1 //-----------------------------------------------------------------------------
2 // Gerhard de Koning Gans - May 2008
3 // Hagen Fritsch - June 2010
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // Routines to support ISO 14443 type A.
10 //-----------------------------------------------------------------------------
12 #include "proxmark3.h"
17 #include "iso14443crc.h"
18 #include "iso14443a.h"
20 #include "mifareutil.h"
22 static uint8_t *trace
= (uint8_t *) BigBuf
;
23 static int traceLen
= 0;
24 static int rsamples
= 0;
25 static int tracing
= TRUE
;
26 static uint32_t iso14a_timeout
;
29 // Sequence D: 11110000 modulation with subcarrier during first half
30 // Sequence E: 00001111 modulation with subcarrier during second half
31 // Sequence F: 00000000 no modulation with subcarrier
33 // Sequence X: 00001100 drop after half a period
34 // Sequence Y: 00000000 no drop
35 // Sequence Z: 11000000 drop at start
43 static const uint8_t OddByteParity
[256] = {
44 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
45 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
46 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
47 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
48 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
49 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
50 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
51 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
52 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
53 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
54 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
55 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
56 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
57 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
58 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
59 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
62 // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT
63 #define RECV_CMD_OFFSET 3032
64 #define RECV_RES_OFFSET 3096
65 #define DMA_BUFFER_OFFSET 3160
66 #define DMA_BUFFER_SIZE 4096
67 #define TRACE_LENGTH 3000
70 void iso14a_set_trigger(int enable
) {
74 //-----------------------------------------------------------------------------
75 // Generate the parity value for a byte sequence
77 //-----------------------------------------------------------------------------
78 byte_t
oddparity (const byte_t bt
)
80 return OddByteParity
[bt
];
83 uint32_t GetParity(const uint8_t * pbtCmd
, int iLen
)
88 // Generate the encrypted data
89 for (i
= 0; i
< iLen
; i
++) {
90 // Save the encrypted parity bit
91 dwPar
|= ((OddByteParity
[pbtCmd
[i
]]) << i
);
96 void AppendCrc14443a(uint8_t* data
, int len
)
98 ComputeCrc14443(CRC_14443_A
,data
,len
,data
+len
,data
+len
+1);
101 int LogTrace(const uint8_t * btBytes
, int iLen
, int iSamples
, uint32_t dwParity
, int bReader
)
103 // Return when trace is full
104 if (traceLen
>= TRACE_LENGTH
) return FALSE
;
106 // Trace the random, i'm curious
107 rsamples
+= iSamples
;
108 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
109 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
110 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
111 trace
[traceLen
++] = ((rsamples
>> 24) & 0xff);
113 trace
[traceLen
- 1] |= 0x80;
115 trace
[traceLen
++] = ((dwParity
>> 0) & 0xff);
116 trace
[traceLen
++] = ((dwParity
>> 8) & 0xff);
117 trace
[traceLen
++] = ((dwParity
>> 16) & 0xff);
118 trace
[traceLen
++] = ((dwParity
>> 24) & 0xff);
119 trace
[traceLen
++] = iLen
;
120 memcpy(trace
+ traceLen
, btBytes
, iLen
);
125 //-----------------------------------------------------------------------------
126 // The software UART that receives commands from the reader, and its state
128 //-----------------------------------------------------------------------------
132 STATE_START_OF_COMMUNICATION
,
156 static RAMFUNC
int MillerDecoding(int bit
)
161 if(!Uart
.bitBuffer
) {
162 Uart
.bitBuffer
= bit
^ 0xFF0;
166 Uart
.bitBuffer
<<= 4;
167 Uart
.bitBuffer
^= bit
;
172 if(Uart
.state
!= STATE_UNSYNCD
) {
175 if((Uart
.bitBuffer
& Uart
.syncBit
) ^ Uart
.syncBit
) {
181 if(((Uart
.bitBuffer
<< 1) & Uart
.syncBit
) ^ Uart
.syncBit
) {
187 if(bit
!= bitright
) { bit
= bitright
; }
189 if(Uart
.posCnt
== 1) {
190 // measurement first half bitperiod
192 Uart
.drop
= DROP_FIRST_HALF
;
196 // measurement second half bitperiod
197 if(!bit
& (Uart
.drop
== DROP_NONE
)) {
198 Uart
.drop
= DROP_SECOND_HALF
;
201 // measured a drop in first and second half
202 // which should not be possible
203 Uart
.state
= STATE_ERROR_WAIT
;
210 case STATE_START_OF_COMMUNICATION
:
212 if(Uart
.drop
== DROP_SECOND_HALF
) {
213 // error, should not happen in SOC
214 Uart
.state
= STATE_ERROR_WAIT
;
219 Uart
.state
= STATE_MILLER_Z
;
226 if(Uart
.drop
== DROP_NONE
) {
227 // logic '0' followed by sequence Y
228 // end of communication
229 Uart
.state
= STATE_UNSYNCD
;
232 // if(Uart.drop == DROP_FIRST_HALF) {
233 // Uart.state = STATE_MILLER_Z; stay the same
234 // we see a logic '0' }
235 if(Uart
.drop
== DROP_SECOND_HALF
) {
236 // we see a logic '1'
237 Uart
.shiftReg
|= 0x100;
238 Uart
.state
= STATE_MILLER_X
;
244 if(Uart
.drop
== DROP_NONE
) {
245 // sequence Y, we see a '0'
246 Uart
.state
= STATE_MILLER_Y
;
249 if(Uart
.drop
== DROP_FIRST_HALF
) {
250 // Would be STATE_MILLER_Z
251 // but Z does not follow X, so error
252 Uart
.state
= STATE_ERROR_WAIT
;
255 if(Uart
.drop
== DROP_SECOND_HALF
) {
256 // We see a '1' and stay in state X
257 Uart
.shiftReg
|= 0x100;
265 if(Uart
.drop
== DROP_NONE
) {
266 // logic '0' followed by sequence Y
267 // end of communication
268 Uart
.state
= STATE_UNSYNCD
;
271 if(Uart
.drop
== DROP_FIRST_HALF
) {
273 Uart
.state
= STATE_MILLER_Z
;
275 if(Uart
.drop
== DROP_SECOND_HALF
) {
276 // We see a '1' and go to state X
277 Uart
.shiftReg
|= 0x100;
278 Uart
.state
= STATE_MILLER_X
;
282 case STATE_ERROR_WAIT
:
283 // That went wrong. Now wait for at least two bit periods
284 // and try to sync again
285 if(Uart
.drop
== DROP_NONE
) {
287 Uart
.state
= STATE_UNSYNCD
;
292 Uart
.state
= STATE_UNSYNCD
;
297 Uart
.drop
= DROP_NONE
;
299 // should have received at least one whole byte...
300 if((Uart
.bitCnt
== 2) && EOC
&& (Uart
.byteCnt
> 0)) {
304 if(Uart
.bitCnt
== 9) {
305 Uart
.output
[Uart
.byteCnt
] = (Uart
.shiftReg
& 0xff);
308 Uart
.parityBits
<<= 1;
309 Uart
.parityBits
^= ((Uart
.shiftReg
>> 8) & 0x01);
312 // when End of Communication received and
313 // all data bits processed..
320 Uart.output[Uart.byteCnt] = 0xAA;
322 Uart.output[Uart.byteCnt] = error & 0xFF;
324 Uart.output[Uart.byteCnt] = 0xAA;
326 Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
328 Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
330 Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
332 Uart.output[Uart.byteCnt] = 0xAA;
340 bit
= Uart
.bitBuffer
& 0xf0;
344 // should have been high or at least (4 * 128) / fc
345 // according to ISO this should be at least (9 * 128 + 20) / fc
346 if(Uart
.highCnt
== 8) {
347 // we went low, so this could be start of communication
348 // it turns out to be safer to choose a less significant
349 // syncbit... so we check whether the neighbour also represents the drop
350 Uart
.posCnt
= 1; // apparently we are busy with our first half bit period
351 Uart
.syncBit
= bit
& 8;
353 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; }
354 else if(bit
& 4) { Uart
.syncBit
= bit
& 4; Uart
.samples
= 2; bit
<<= 2; }
355 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; }
356 else if(bit
& 2) { Uart
.syncBit
= bit
& 2; Uart
.samples
= 1; bit
<<= 1; }
357 if(!Uart
.syncBit
) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0;
358 if(Uart
.syncBit
&& (Uart
.bitBuffer
& 8)) {
361 // the first half bit period is expected in next sample
366 else if(bit
& 1) { Uart
.syncBit
= bit
& 1; Uart
.samples
= 0; }
369 Uart
.state
= STATE_START_OF_COMMUNICATION
;
370 Uart
.drop
= DROP_FIRST_HALF
;
381 if(Uart
.highCnt
< 8) {
390 //=============================================================================
391 // ISO 14443 Type A - Manchester
392 //=============================================================================
397 DEMOD_START_OF_COMMUNICATION
,
420 static RAMFUNC
int ManchesterDecoding(int v
)
436 if(Demod
.state
==DEMOD_UNSYNCD
) {
437 Demod
.output
[Demod
.len
] = 0xfa;
440 Demod
.posCount
= 1; // This is the first half bit period, so after syncing handle the second part
443 Demod
.syncBit
= 0x08;
450 Demod
.syncBit
= 0x04;
457 Demod
.syncBit
= 0x02;
460 if(bit
& 0x01 && Demod
.syncBit
) {
461 Demod
.syncBit
= 0x01;
466 Demod
.state
= DEMOD_START_OF_COMMUNICATION
;
467 Demod
.sub
= SUB_FIRST_HALF
;
470 Demod
.parityBits
= 0;
473 if(trigger
) LED_A_OFF();
474 switch(Demod
.syncBit
) {
475 case 0x08: Demod
.samples
= 3; break;
476 case 0x04: Demod
.samples
= 2; break;
477 case 0x02: Demod
.samples
= 1; break;
478 case 0x01: Demod
.samples
= 0; break;
485 //modulation = bit & Demod.syncBit;
486 modulation
= ((bit
<< 1) ^ ((Demod
.buffer
& 0x08) >> 3)) & Demod
.syncBit
;
490 if(Demod
.posCount
==0) {
493 Demod
.sub
= SUB_FIRST_HALF
;
496 Demod
.sub
= SUB_NONE
;
501 if(modulation
&& (Demod
.sub
== SUB_FIRST_HALF
)) {
502 if(Demod
.state
!=DEMOD_ERROR_WAIT
) {
503 Demod
.state
= DEMOD_ERROR_WAIT
;
504 Demod
.output
[Demod
.len
] = 0xaa;
508 else if(modulation
) {
509 Demod
.sub
= SUB_SECOND_HALF
;
512 switch(Demod
.state
) {
513 case DEMOD_START_OF_COMMUNICATION
:
514 if(Demod
.sub
== SUB_FIRST_HALF
) {
515 Demod
.state
= DEMOD_MANCHESTER_D
;
518 Demod
.output
[Demod
.len
] = 0xab;
519 Demod
.state
= DEMOD_ERROR_WAIT
;
524 case DEMOD_MANCHESTER_D
:
525 case DEMOD_MANCHESTER_E
:
526 if(Demod
.sub
== SUB_FIRST_HALF
) {
528 Demod
.shiftReg
= (Demod
.shiftReg
>> 1) ^ 0x100;
529 Demod
.state
= DEMOD_MANCHESTER_D
;
531 else if(Demod
.sub
== SUB_SECOND_HALF
) {
533 Demod
.shiftReg
>>= 1;
534 Demod
.state
= DEMOD_MANCHESTER_E
;
537 Demod
.state
= DEMOD_MANCHESTER_F
;
541 case DEMOD_MANCHESTER_F
:
542 // Tag response does not need to be a complete byte!
543 if(Demod
.len
> 0 || Demod
.bitCount
> 0) {
544 if(Demod
.bitCount
> 0) {
545 Demod
.shiftReg
>>= (9 - Demod
.bitCount
);
546 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
548 // No parity bit, so just shift a 0
549 Demod
.parityBits
<<= 1;
552 Demod
.state
= DEMOD_UNSYNCD
;
556 Demod
.output
[Demod
.len
] = 0xad;
557 Demod
.state
= DEMOD_ERROR_WAIT
;
562 case DEMOD_ERROR_WAIT
:
563 Demod
.state
= DEMOD_UNSYNCD
;
567 Demod
.output
[Demod
.len
] = 0xdd;
568 Demod
.state
= DEMOD_UNSYNCD
;
572 if(Demod
.bitCount
>=9) {
573 Demod
.output
[Demod
.len
] = Demod
.shiftReg
& 0xff;
576 Demod
.parityBits
<<= 1;
577 Demod
.parityBits
^= ((Demod
.shiftReg
>> 8) & 0x01);
584 Demod.output[Demod.len] = 0xBB;
586 Demod.output[Demod.len] = error & 0xFF;
588 Demod.output[Demod.len] = 0xBB;
590 Demod.output[Demod.len] = bit & 0xFF;
592 Demod.output[Demod.len] = Demod.buffer & 0xFF;
594 Demod.output[Demod.len] = Demod.syncBit & 0xFF;
596 Demod.output[Demod.len] = 0xBB;
603 } // end (state != UNSYNCED)
608 //=============================================================================
609 // Finally, a `sniffer' for ISO 14443 Type A
610 // Both sides of communication!
611 //=============================================================================
613 //-----------------------------------------------------------------------------
614 // Record the sequence of commands sent by the reader to the tag, with
615 // triggering so that we start recording at the point that the tag is moved
617 //-----------------------------------------------------------------------------
618 void RAMFUNC
SnoopIso14443a(void)
620 // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
621 // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
622 // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
623 // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
624 // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values
626 // We won't start recording the frames that we acquire until we trigger;
627 // a good trigger condition to get started is probably when we see a
628 // response from the tag.
629 int triggered
= FALSE
; // FALSE to wait first for card
631 // The command (reader -> tag) that we're receiving.
632 // The length of a received command will in most cases be no more than 18 bytes.
633 // So 32 should be enough!
634 uint8_t *receivedCmd
= (((uint8_t *)BigBuf
) + RECV_CMD_OFFSET
);
635 // The response (tag -> reader) that we're receiving.
636 uint8_t *receivedResponse
= (((uint8_t *)BigBuf
) + RECV_RES_OFFSET
);
638 // As we receive stuff, we copy it from receivedCmd or receivedResponse
639 // into trace, along with its length and other annotations.
640 //uint8_t *trace = (uint8_t *)BigBuf;
642 traceLen
= 0; // uncommented to fix ISSUE 15 - gerhard - jan2011
644 // The DMA buffer, used to stream samples from the FPGA
645 int8_t *dmaBuf
= ((int8_t *)BigBuf
) + DMA_BUFFER_OFFSET
;
651 // Count of samples received so far, so that we can include timing
652 // information in the trace buffer.
656 memset(trace
, 0x44, RECV_CMD_OFFSET
);
658 // Set up the demodulator for tag -> reader responses.
659 Demod
.output
= receivedResponse
;
661 Demod
.state
= DEMOD_UNSYNCD
;
663 // Setup for the DMA.
666 lastRxCounter
= DMA_BUFFER_SIZE
;
667 FpgaSetupSscDma((uint8_t *)dmaBuf
, DMA_BUFFER_SIZE
);
669 // And the reader -> tag commands
670 memset(&Uart
, 0, sizeof(Uart
));
671 Uart
.output
= receivedCmd
;
672 Uart
.byteCntMax
= 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
673 Uart
.state
= STATE_UNSYNCD
;
675 // And put the FPGA in the appropriate mode
676 // Signal field is off with the appropriate LED
678 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_SNIFFER
);
679 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
682 // And now we loop, receiving samples.
686 int behindBy
= (lastRxCounter
- AT91C_BASE_PDC_SSC
->PDC_RCR
) &
688 if(behindBy
> maxBehindBy
) {
689 maxBehindBy
= behindBy
;
691 Dbprintf("blew circular buffer! behindBy=0x%x", behindBy
);
695 if(behindBy
< 1) continue;
701 if(upTo
- dmaBuf
> DMA_BUFFER_SIZE
) {
702 upTo
-= DMA_BUFFER_SIZE
;
703 lastRxCounter
+= DMA_BUFFER_SIZE
;
704 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) upTo
;
705 AT91C_BASE_PDC_SSC
->PDC_RNCR
= DMA_BUFFER_SIZE
;
709 if(MillerDecoding((smpl
& 0xF0) >> 4)) {
710 rsamples
= samples
- Uart
.samples
;
713 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
714 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
715 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
716 trace
[traceLen
++] = ((rsamples
>> 24) & 0xff);
717 trace
[traceLen
++] = ((Uart
.parityBits
>> 0) & 0xff);
718 trace
[traceLen
++] = ((Uart
.parityBits
>> 8) & 0xff);
719 trace
[traceLen
++] = ((Uart
.parityBits
>> 16) & 0xff);
720 trace
[traceLen
++] = ((Uart
.parityBits
>> 24) & 0xff);
721 trace
[traceLen
++] = Uart
.byteCnt
;
722 memcpy(trace
+traceLen
, receivedCmd
, Uart
.byteCnt
);
723 traceLen
+= Uart
.byteCnt
;
724 if(traceLen
> TRACE_LENGTH
) break;
726 /* And ready to receive another command. */
727 Uart
.state
= STATE_UNSYNCD
;
728 /* And also reset the demod code, which might have been */
729 /* false-triggered by the commands from the reader. */
730 Demod
.state
= DEMOD_UNSYNCD
;
734 if(ManchesterDecoding(smpl
& 0x0F)) {
735 rsamples
= samples
- Demod
.samples
;
738 // timestamp, as a count of samples
739 trace
[traceLen
++] = ((rsamples
>> 0) & 0xff);
740 trace
[traceLen
++] = ((rsamples
>> 8) & 0xff);
741 trace
[traceLen
++] = ((rsamples
>> 16) & 0xff);
742 trace
[traceLen
++] = 0x80 | ((rsamples
>> 24) & 0xff);
743 trace
[traceLen
++] = ((Demod
.parityBits
>> 0) & 0xff);
744 trace
[traceLen
++] = ((Demod
.parityBits
>> 8) & 0xff);
745 trace
[traceLen
++] = ((Demod
.parityBits
>> 16) & 0xff);
746 trace
[traceLen
++] = ((Demod
.parityBits
>> 24) & 0xff);
748 trace
[traceLen
++] = Demod
.len
;
749 memcpy(trace
+traceLen
, receivedResponse
, Demod
.len
);
750 traceLen
+= Demod
.len
;
751 if(traceLen
> TRACE_LENGTH
) break;
755 // And ready to receive another response.
756 memset(&Demod
, 0, sizeof(Demod
));
757 Demod
.output
= receivedResponse
;
758 Demod
.state
= DEMOD_UNSYNCD
;
763 DbpString("cancelled_a");
768 DbpString("COMMAND FINISHED");
770 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
771 Dbprintf("%x %x %x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
774 AT91C_BASE_PDC_SSC
->PDC_PTCR
= AT91C_PDC_RXTDIS
;
775 Dbprintf("%x %x %x", maxBehindBy
, Uart
.state
, Uart
.byteCnt
);
776 Dbprintf("%x %x %x", Uart
.byteCntMax
, traceLen
, (int)Uart
.output
[0]);
783 //-----------------------------------------------------------------------------
784 // Prepare tag messages
785 //-----------------------------------------------------------------------------
786 static void CodeIso14443aAsTag(const uint8_t *cmd
, int len
)
793 // Correction bit, might be removed when not needed
798 ToSendStuffBit(1); // 1
804 ToSend
[++ToSendMax
] = SEC_D
;
806 for(i
= 0; i
< len
; i
++) {
812 for(j
= 0; j
< 8; j
++) {
813 oddparity
^= (b
& 1);
815 ToSend
[++ToSendMax
] = SEC_D
;
817 ToSend
[++ToSendMax
] = SEC_E
;
824 ToSend
[++ToSendMax
] = SEC_D
;
826 ToSend
[++ToSendMax
] = SEC_E
;
831 ToSend
[++ToSendMax
] = SEC_F
;
833 // Flush the buffer in FPGA!!
834 for(i
= 0; i
< 5; i
++) {
835 ToSend
[++ToSendMax
] = SEC_F
;
838 // Convert from last byte pos to length
841 // Add a few more for slop
842 ToSend
[ToSendMax
++] = 0x00;
843 ToSend
[ToSendMax
++] = 0x00;
847 //-----------------------------------------------------------------------------
848 // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
849 //-----------------------------------------------------------------------------
850 static void CodeStrangeAnswer()
856 // Correction bit, might be removed when not needed
861 ToSendStuffBit(1); // 1
867 ToSend
[++ToSendMax
] = SEC_D
;
870 ToSend
[++ToSendMax
] = SEC_E
;
873 ToSend
[++ToSendMax
] = SEC_E
;
876 ToSend
[++ToSendMax
] = SEC_D
;
879 ToSend
[++ToSendMax
] = SEC_F
;
881 // Flush the buffer in FPGA!!
882 for(i
= 0; i
< 5; i
++) {
883 ToSend
[++ToSendMax
] = SEC_F
;
886 // Convert from last byte pos to length
889 // Add a few more for slop
890 ToSend
[ToSendMax
++] = 0x00;
891 ToSend
[ToSendMax
++] = 0x00;
895 //-----------------------------------------------------------------------------
896 // Wait for commands from reader
897 // Stop when button is pressed
898 // Or return TRUE when command is captured
899 //-----------------------------------------------------------------------------
900 static int GetIso14443aCommandFromReader(uint8_t *received
, int *len
, int maxLen
)
902 // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
903 // only, since we are receiving, not transmitting).
904 // Signal field is off with the appropriate LED
906 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_LISTEN
);
908 // Now run a `software UART' on the stream of incoming samples.
909 Uart
.output
= received
;
910 Uart
.byteCntMax
= maxLen
;
911 Uart
.state
= STATE_UNSYNCD
;
916 if(BUTTON_PRESS()) return FALSE
;
918 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
919 AT91C_BASE_SSC
->SSC_THR
= 0x00;
921 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
922 uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
923 if(MillerDecoding((b
& 0xf0) >> 4)) {
927 if(MillerDecoding(b
& 0x0f)) {
935 //-----------------------------------------------------------------------------
936 // Main loop of simulated tag: receive commands from reader, decide what
937 // response to send, and send it.
938 //-----------------------------------------------------------------------------
939 void SimulateIso14443aTag(int tagType
, int TagUid
)
941 // This function contains the tag emulation
943 // Prepare protocol messages
944 // static const uint8_t cmd1[] = { 0x26 };
945 // static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
947 static const uint8_t response1
[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
948 // static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
951 // static const uint8_t cmd2[] = { 0x93, 0x20 };
952 //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
955 static const uint8_t response2
[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
958 // When reader selects us during cascade1 it will send cmd3
959 //uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
960 uint8_t response3
[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
961 ComputeCrc14443(CRC_14443_A
, response3
, 1, &response3
[1], &response3
[2]);
963 // send cascade2 2nd half of UID
964 static const uint8_t response2a
[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
965 // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
967 // When reader selects us during cascade2 it will send cmd3a
968 //uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
969 uint8_t response3a
[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
970 ComputeCrc14443(CRC_14443_A
, response3a
, 1, &response3a
[1], &response3a
[2]);
972 static const uint8_t response5
[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
977 // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
979 // 144 data bits (18 * 8)
982 // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
983 // 1 just for the case
987 // 166 bytes, since every bit that needs to be send costs us a byte
990 // Respond with card type
991 uint8_t *resp1
= (((uint8_t *)BigBuf
) + 800);
994 // Anticollision cascade1 - respond with uid
995 uint8_t *resp2
= (((uint8_t *)BigBuf
) + 970);
998 // Anticollision cascade2 - respond with 2nd half of uid if asked
999 // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
1000 uint8_t *resp2a
= (((uint8_t *)BigBuf
) + 1140);
1003 // Acknowledge select - cascade 1
1004 uint8_t *resp3
= (((uint8_t *)BigBuf
) + 1310);
1007 // Acknowledge select - cascade 2
1008 uint8_t *resp3a
= (((uint8_t *)BigBuf
) + 1480);
1011 // Response to a read request - not implemented atm
1012 uint8_t *resp4
= (((uint8_t *)BigBuf
) + 1550);
1015 // Authenticate response - nonce
1016 uint8_t *resp5
= (((uint8_t *)BigBuf
) + 1720);
1019 uint8_t *receivedCmd
= (uint8_t *)BigBuf
;
1026 // To control where we are in the protocol
1030 // Just to allow some checks
1038 memset(receivedCmd
, 0x44, 400);
1040 // Prepare the responses of the anticollision phase
1041 // there will be not enough time to do this at the moment the reader sends it REQA
1043 // Answer to request
1044 CodeIso14443aAsTag(response1
, sizeof(response1
));
1045 memcpy(resp1
, ToSend
, ToSendMax
); resp1Len
= ToSendMax
;
1047 // Send our UID (cascade 1)
1048 CodeIso14443aAsTag(response2
, sizeof(response2
));
1049 memcpy(resp2
, ToSend
, ToSendMax
); resp2Len
= ToSendMax
;
1051 // Answer to select (cascade1)
1052 CodeIso14443aAsTag(response3
, sizeof(response3
));
1053 memcpy(resp3
, ToSend
, ToSendMax
); resp3Len
= ToSendMax
;
1055 // Send the cascade 2 2nd part of the uid
1056 CodeIso14443aAsTag(response2a
, sizeof(response2a
));
1057 memcpy(resp2a
, ToSend
, ToSendMax
); resp2aLen
= ToSendMax
;
1059 // Answer to select (cascade 2)
1060 CodeIso14443aAsTag(response3a
, sizeof(response3a
));
1061 memcpy(resp3a
, ToSend
, ToSendMax
); resp3aLen
= ToSendMax
;
1063 // Strange answer is an example of rare message size (3 bits)
1064 CodeStrangeAnswer();
1065 memcpy(resp4
, ToSend
, ToSendMax
); resp4Len
= ToSendMax
;
1067 // Authentication answer (random nonce)
1068 CodeIso14443aAsTag(response5
, sizeof(response5
));
1069 memcpy(resp5
, ToSend
, ToSendMax
); resp5Len
= ToSendMax
;
1071 // We need to listen to the high-frequency, peak-detected path.
1072 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1080 if(!GetIso14443aCommandFromReader(receivedCmd
, &len
, 100)) {
1081 DbpString("button press");
1084 // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
1085 // Okay, look at the command now.
1087 i
= 1; // first byte transmitted
1088 if(receivedCmd
[0] == 0x26) {
1089 // Received a REQUEST
1090 resp
= resp1
; respLen
= resp1Len
; order
= 1;
1091 //DbpString("Hello request from reader:");
1092 } else if(receivedCmd
[0] == 0x52) {
1093 // Received a WAKEUP
1094 resp
= resp1
; respLen
= resp1Len
; order
= 6;
1095 // //DbpString("Wakeup request from reader:");
1097 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] == 0x93) { // greg - cascade 1 anti-collision
1098 // Received request for UID (cascade 1)
1099 resp
= resp2
; respLen
= resp2Len
; order
= 2;
1100 // DbpString("UID (cascade 1) request from reader:");
1101 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1104 } else if(receivedCmd
[1] == 0x20 && receivedCmd
[0] ==0x95) { // greg - cascade 2 anti-collision
1105 // Received request for UID (cascade 2)
1106 resp
= resp2a
; respLen
= resp2aLen
; order
= 20;
1107 // DbpString("UID (cascade 2) request from reader:");
1108 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1111 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] ==0x93) { // greg - cascade 1 select
1112 // Received a SELECT
1113 resp
= resp3
; respLen
= resp3Len
; order
= 3;
1114 // DbpString("Select (cascade 1) request from reader:");
1115 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1118 } else if(receivedCmd
[1] == 0x70 && receivedCmd
[0] ==0x95) { // greg - cascade 2 select
1119 // Received a SELECT
1120 resp
= resp3a
; respLen
= resp3aLen
; order
= 30;
1121 // DbpString("Select (cascade 2) request from reader:");
1122 // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
1125 } else if(receivedCmd
[0] == 0x30) {
1127 resp
= resp4
; respLen
= resp4Len
; order
= 4; // Do nothing
1128 Dbprintf("Read request from reader: %x %x %x",
1129 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2]);
1132 } else if(receivedCmd
[0] == 0x50) {
1134 resp
= resp1
; respLen
= 0; order
= 5; // Do nothing
1135 DbpString("Reader requested we HALT!:");
1137 } else if(receivedCmd
[0] == 0x60) {
1138 // Received an authentication request
1139 resp
= resp5
; respLen
= resp5Len
; order
= 7;
1140 Dbprintf("Authenticate request from reader: %x %x %x",
1141 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2]);
1143 } else if(receivedCmd
[0] == 0xE0) {
1144 // Received a RATS request
1145 resp
= resp1
; respLen
= 0;order
= 70;
1146 Dbprintf("RATS request from reader: %x %x %x",
1147 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2]);
1149 // Never seen this command before
1150 Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
1152 receivedCmd
[0], receivedCmd
[1], receivedCmd
[2],
1153 receivedCmd
[3], receivedCmd
[4], receivedCmd
[5],
1154 receivedCmd
[6], receivedCmd
[7], receivedCmd
[8]);
1156 resp
= resp1
; respLen
= 0; order
= 0;
1159 // Count number of wakeups received after a halt
1160 if(order
== 6 && lastorder
== 5) { happened
++; }
1162 // Count number of other messages after a halt
1163 if(order
!= 6 && lastorder
== 5) { happened2
++; }
1165 // Look at last parity bit to determine timing of answer
1166 if((Uart
.parityBits
& 0x01) || receivedCmd
[0] == 0x52) {
1167 // 1236, so correction bit needed
1171 memset(receivedCmd
, 0x44, 32);
1173 if(cmdsRecvd
> 999) {
1174 DbpString("1000 commands later...");
1181 if(respLen
<= 0) continue;
1183 // Modulate Manchester
1184 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_TAGSIM_MOD
);
1185 AT91C_BASE_SSC
->SSC_THR
= 0x00;
1188 // ### Transmit the response ###
1191 fdt_indicator
= FALSE
;
1193 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1194 volatile uint8_t b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1197 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1205 AT91C_BASE_SSC
->SSC_THR
= b
;
1211 if(BUTTON_PRESS()) {
1218 Dbprintf("%x %x %x", happened
, happened2
, cmdsRecvd
);
1222 //-----------------------------------------------------------------------------
1223 // Transmit the command (to the tag) that was placed in ToSend[].
1224 //-----------------------------------------------------------------------------
1225 static void TransmitFor14443a(const uint8_t *cmd
, int len
, int *samples
, int *wait
)
1229 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1235 for(c
= 0; c
< *wait
;) {
1236 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1237 AT91C_BASE_SSC
->SSC_THR
= 0x00; // For exact timing!
1240 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1241 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1249 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1250 AT91C_BASE_SSC
->SSC_THR
= cmd
[c
];
1256 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1257 volatile uint32_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1262 if (samples
) *samples
= (c
+ *wait
) << 3;
1265 //-----------------------------------------------------------------------------
1266 // Code a 7-bit command without parity bit
1267 // This is especially for 0x26 and 0x52 (REQA and WUPA)
1268 //-----------------------------------------------------------------------------
1269 void ShortFrameFromReader(const uint8_t bt
)
1277 // Start of Communication (Seq. Z)
1278 ToSend
[++ToSendMax
] = SEC_Z
;
1282 for(j
= 0; j
< 7; j
++) {
1285 ToSend
[++ToSendMax
] = SEC_X
;
1290 ToSend
[++ToSendMax
] = SEC_Z
;
1294 ToSend
[++ToSendMax
] = SEC_Y
;
1301 // End of Communication
1304 ToSend
[++ToSendMax
] = SEC_Z
;
1308 ToSend
[++ToSendMax
] = SEC_Y
;
1312 ToSend
[++ToSendMax
] = SEC_Y
;
1315 ToSend
[++ToSendMax
] = SEC_Y
;
1316 ToSend
[++ToSendMax
] = SEC_Y
;
1317 ToSend
[++ToSendMax
] = SEC_Y
;
1319 // Convert from last character reference to length
1323 //-----------------------------------------------------------------------------
1324 // Prepare reader command to send to FPGA
1326 //-----------------------------------------------------------------------------
1327 void CodeIso14443aAsReaderPar(const uint8_t * cmd
, int len
, uint32_t dwParity
)
1335 // Start of Communication (Seq. Z)
1336 ToSend
[++ToSendMax
] = SEC_Z
;
1339 // Generate send structure for the data bits
1340 for (i
= 0; i
< len
; i
++) {
1341 // Get the current byte to send
1344 for (j
= 0; j
< 8; j
++) {
1347 ToSend
[++ToSendMax
] = SEC_X
;
1352 ToSend
[++ToSendMax
] = SEC_Z
;
1355 ToSend
[++ToSendMax
] = SEC_Y
;
1362 // Get the parity bit
1363 if ((dwParity
>> i
) & 0x01) {
1365 ToSend
[++ToSendMax
] = SEC_X
;
1370 ToSend
[++ToSendMax
] = SEC_Z
;
1373 ToSend
[++ToSendMax
] = SEC_Y
;
1379 // End of Communication
1382 ToSend
[++ToSendMax
] = SEC_Z
;
1385 ToSend
[++ToSendMax
] = SEC_Y
;
1389 ToSend
[++ToSendMax
] = SEC_Y
;
1392 ToSend
[++ToSendMax
] = SEC_Y
;
1393 ToSend
[++ToSendMax
] = SEC_Y
;
1394 ToSend
[++ToSendMax
] = SEC_Y
;
1396 // Convert from last character reference to length
1400 //-----------------------------------------------------------------------------
1401 // Wait a certain time for tag response
1402 // If a response is captured return TRUE
1403 // If it takes to long return FALSE
1404 //-----------------------------------------------------------------------------
1405 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse
, int maxLen
, int *samples
, int *elapsed
) //uint8_t *buffer
1407 // buffer needs to be 512 bytes
1410 // Set FPGA mode to "reader listen mode", no modulation (listen
1411 // only, since we are receiving, not transmitting).
1412 // Signal field is on with the appropriate LED
1414 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_LISTEN
);
1416 // Now get the answer from the card
1417 Demod
.output
= receivedResponse
;
1419 Demod
.state
= DEMOD_UNSYNCD
;
1422 if (elapsed
) *elapsed
= 0;
1428 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
1429 AT91C_BASE_SSC
->SSC_THR
= 0x00; // To make use of exact timing of next command from reader!!
1430 if (elapsed
) (*elapsed
)++;
1432 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1433 if(c
< iso14a_timeout
) { c
++; } else { return FALSE
; }
1434 b
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1435 if(ManchesterDecoding((b
>>4) & 0xf)) {
1436 *samples
= ((c
- 1) << 3) + 4;
1439 if(ManchesterDecoding(b
& 0x0f)) {
1447 void ReaderTransmitShort(const uint8_t* bt
)
1452 ShortFrameFromReader(*bt
);
1455 TransmitFor14443a(ToSend
, ToSendMax
, &samples
, &wait
);
1457 // Store reader command in buffer
1458 if (tracing
) LogTrace(bt
,1,0,GetParity(bt
,1),TRUE
);
1461 void ReaderTransmitPar(uint8_t* frame
, int len
, uint32_t par
)
1466 // This is tied to other size changes
1467 // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
1468 CodeIso14443aAsReaderPar(frame
,len
,par
);
1471 TransmitFor14443a(ToSend
, ToSendMax
, &samples
, &wait
);
1475 // Store reader command in buffer
1476 if (tracing
) LogTrace(frame
,len
,0,par
,TRUE
);
1480 void ReaderTransmit(uint8_t* frame
, int len
)
1482 // Generate parity and redirect
1483 ReaderTransmitPar(frame
,len
,GetParity(frame
,len
));
1486 int ReaderReceive(uint8_t* receivedAnswer
)
1489 if (!GetIso14443aAnswerFromTag(receivedAnswer
,160,&samples
,0)) return FALSE
;
1490 if (tracing
) LogTrace(receivedAnswer
,Demod
.len
,samples
,Demod
.parityBits
,FALSE
);
1491 if(samples
== 0) return FALSE
;
1495 /* performs iso14443a anticolision procedure
1496 * fills the uid pointer unless NULL
1497 * fills resp_data unless NULL */
1498 int iso14443a_select_card(uint8_t * uid_ptr
, iso14a_card_select_t
* resp_data
, uint32_t * cuid_ptr
) {
1499 uint8_t wupa
[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
1500 uint8_t sel_all
[] = { 0x93,0x20 };
1501 uint8_t sel_uid
[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1502 uint8_t rats
[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
1504 uint8_t* resp
= (((uint8_t *)BigBuf
) + 3560); // was 3560 - tied to other size changes
1505 //uint8_t* uid = resp + 7;
1507 uint8_t sak
= 0x04; // cascade uid
1508 int cascade_level
= 0;
1513 memset(uid_ptr
, 0, 8);
1515 // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
1516 ReaderTransmitShort(wupa
);
1518 if(!ReaderReceive(resp
)) return 0;
1521 memcpy(resp_data
->atqa
, resp
, 2);
1523 //ReaderTransmit(sel_all,sizeof(sel_all)); --- avoid duplicate SELECT request
1524 //if(!ReaderReceive(uid)) return 0;
1526 // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
1527 // which case we need to make a cascade 2 request and select - this is a long UID
1528 // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
1529 for(; sak
& 0x04; cascade_level
++)
1531 // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
1532 sel_uid
[0] = sel_all
[0] = 0x93 + cascade_level
* 2;
1535 ReaderTransmit(sel_all
,sizeof(sel_all
));
1536 if (!ReaderReceive(resp
)) return 0;
1537 if(uid_ptr
) memcpy(uid_ptr
+ cascade_level
*4, resp
, 4);
1539 // calculate crypto UID
1540 if(cuid_ptr
) *cuid_ptr
= bytes_to_num(resp
, 4);
1542 // Construct SELECT UID command
1543 memcpy(sel_uid
+2,resp
,5);
1544 AppendCrc14443a(sel_uid
,7);
1545 ReaderTransmit(sel_uid
,sizeof(sel_uid
));
1548 if (!ReaderReceive(resp
)) return 0;
1552 resp_data
->sak
= sak
;
1553 resp_data
->ats_len
= 0;
1555 //-- this byte not UID, it CT. http://www.nxp.com/documents/application_note/AN10927.pdf page 3
1556 if (uid_ptr
[0] == 0x88) {
1557 memcpy(uid_ptr
, uid_ptr
+ 1, 7);
1561 if( (sak
& 0x20) == 0)
1562 return 2; // non iso14443a compliant tag
1564 // Request for answer to select
1565 if(resp_data
) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!!
1566 AppendCrc14443a(rats
, 2);
1567 ReaderTransmit(rats
, sizeof(rats
));
1569 if (!(len
= ReaderReceive(resp
))) return 0;
1571 memcpy(resp_data
->ats
, resp
, sizeof(resp_data
->ats
));
1572 resp_data
->ats_len
= len
;
1578 void iso14443a_setup() {
1581 // Start from off (no field generated)
1582 // Signal field is off with the appropriate LED
1584 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1587 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1589 // Now give it time to spin up.
1590 // Signal field is on with the appropriate LED
1592 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1595 iso14a_timeout
= 2048; //default
1598 int iso14_apdu(uint8_t * cmd
, size_t cmd_len
, void * data
) {
1599 uint8_t real_cmd
[cmd_len
+4];
1600 real_cmd
[0] = 0x0a; //I-Block
1601 real_cmd
[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
1602 memcpy(real_cmd
+2, cmd
, cmd_len
);
1603 AppendCrc14443a(real_cmd
,cmd_len
+2);
1605 ReaderTransmit(real_cmd
, cmd_len
+4);
1606 size_t len
= ReaderReceive(data
);
1608 return -1; //DATA LINK ERROR
1614 //-----------------------------------------------------------------------------
1615 // Read an ISO 14443a tag. Send out commands and store answers.
1617 //-----------------------------------------------------------------------------
1618 void ReaderIso14443a(UsbCommand
* c
, UsbCommand
* ack
)
1620 iso14a_command_t param
= c
->arg
[0];
1621 uint8_t * cmd
= c
->d
.asBytes
;
1622 size_t len
= c
->arg
[1];
1624 if(param
& ISO14A_REQUEST_TRIGGER
) iso14a_set_trigger(1);
1626 if(param
& ISO14A_CONNECT
) {
1628 ack
->arg
[0] = iso14443a_select_card(ack
->d
.asBytes
, (iso14a_card_select_t
*) (ack
->d
.asBytes
+12), NULL
);
1629 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1632 if(param
& ISO14A_SET_TIMEOUT
) {
1633 iso14a_timeout
= c
->arg
[2];
1636 if(param
& ISO14A_SET_TIMEOUT
) {
1637 iso14a_timeout
= c
->arg
[2];
1640 if(param
& ISO14A_APDU
) {
1641 ack
->arg
[0] = iso14_apdu(cmd
, len
, ack
->d
.asBytes
);
1642 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1645 if(param
& ISO14A_RAW
) {
1646 if(param
& ISO14A_APPEND_CRC
) {
1647 AppendCrc14443a(cmd
,len
);
1650 ReaderTransmit(cmd
,len
);
1651 ack
->arg
[0] = ReaderReceive(ack
->d
.asBytes
);
1652 UsbSendPacket((void *)ack
, sizeof(UsbCommand
));
1655 if(param
& ISO14A_REQUEST_TRIGGER
) iso14a_set_trigger(0);
1657 if(param
& ISO14A_NO_DISCONNECT
)
1660 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1663 //-----------------------------------------------------------------------------
1664 // Read an ISO 14443a tag. Send out commands and store answers.
1666 //-----------------------------------------------------------------------------
1667 void ReaderMifare(uint32_t parameter
)
1670 uint8_t mf_auth
[] = { 0x60,0x00,0xf5,0x7b };
1671 uint8_t mf_nr_ar
[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
1673 uint8_t* receivedAnswer
= (((uint8_t *)BigBuf
) + 3560); // was 3560 - tied to other size changes
1686 byte_t par_mask
= 0xff;
1692 byte_t nt_attacked
[4];
1695 num_to_bytes(parameter
,4,nt_attacked
);
1699 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1701 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A
| FPGA_HF_ISO14443A_READER_MOD
);
1703 // Test if the action was cancelled
1704 if(BUTTON_PRESS()) {
1708 if(!iso14443a_select_card(NULL
, NULL
, NULL
)) continue;
1710 // Transmit MIFARE_CLASSIC_AUTH
1711 ReaderTransmit(mf_auth
,sizeof(mf_auth
));
1713 // Receive the (16 bit) "random" nonce
1714 if (!ReaderReceive(receivedAnswer
)) continue;
1715 memcpy(nt
,receivedAnswer
,4);
1717 // Transmit reader nonce and reader answer
1718 ReaderTransmitPar(mf_nr_ar
,sizeof(mf_nr_ar
),par
);
1720 // Receive 4 bit answer
1721 if (ReaderReceive(receivedAnswer
))
1726 memcpy(nt_attacked
,nt
,4);
1728 par_low
= par
& 0x07;
1731 if (memcmp(nt
,nt_attacked
,4) != 0) continue;
1734 if(led_on
) LED_B_ON(); else LED_B_OFF();
1735 par_list
[nt_diff
] = par
;
1736 ks_list
[nt_diff
] = receivedAnswer
[0]^0x05;
1738 // Test if the information is complete
1739 if (nt_diff
== 0x07) break;
1741 nt_diff
= (nt_diff
+1) & 0x07;
1742 mf_nr_ar
[3] = nt_diff
<< 5;
1749 par
= (((par
>>3)+1) << 3) | par_low
;
1754 LogTrace(nt
,4,0,GetParity(nt
,4),TRUE
);
1755 LogTrace(par_list
,8,0,GetParity(par_list
,8),TRUE
);
1756 LogTrace(ks_list
,8,0,GetParity(ks_list
,8),TRUE
);
1759 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1763 DbpString("COMMAND FINISHED");
1765 Dbprintf("nt=%x", (int)nt
[0]);
1768 //-----------------------------------------------------------------------------
1769 // Select, Authenticaate, Read an MIFARE tag.
1771 //-----------------------------------------------------------------------------
1772 void MifareReadBlock(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)
1775 uint8_t blockNo
= arg0
;
1776 uint8_t keyType
= arg1
;
1777 uint64_t ui64Key
= 0;
1778 ui64Key
= bytes_to_num(datain
, 6);
1782 byte_t dataoutbuf
[16];
1785 struct Crypto1State mpcs
= {0, 0};
1786 struct Crypto1State
*pcs
;
1800 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
1801 Dbprintf("Can't select card");
1805 if(mifare_classic_auth(pcs
, cuid
, blockNo
, keyType
, ui64Key
, 0)) {
1806 Dbprintf("Auth error");
1810 if(mifare_classic_readblock(pcs
, cuid
, blockNo
, dataoutbuf
)) {
1811 Dbprintf("Read block error");
1815 if(mifare_classic_halt(pcs
, cuid
)) {
1816 Dbprintf("Halt error");
1824 // ----------------------------- crypto1 destroy
1825 crypto1_destroy(pcs
);
1827 // DbpString("READ BLOCK FINISHED");
1829 // add trace trailer
1834 LogTrace(uid
, 4, 0, 0, TRUE
);
1836 UsbCommand ack
= {CMD_ACK
, {isOK
, 0, 0}};
1837 memcpy(ack
.d
.asBytes
, dataoutbuf
, 16);
1840 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
1845 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1851 //-----------------------------------------------------------------------------
1852 // Select, Authenticaate, Read an MIFARE tag.
1853 // read sector (data = 4 x 16 bytes = 64 bytes)
1854 //-----------------------------------------------------------------------------
1855 void MifareReadSector(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)
1858 uint8_t sectorNo
= arg0
;
1859 uint8_t keyType
= arg1
;
1860 uint64_t ui64Key
= 0;
1861 ui64Key
= bytes_to_num(datain
, 6);
1865 byte_t dataoutbuf
[16 * 4];
1868 struct Crypto1State mpcs
= {0, 0};
1869 struct Crypto1State
*pcs
;
1883 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
1884 Dbprintf("Can't select card");
1888 if(mifare_classic_auth(pcs
, cuid
, sectorNo
* 4, keyType
, ui64Key
, 0)) {
1889 Dbprintf("Auth error");
1893 if(mifare_classic_readblock(pcs
, cuid
, sectorNo
* 4 + 0, dataoutbuf
+ 16 * 0)) {
1894 Dbprintf("Read block 0 error");
1897 if(mifare_classic_readblock(pcs
, cuid
, sectorNo
* 4 + 1, dataoutbuf
+ 16 * 1)) {
1898 Dbprintf("Read block 1 error");
1901 if(mifare_classic_readblock(pcs
, cuid
, sectorNo
* 4 + 2, dataoutbuf
+ 16 * 2)) {
1902 Dbprintf("Read block 2 error");
1905 if(mifare_classic_readblock(pcs
, cuid
, sectorNo
* 4 + 3, dataoutbuf
+ 16 * 3)) {
1906 Dbprintf("Read block 3 error");
1910 if(mifare_classic_halt(pcs
, cuid
)) {
1911 Dbprintf("Halt error");
1919 // ----------------------------- crypto1 destroy
1920 crypto1_destroy(pcs
);
1922 // DbpString("READ BLOCK FINISHED");
1924 // add trace trailer
1929 LogTrace(uid
, 4, 0, 0, TRUE
);
1931 UsbCommand ack
= {CMD_ACK
, {isOK
, 0, 0}};
1932 memcpy(ack
.d
.asBytes
, dataoutbuf
, 16 * 2);
1935 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
1939 memcpy(ack
.d
.asBytes
, dataoutbuf
+ 16 * 2, 16 * 2);
1940 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
1944 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1950 //-----------------------------------------------------------------------------
1951 // Select, Authenticaate, Read an MIFARE tag.
1953 //-----------------------------------------------------------------------------
1954 void MifareWriteBlock(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)
1957 uint8_t blockNo
= arg0
;
1958 uint8_t keyType
= arg1
;
1959 uint64_t ui64Key
= 0;
1960 byte_t blockdata
[16];
1962 ui64Key
= bytes_to_num(datain
, 6);
1963 memcpy(blockdata
, datain
+ 10, 16);
1969 struct Crypto1State mpcs
= {0, 0};
1970 struct Crypto1State
*pcs
;
1984 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
1985 Dbprintf("Can't select card");
1989 if(mifare_classic_auth(pcs
, cuid
, blockNo
, keyType
, ui64Key
, 0)) {
1990 Dbprintf("Auth error");
1994 if(mifare_classic_writeblock(pcs
, cuid
, blockNo
, blockdata
)) {
1995 Dbprintf("Write block error");
1999 if(mifare_classic_halt(pcs
, cuid
)) {
2000 Dbprintf("Halt error");
2008 // ----------------------------- crypto1 destroy
2009 crypto1_destroy(pcs
);
2011 // DbpString("WRITE BLOCK FINISHED");
2013 // add trace trailer
2018 LogTrace(uid
, 4, 0, 0, TRUE
);
2020 UsbCommand ack
= {CMD_ACK
, {isOK
, 0, 0}};
2023 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
2028 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2034 //-----------------------------------------------------------------------------
2035 // MIFARE nested authentication.
2037 //-----------------------------------------------------------------------------
2038 void MifareNested(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)
2041 uint8_t blockNo
= arg0
;
2042 uint8_t keyType
= arg1
;
2043 uint64_t ui64Key
= 0;
2045 ui64Key
= bytes_to_num(datain
, 6);
2051 uint8_t dataoutbuf
[16];
2052 struct Crypto1State mpcs
= {0, 0};
2053 struct Crypto1State
*pcs
;
2067 if(!iso14443a_select_card(uid
, NULL
, &cuid
)) {
2068 Dbprintf("Can't select card");
2072 if(mifare_classic_auth(pcs
, cuid
, blockNo
, keyType
, ui64Key
, 0)) {
2073 Dbprintf("Auth error");
2077 // nested authenticate block = (blockNo + 1)
2078 if(mifare_classic_auth(pcs
, (uint32_t)bytes_to_num(uid
, 4), blockNo
+ 1, keyType
, ui64Key
, 1)) {
2079 Dbprintf("Auth error");
2083 if(mifare_classic_readblock(pcs
, (uint32_t)bytes_to_num(uid
, 4), blockNo
+ 1, dataoutbuf
)) {
2084 Dbprintf("Read block error");
2088 if(mifare_classic_halt(pcs
, (uint32_t)bytes_to_num(uid
, 4))) {
2089 Dbprintf("Halt error");
2097 // ----------------------------- crypto1 destroy
2098 crypto1_destroy(pcs
);
2100 DbpString("NESTED FINISHED");
2102 // add trace trailer
2107 LogTrace(uid
, 4, 0, 0, TRUE
);
2109 UsbCommand ack
= {CMD_ACK
, {isOK
, 0, 0}};
2110 memcpy(ack
.d
.asBytes
, dataoutbuf
, 16);
2113 UsbSendPacket((uint8_t *)&ack
, sizeof(UsbCommand
));
2117 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
2123 //-----------------------------------------------------------------------------
2124 // MIFARE 1K simulate.
2126 //-----------------------------------------------------------------------------
2127 void Mifare1ksim(uint8_t arg0
, uint8_t arg1
, uint8_t arg2
, uint8_t *datain
)