)tol
=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
118 uint32_t gLen
= *BitLen
;
119 if (gLen
> 3000) gLen
=3000;
121 uint32_t bestStart
= *BitLen
;
122 uint32_t bestErrCnt
= (*BitLen
/1000);
123 uint32_t maxErr
= (*BitLen
/1000);
124 //PrintAndLog("DEBUG - lastbit - %d",lastBit);
125 //loop to find first wave that works
126 for (iii
=0; iii
< gLen
; ++iii
){
127 if ((BinStream
[iii
]>=high
)||(BinStream
[iii
]<=low
)){
130 //loop through to see if this start location works
131 for (i
= iii
; i
< *BitLen
; ++i
) {
132 if ((BinStream
[i
] >= high
) && ((i
-lastBit
)>(*clk
-tol
))){
134 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
)>(*clk
-tol
))){
135 //low found and we are expecting a bar
138 //mid value found or no bar supposed to be here
139 if ((i
-lastBit
)>(*clk
+tol
)){
140 //should have hit a high or low based on clock!!
143 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
146 lastBit
+=*clk
;//skip over until hit too many errors
147 if (errCnt
>(maxErr
)) break; //allow 1 error for every 1000 samples else start over
150 if ((i
-iii
) >(400 * *clk
)) break; //got plenty of bits
152 //we got more than 64 good bits and not all errors
153 if ((((i
-iii
)/ *clk
) > (64+errCnt
)) && (errCnt
<maxErr
)) {
158 break; //great read - finish
160 if (errCnt
<bestErrCnt
){ //set this as new best run
167 if (bestErrCnt
<maxErr
){
168 //best run is good enough set to best run and set overwrite BinStream
170 lastBit
=bestStart
-*clk
;
172 for (i
= iii
; i
< *BitLen
; ++i
) {
173 if ((BinStream
[i
] >= high
) && ((i
-lastBit
)>(*clk
-tol
))){
175 BinStream
[bitnum
] = *invert
;
177 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
)>(*clk
-tol
))){
178 //low found and we are expecting a bar
180 BinStream
[bitnum
] = 1-*invert
;
183 //mid value found or no bar supposed to be here
184 if ((i
-lastBit
)>(*clk
+tol
)){
185 //should have hit a high or low based on clock!!
188 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
190 BinStream
[bitnum
]=77;
194 lastBit
+=*clk
;//skip over error
197 if (bitnum
>=400) break;
209 //take 10 and 01 and manchester decode
210 //run through 2 times and take least errCnt
211 int manrawdecode(uint8_t * BitStream
, int *bitLen
)
219 for (ii
=1;ii
<3;++ii
){
221 for (i
=i
+ii
;i
<*bitLen
-2;i
+=2){
222 if(BitStream
[i
]==1 && (BitStream
[i
+1]==0)){
223 } else if((BitStream
[i
]==0)&& BitStream
[i
+1]==1){
227 if(bitnum
>300) break;
239 for (i
=i
+ii
;i
<*bitLen
-2;i
+=2){
240 if(BitStream
[i
]==1 && (BitStream
[i
+1]==0)){
241 BitStream
[bitnum
++]=0;
242 } else if((BitStream
[i
]==0)&& BitStream
[i
+1]==1){
243 BitStream
[bitnum
++]=1;
245 BitStream
[bitnum
++]=77;
248 if(bitnum
>300) break;
257 //take 01 or 10 = 0 and 11 or 00 = 1
258 int BiphaseRawDecode(uint8_t * BitStream
, int *bitLen
, int offset
)
264 for (;i
<*bitLen
-2;i
+=2){
265 if((BitStream
[i
]==1 && BitStream
[i
+1]==0)||(BitStream
[i
]==0 && BitStream
[i
+1]==1)){
266 BitStream
[bitnum
++]=1;
267 } else if((BitStream
[i
]==0 && BitStream
[i
+1]==0)||(BitStream
[i
]==1 && BitStream
[i
+1]==1)){
268 BitStream
[bitnum
++]=0;
270 BitStream
[bitnum
++]=77;
273 if(bitnum
>250) break;
280 //takes 2 arguments - clock and invert both as integers
281 //attempts to demodulate ask only
282 //prints binary found and saves in graphbuffer for further commands
283 int askrawdemod(uint8_t *BinStream
, int *bitLen
,int *clk
, int *invert
)
286 // int invert=0; //invert default
287 int high
= 0, low
= 128;
288 *clk
=DetectASKClock(BinStream
,*bitLen
,*clk
); //clock default
289 uint8_t BitStream
[502] = {0};
291 if (*clk
<8) *clk
=64;
292 if (*clk
<32) *clk
=32;
293 if (*invert
!= 0 && *invert
!= 1) *invert
=0;
294 uint32_t initLoopMax
= 200;
295 if (initLoopMax
>*bitLen
) initLoopMax
=*bitLen
;
296 // Detect high and lows
297 for (i
= 0; i
< initLoopMax
; ++i
) //200 samples should be plenty to find high and low values
299 if (BinStream
[i
] > high
)
301 else if (BinStream
[i
] < low
)
304 if ((high
< 158)){ //throw away static
305 // PrintAndLog("no data found");
308 //25% fuzz in case highs and lows aren't clipped [marshmellow]
309 high
=(int)((high
-128)*.75)+128;
310 low
= (int)((low
-128)*.75)+128;
312 //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
313 int lastBit
= 0; //set first clock check
314 uint32_t bitnum
= 0; //output counter
315 uint8_t tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
316 if (*clk
==32)tol
=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
318 uint32_t gLen
= *bitLen
;
319 if (gLen
> 500) gLen
=500;
321 uint32_t bestStart
= *bitLen
;
322 uint32_t bestErrCnt
= (*bitLen
/1000);
324 //PrintAndLog("DEBUG - lastbit - %d",lastBit);
325 //loop to find first wave that works
326 for (iii
=0; iii
< gLen
; ++iii
){
327 if ((BinStream
[iii
]>=high
)||(BinStream
[iii
]<=low
)){
329 //loop through to see if this start location works
330 for (i
= iii
; i
< *bitLen
; ++i
) {
331 if ((BinStream
[i
] >= high
) && ((i
-lastBit
)>(*clk
-tol
))){
333 BitStream
[bitnum
] = *invert
;
336 } else if ((BinStream
[i
] <= low
) && ((i
-lastBit
)>(*clk
-tol
))){
337 //low found and we are expecting a bar
339 BitStream
[bitnum
] = 1-*invert
;
342 } else if ((BinStream
[i
]<=low
) && (midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
345 BitStream
[bitnum
]= 1-*invert
;
347 } else if ((BinStream
[i
]>=high
)&&(midBit
==0) && ((i
-lastBit
)>((*clk
/2)-tol
))){
350 BitStream
[bitnum
]= *invert
;
352 } else if ((i
-lastBit
)>((*clk
/2)+tol
)&&(midBit
==0)){
355 BitStream
[bitnum
]= BitStream
[bitnum
-1];
358 //mid value found or no bar supposed to be here
360 if ((i
-lastBit
)>(*clk
+tol
)){
361 //should have hit a high or low based on clock!!
363 //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
365 BitStream
[bitnum
]=77;
371 lastBit
+=*clk
;//skip over until hit too many errors
372 if (errCnt
>((*bitLen
/1000))){ //allow 1 error for every 1000 samples else start over
374 bitnum
=0;//start over
379 if (bitnum
>500) break;
381 //we got more than 64 good bits and not all errors
382 if ((bitnum
> (64+errCnt
)) && (errCnt
<(*bitLen
/1000))) {
384 if (errCnt
==0) break; //great read - finish
385 if (bestStart
== iii
) break; //if current run == bestErrCnt run (after exhausted testing) then finish
386 if (errCnt
<bestErrCnt
){ //set this as new best run
392 if (iii
>=gLen
){ //exhausted test
393 //if there was a ok test go back to that one and re-run the best run (then dump after that run)
394 if (bestErrCnt
< (*bitLen
/1000)) iii
=bestStart
;
399 // PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum);
400 //move BitStream back to BinStream
402 for (i
=0; i
< bitnum
; ++i
){
403 BinStream
[i
]=BitStream
[i
];
406 // RepaintGraphWindow();
409 // PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
411 // PrintAndLog("ASK decoded bitstream:");
412 // Now output the bitstream to the scrollback by line of 16 bits
413 // printBitStream2(BitStream,bitnum);
415 //errCnt=manrawdemod(BitStream,bitnum);
417 // Em410xDecode(Cmd);
421 //translate wave to 11111100000 (1 for each short wave 0 for each long wave)
422 size_t fsk_wave_demod(uint8_t * dest
, size_t size
, uint8_t fchigh
, uint8_t fclow
)
424 uint32_t last_transition
= 0;
427 if (fchigh
==0) fchigh
=10;
428 if (fclow
==0) fclow
=8;
429 // we do care about the actual theshold value as sometimes near the center of the
430 // wave we may get static that changes direction of wave for one value
431 // if our value is too low it might affect the read. and if our tag or
432 // antenna is weak a setting too high might not see anything. [marshmellow]
433 if (size
<100) return 0;
434 for(idx
=1; idx
<100; idx
++){
435 if(maxVal
<dest
[idx
]) maxVal
= dest
[idx
];
437 // set close to the top of the wave threshold with 25% margin for error
438 // less likely to get a false transition up there.
439 // (but have to be careful not to go too high and miss some short waves)
440 uint8_t threshold_value
= (uint8_t)(((maxVal
-128)*.75)+128);
442 //uint8_t threshold_value = 127;
444 // sync to first lo-hi transition, and threshold
446 // Need to threshold first sample
448 if(dest
[0] < threshold_value
) dest
[0] = 0;
452 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
453 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
454 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
455 for(idx
= 1; idx
< size
; idx
++) {
456 // threshold current value
458 if (dest
[idx
] < threshold_value
) dest
[idx
] = 0;
461 // Check for 0->1 transition
462 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
463 if ((idx
-last_transition
)<(fclow
-2)){ //0-5 = garbage noise
464 //do nothing with extra garbage
465 } else if ((idx
-last_transition
) < (fchigh
-1)) { //6-8 = 8 waves
467 } else { //9+ = 10 waves
470 last_transition
= idx
;
474 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
477 uint32_t myround2(float f
)
479 if (f
>= 2000) return 2000;//something bad happened
480 return (uint32_t) (f
+ (float)0.5);
483 //translate 11111100000 to 10
484 size_t aggregate_bits(uint8_t *dest
,size_t size
, uint8_t rfLen
, uint8_t maxConsequtiveBits
, uint8_t invert
,uint8_t fchigh
,uint8_t fclow
)// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value,
486 uint8_t lastval
=dest
[0];
491 for( idx
=1; idx
< size
; idx
++) {
493 if (dest
[idx
]==lastval
) {
497 //if lastval was 1, we have a 1->0 crossing
498 if ( dest
[idx
-1]==1 ) {
499 n
=myround2((float)(n
+1)/((float)(rfLen
)/(float)fclow
));
500 //n=(n+1) / h2l_crossing_value;
501 } else {// 0->1 crossing
502 n
=myround2((float)(n
+1)/((float)(rfLen
-2)/(float)fchigh
)); //-2 for fudge factor
503 //n=(n+1) / l2h_crossing_value;
507 if(n
< maxConsequtiveBits
) //Consecutive
509 if(invert
==0){ //invert bits
510 memset(dest
+numBits
, dest
[idx
-1] , n
);
512 memset(dest
+numBits
, dest
[idx
-1]^1 , n
);
521 //by marshmellow (from holiman's base)
522 // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
523 int fskdemod(uint8_t *dest
, size_t size
, uint8_t rfLen
, uint8_t invert
, uint8_t fchigh
, uint8_t fclow
)
526 size
= fsk_wave_demod(dest
, size
, fchigh
, fclow
);
527 size
= aggregate_bits(dest
, size
,rfLen
,192,invert
,fchigh
,fclow
);
530 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
531 int HIDdemodFSK(uint8_t *dest
, size_t size
, uint32_t *hi2
, uint32_t *hi
, uint32_t *lo
)
534 size_t idx
=0; //, found=0; //size=0,
536 size
= fskdemod(dest
, size
,50,0,10,8);
538 // final loop, go over previously decoded manchester data and decode into usable tag ID
539 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
540 uint8_t frame_marker_mask
[] = {1,1,1,0,0,0};
544 while( idx
+ sizeof(frame_marker_mask
) < size
) {
545 // search for a start of frame marker
546 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
547 { // frame marker found
548 idx
+=sizeof(frame_marker_mask
);
549 while(dest
[idx
] != dest
[idx
+1] && idx
< size
-2)
551 // Keep going until next frame marker (or error)
552 // Shift in a bit. Start by shifting high registers
553 *hi2
= (*hi2
<<1)|(*hi
>>31);
554 *hi
= (*hi
<<1)|(*lo
>>31);
555 //Then, shift in a 0 or one into low
556 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
563 // Hopefully, we read a tag and hit upon the next frame marker
564 if(idx
+ sizeof(frame_marker_mask
) < size
)
566 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
573 *hi2
= *hi
= *lo
= 0;
582 uint32_t bytebits_to_byte(uint8_t* src
, int numbits
)
585 for(int i
= 0 ; i
< numbits
; i
++)
587 num
= (num
<< 1) | (*src
);
593 int IOdemodFSK(uint8_t *dest
, size_t size
)
596 //make sure buffer has data
597 if (size
< 66) return -1;
598 //test samples are not just noise
600 for(idx
=0;idx
<65;idx
++){
601 if (testMax
<dest
[idx
]) testMax
=dest
[idx
];
607 size
= fskdemod(dest
, size
,64,1,10,8); // RF/64 and invert
608 if (size
< 65) return -1; //did we get a good demod?
610 //0 10 20 30 40 50 60
612 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
613 //-----------------------------------------------------------------------------
614 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
616 //XSF(version)facility:codeone+codetwo
618 uint8_t mask
[] = {0,0,0,0,0,0,0,0,0,1};
619 for( idx
=0; idx
< (size
- 65); idx
++) {
620 if ( memcmp(dest
+ idx
, mask
, sizeof(mask
))==0) {
622 if (!dest
[idx
+8] && dest
[idx
+17]==1 && dest
[idx
+26]==1 && dest
[idx
+35]==1 && dest
[idx
+44]==1 && dest
[idx
+53]==1){
623 //confirmed proper separator bits found
624 //return start position
634 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
635 // maybe somehow adjust peak trimming value based on samples to fix?
636 int DetectASKClock(uint8_t dest
[], size_t size
, int clock
)
641 int clk
[]={16,32,40,50,64,100,128,256};
642 int loopCnt
= 256; //don't need to loop through entire array...
643 if (size
<loopCnt
) loopCnt
= size
;
645 //if we already have a valid clock quit
647 if (clk
[i
]==clock
) return clock
;
649 //get high and low peak
650 for (i
=0;i
<loopCnt
;++i
){
658 peak
=(int)(((peak
-128)*.75)+128);
659 low
= (int)(((low
-128)*.75)+128);
663 int bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000};
665 //test each valid clock from smallest to greatest to see which lines up
666 for(clkCnt
=0; clkCnt
<6;++clkCnt
){
667 if (clk
[clkCnt
]==32){
672 bestErr
[clkCnt
]=1000;
673 //try lining up the peaks by moving starting point (try first 256)
674 for (ii
=0; ii
<loopCnt
; ++ii
){
675 if ((dest
[ii
]>=peak
) || (dest
[ii
]<=low
)){
677 // now that we have the first one lined up test rest of wave array
678 for (i
=0; i
<((int)(size
/clk
[clkCnt
])-1); ++i
){
679 if (dest
[ii
+(i
*clk
[clkCnt
])]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])]<=low
){
680 }else if(dest
[ii
+(i
*clk
[clkCnt
])-tol
]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])-tol
]<=low
){
681 }else if(dest
[ii
+(i
*clk
[clkCnt
])+tol
]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])+tol
]<=low
){
682 }else{ //error no peak detected
686 //if we found no errors this is correct one - return this clock
687 if(errCnt
==0) return clk
[clkCnt
];
688 //if we found errors see if it is lowest so far and save it as best run
689 if(errCnt
<bestErr
[clkCnt
]) bestErr
[clkCnt
]=errCnt
;
695 for (iii
=0; iii
<7;++iii
){
696 if (bestErr
[iii
]<bestErr
[best
]){
697 // current best bit to error ratio vs new bit to error ratio
698 if (((size
/clk
[best
])/bestErr
[best
]<(size
/clk
[iii
])/bestErr
[iii
]) ){
705 int DetectpskNRZClock(uint8_t dest
[], size_t size
, int clock
)
710 int clk
[]={16,32,40,50,64,100,128,256};
711 int loopCnt
= 2048; //don't need to loop through entire array...
712 if (size
<loopCnt
) loopCnt
= size
;
714 //if we already have a valid clock quit
716 if (clk
[i
]==clock
) return clock
;
718 //get high and low peak
719 for (i
=0;i
<loopCnt
;++i
){
727 peak
=(int)(((peak
-128)*.90)+128);
728 low
= (int)(((low
-128)*.90)+128);
729 //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
735 int bestErr
[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
736 int peaksdet
[]={0,0,0,0,0,0,0,0,0};
737 //test each valid clock from smallest to greatest to see which lines up
738 for(clkCnt
=0; clkCnt
<6;++clkCnt
){
739 if (clk
[clkCnt
]==32){
744 //try lining up the peaks by moving starting point (try first 256)
745 for (ii
=0; ii
<loopCnt
; ++ii
){
746 if ((dest
[ii
]>=peak
) || (dest
[ii
]<=low
)){
749 // now that we have the first one lined up test rest of wave array
750 for (i
=0; i
<((int)(size
/clk
[clkCnt
])-1); ++i
){
751 if (dest
[ii
+(i
*clk
[clkCnt
])]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])]<=low
){
753 }else if(dest
[ii
+(i
*clk
[clkCnt
])-tol
]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])-tol
]<=low
){
755 }else if(dest
[ii
+(i
*clk
[clkCnt
])+tol
]>=peak
|| dest
[ii
+(i
*clk
[clkCnt
])+tol
]<=low
){
757 }else{ //error no peak detected
761 if(peakcnt
>peaksdet
[clkCnt
]) {
762 peaksdet
[clkCnt
]=peakcnt
;
763 bestErr
[clkCnt
]=errCnt
;
770 //int ratio2; //debug
773 for (iii
=0; iii
<7;++iii
){
775 //ratio2=1000; //debug
776 //bits=size/clk[iii]; //debug
777 if (peaksdet
[iii
]>0){
778 ratio
=bestErr
[iii
]/peaksdet
[iii
];
779 if (((bestErr
[best
]/peaksdet
[best
])>(ratio
)+1)){
782 //ratio2=bits/peaksdet[iii]; //debug
784 //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d, ratio: %d, bits: %d, peakbitr: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best],ratio, bits,ratio2);
790 int DetectNRZpskClock(uint8_t dest[], size_t size, int clock)
795 int clk[]={16,32,40,50,64,100,128,256};
796 int loopCnt = 1500; //don't need to loop through entire array...
797 if (size<loopCnt) loopCnt = size;
799 //if we already have a valid clock quit
801 if (clk[i]==clock) return clock;
803 //get high and low peak
804 for (i=0;i<loopCnt;++i){
812 peak=(int)((peak-128)*.75)+128;
813 low= (int)((low-128)*.75)+128;
818 int errCnt[]={0,0,0,0,0,0,0,0};
822 int lowBitCnt[]={0,0,0,0,0,0,0,0};
824 //test each valid clock from smallest to greatest to see which lines up
825 for(clkCnt=0; clkCnt<6;++clkCnt){
826 if (clk[clkCnt]==32){
831 ignorewin = clk[clkCnt]/8;
833 //try lining up the peaks by moving starting point (try first 256)
834 for (ii=1; ii<loopCnt; ++ii){
835 if ((dest[ii]>=peak) || (dest[ii]<=low)){
838 // now that we have the first one lined up test rest of wave array
839 for (i=ii; i<size; ++i){
840 if ((dest[i]>=peak || dest[i]<=low) && (i>=lastClk+*clk-tol && i<=lastClk+*clk+tol)){
842 lastClk=lastClk+*clk;
843 ignorewin=clk[clkCnt]/8;
844 }else if(dest[i]<peak && dest[i]>low) {
848 if (i>=lastClk+*clk+tol){ //past possible bar
851 }else if ((dest[i]>=peak || dest[i]<=low) && (i<lastClk+*clk-tol || i>=lastClk+*clk+tol) && (bitHigh==0)){
852 //error bar found no clock...
856 //if we found no errors this is correct one - return this clock
857 if(errCnt[clkCnt]==0 && lowBitCnt[clkCnt]==0) return clk[clkCnt];
858 //if we found errors see if it is lowest so far and save it as best run
859 if(errCnt[clkCnt]<bestErr) bestErr=errCnt[clkCnt];
860 if(lowBitCnt[clkCnt]<BestLowBit && errCnt[clkCnt]==bestErr) BestLowBit=lowBitCnt[clkCnt];
868 for (iii=0; iii<7;++iii){
869 if (errCnt[iii]<errCnt[best]){
872 if (lowBitCnt[iii]<lowBitCnt[best2]){
876 //adjust best to one with least low bit counts (as long as no errors)
878 if (errCnt[best]==errCnt[best2]) best = best2;
884 //by marshmellow (attempt to get rid of high immediately after a low)
885 void pskCleanWave(uint8_t *bitStream
, int bitLen
)
891 // int loopMax = 2048;
894 for (i
=0; i
<bitLen
; ++i
){
895 if (bitStream
[i
]<low
) low
=bitStream
[i
];
896 if (bitStream
[i
]>high
) high
=bitStream
[i
];
898 high
= (int)(((high
-128)*.80)+128);
899 low
= (int)(((low
-128)*.90)+128);
900 //low = (uint8_t)(((int)(low)-128)*.80)+128;
901 for (i
=0; i
<bitLen
; ++i
){
909 }else if (newHigh
==1){
917 if (bitStream
[i
]<=low
) newLow
=1;
918 if (bitStream
[i
]>=high
) newHigh
=1;
923 int indala26decode(uint8_t *bitStream
, int *bitLen
, uint8_t *invert
)
925 //26 bit 40134 format (don't know other formats)
926 // Finding the start of a UID
930 long_wait
= 29;//29 leading zeros in format
936 for (start
= 0; start
<= *bitLen
- 250; start
++) {
937 first
= bitStream
[start
];
938 for (i
= start
; i
< start
+ long_wait
; i
++) {
939 if (bitStream
[i
] != first
) {
943 if (i
== (start
+ long_wait
)) {
947 if (start
== *bitLen
- 250 + 1) {
948 // did not find start sequence
951 //found start once now test length by finding next one
952 // Inverting signal if needed
954 for (i
= start
; i
< *bitLen
; i
++) {
955 bitStream
[i
] = !bitStream
[i
];
961 for (ii
=start
+29; ii
<= *bitLen
- 250; ii
++) {
962 first2
= bitStream
[ii
];
963 for (iii
= ii
; iii
< ii
+ long_wait
; iii
++) {
964 if (bitStream
[iii
] != first2
) {
968 if (iii
== (ii
+ long_wait
)) {
972 if (ii
== *bitLen
- 250 + 1){
973 // did not find second start sequence
980 for (ii
= 0; ii
< bitCnt
; ii
++) {
981 bitStream
[ii
] = bitStream
[i
++];
982 //showbits[bit] = '0' + bits[bit];
988 int pskNRZrawDemod(uint8_t *dest
, int *bitLen
, int *clk
, int *invert
)
990 pskCleanWave(dest
,*bitLen
);
991 int clk2
= DetectpskNRZClock(dest
, *bitLen
, *clk
);
994 uint8_t high
=0, low
=128;
995 uint32_t gLen
= *bitLen
;
996 if (gLen
> 1280) gLen
=1280;
998 for (i
=0; i
<gLen
; ++i
){
999 if (dest
[i
]>high
) high
= dest
[i
];
1000 if (dest
[i
]<low
) low
=dest
[i
];
1002 //fudge high/low bars by 25%
1003 high
= (uint8_t)((((int)(high
)-128)*.75)+128);
1004 low
= (uint8_t)((((int)(low
)-128)*.80)+128);
1006 //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
1007 int lastBit
= 0; //set first clock check
1008 uint32_t bitnum
= 0; //output counter
1009 uint8_t tol
= 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
1010 if (*clk
==32)tol
=2; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
1013 uint32_t bestStart
= *bitLen
;
1014 uint32_t maxErr
= (*bitLen
/1000);
1015 uint32_t bestErrCnt
= maxErr
;
1019 uint8_t ignorewin
=*clk
/8;
1020 //PrintAndLog("DEBUG - lastbit - %d",lastBit);
1021 //loop to find first wave that works - align to clock
1022 for (iii
=0; iii
< gLen
; ++iii
){
1023 if ((dest
[iii
]>=high
)||(dest
[iii
]<=low
)){
1025 //loop through to see if this start location works
1026 for (i
= iii
; i
< *bitLen
; ++i
) {
1027 //if we found a high bar and we are at a clock bit
1028 if ((dest
[i
]>=high
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1032 //dest[bitnum]=curBit;
1035 //else if low bar found and we are at a clock point
1036 }else if ((dest
[i
]<=low
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1041 //dest[bitnum]=curBit;
1043 //else if no bars found
1044 }else if(dest
[i
]<high
&& dest
[i
]>low
) {
1048 //if we are past a clock point
1049 if (i
>=lastBit
+*clk
+tol
){ //clock val
1050 //dest[bitnum]=curBit;
1054 //else if bar found but we are not at a clock bit and we did not just have a clock bit
1055 }else if ((dest
[i
]>=high
|| dest
[i
]<=low
) && (i
<lastBit
+*clk
-tol
|| i
>lastBit
+*clk
+tol
) && (bitHigh
==0)){
1056 //error bar found no clock...
1059 if (bitnum
>=1000) break;
1061 //we got more than 64 good bits and not all errors
1062 if ((bitnum
> (64+errCnt
)) && (errCnt
<(maxErr
))) {
1063 //possible good read
1067 break; //great read - finish
1069 if (bestStart
== iii
) break; //if current run == bestErrCnt run (after exhausted testing) then finish
1070 if (errCnt
<bestErrCnt
){ //set this as new best run
1077 if (bestErrCnt
<maxErr
){
1078 //best run is good enough set to best run and set overwrite BinStream
1080 lastBit
=bestStart
-*clk
;
1082 for (i
= iii
; i
< *bitLen
; ++i
) {
1083 //if we found a high bar and we are at a clock bit
1084 if ((dest
[i
]>=high
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1088 dest
[bitnum
]=curBit
;
1091 //else if low bar found and we are at a clock point
1092 }else if ((dest
[i
]<=low
) && (i
>=lastBit
+*clk
-tol
&& i
<=lastBit
+*clk
+tol
)){
1096 dest
[bitnum
]=curBit
;
1099 //else if no bars found
1100 }else if(dest
[i
]<high
&& dest
[i
]>low
) {
1104 //if we are past a clock point
1105 if (i
>=lastBit
+*clk
+tol
){ //clock val
1107 dest
[bitnum
]=curBit
;
1110 //else if bar found but we are not at a clock bit and we did not just have a clock bit
1111 }else if ((dest
[i
]>=high
|| dest
[i
]<=low
) && ((i
<lastBit
+*clk
-tol
) || (i
>lastBit
+*clk
+tol
)) && (bitHigh
==0)){
1112 //error bar found no clock...
1118 if (bitnum
>=1000) break;
1136 uint8_t high=0, low=128;
1137 uint32_t loopMax = 1280; //20 raw bits
1140 if (size<loopMax) return -1;
1141 for (i=0; i<loopMax; ++i){
1142 if (dest[i]>high) high = dest[i];
1143 if (dest[i]<low) low=dest[i];
1145 //fudge high/low bars by 25%
1146 high = (uint8_t)(((int)(high)-128)*.75)+128;
1147 low = (uint8_t)(((int)(low)-128)*.75)+128;
1150 for (i=0;i<size; ++i){
1151 if (dest[i]>=high) dest[i]=high;
1152 else if(dest[i]<=low) dest[i]=low;