1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, split Nov 2006
3 // Modified by Greg Jones, Jan 2009
4 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
5 // Modified by piwi, Oct 2018
7 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
8 // at your option, any later version. See the LICENSE.txt file for the text of
10 //-----------------------------------------------------------------------------
11 // Routines to support ISO 15693. This includes both the reader software and
12 // the `fake tag' modes.
13 //-----------------------------------------------------------------------------
15 // The ISO 15693 describes two transmission modes from reader to tag, and four
16 // transmission modes from tag to reader. As of Oct 2018 this code supports
17 // both reader modes and the high speed variant with one subcarrier from card to reader.
18 // As long as the card fully support ISO 15693 this is no problem, since the
19 // reader chooses both data rates, but some non-standard tags do not.
20 // For card simulation, the code supports both high and low speed modes with one subcarrier.
22 // VCD (reader) -> VICC (tag)
24 // data rate: 1,66 kbit/s (fc/8192)
25 // used for long range
27 // data rate: 26,48 kbit/s (fc/512)
28 // used for short range, high speed
30 // VICC (tag) -> VCD (reader)
32 // ASK / one subcarrier (423,75 khz)
33 // FSK / two subcarriers (423,75 khz && 484,28 khz)
34 // Data Rates / Modes:
35 // low ASK: 6,62 kbit/s
36 // low FSK: 6.67 kbit/s
37 // high ASK: 26,48 kbit/s
38 // high FSK: 26,69 kbit/s
39 //-----------------------------------------------------------------------------
43 // *) UID is always used "transmission order" (LSB), which is reverse to display order
45 // TODO / BUGS / ISSUES:
46 // *) signal decoding is unable to detect collisions.
47 // *) add anti-collision support for inventory-commands
48 // *) read security status of a block
49 // *) sniffing and simulation do not support two subcarrier modes.
50 // *) remove or refactor code under "deprecated"
51 // *) document all the functions
55 #include "proxmark3.h"
59 #include "iso15693tools.h"
60 #include "protocols.h"
63 #include "fpgaloader.h"
65 #define arraylen(x) (sizeof(x)/sizeof((x)[0]))
67 // Delays in SSP_CLK ticks.
68 // SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
69 #define DELAY_READER_TO_ARM 8
70 #define DELAY_ARM_TO_READER 0
71 //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
72 #define DELAY_TAG_TO_ARM 32
73 #define DELAY_ARM_TO_TAG 16
78 // specific LogTrace function for ISO15693: the duration needs to be scaled because otherwise it won't fit into a uint16_t
79 bool LogTrace_ISO15693(const uint8_t *btBytes
, uint16_t iLen
, uint32_t timestamp_start
, uint32_t timestamp_end
, uint8_t *parity
, bool readerToTag
) {
80 uint32_t duration
= timestamp_end
- timestamp_start
;
82 timestamp_end
= timestamp_start
+ duration
;
83 return LogTrace(btBytes
, iLen
, timestamp_start
, timestamp_end
, parity
, readerToTag
);
87 ///////////////////////////////////////////////////////////////////////
88 // ISO 15693 Part 2 - Air Interface
89 // This section basically contains transmission and receiving of bits
90 ///////////////////////////////////////////////////////////////////////
93 #define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2
94 #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
95 #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
97 // ---------------------------
99 // ---------------------------
101 // prepare data using "1 out of 4" code for later transmission
102 // resulting data rate is 26.48 kbit/s (fc/512)
104 // n ... length of data
105 void CodeIso15693AsReader(uint8_t *cmd
, int n
) {
110 ToSend
[++ToSendMax
] = 0x84; //10000100
113 for (int i
= 0; i
< n
; i
++) {
114 for (int j
= 0; j
< 8; j
+= 2) {
115 int these
= (cmd
[i
] >> j
) & 0x03;
118 ToSend
[++ToSendMax
] = 0x40; //01000000
121 ToSend
[++ToSendMax
] = 0x10; //00010000
124 ToSend
[++ToSendMax
] = 0x04; //00000100
127 ToSend
[++ToSendMax
] = 0x01; //00000001
134 ToSend
[++ToSendMax
] = 0x20; //0010 + 0000 padding
139 // encode data using "1 out of 256" scheme
140 // data rate is 1,66 kbit/s (fc/8192)
141 // is designed for more robust communication over longer distances
142 static void CodeIso15693AsReader256(uint8_t *cmd
, int n
)
147 ToSend
[++ToSendMax
] = 0x81; //10000001
150 for(int i
= 0; i
< n
; i
++) {
151 for (int j
= 0; j
<= 255; j
++) {
163 ToSend
[++ToSendMax
] = 0x20; //0010 + 0000 padding
169 // static uint8_t encode4Bits(const uint8_t b) {
170 // uint8_t c = b & 0xF;
171 // // OTA, the least significant bits first
172 // // The columns are
173 // // 1 - Bit value to send
174 // // 2 - Reversed (big-endian)
175 // // 3 - Manchester Encoded
180 // case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
181 // case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
182 // case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
183 // case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
184 // case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
185 // case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
186 // case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
187 // case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
188 // case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
189 // case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
190 // case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
191 // case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
192 // case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
193 // case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
194 // case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
195 // default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
200 static const uint8_t encode_4bits
[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 };
202 void CodeIso15693AsTag(uint8_t *cmd
, size_t len
) {
204 * SOF comprises 3 parts;
205 * * An unmodulated time of 56.64 us
206 * * 24 pulses of 423.75 kHz (fc/32)
207 * * A logic 1, which starts with an unmodulated time of 18.88us
208 * followed by 8 pulses of 423.75kHz (fc/32)
210 * EOF comprises 3 parts:
211 * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
213 * - 24 pulses of fc/32
214 * - An unmodulated time of 56.64 us
216 * A logic 0 starts with 8 pulses of fc/32
217 * followed by an unmodulated time of 256/fc (~18,88us).
219 * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
220 * 8 pulses of fc/32 (also 18.88us)
222 * A bit here becomes 8 pulses of fc/32. Therefore:
223 * The SOF can be written as 00011101 = 0x1D
224 * The EOF can be written as 10111000 = 0xb8
233 ToSend
[++ToSendMax
] = 0x1D; // 00011101
236 for (int i
= 0; i
< len
; i
++) {
237 ToSend
[++ToSendMax
] = encode_4bits
[cmd
[i
] & 0xF];
238 ToSend
[++ToSendMax
] = encode_4bits
[cmd
[i
] >> 4];
242 ToSend
[++ToSendMax
] = 0xB8; // 10111000
248 // Transmit the command (to the tag) that was placed in cmd[].
249 void TransmitTo15693Tag(const uint8_t *cmd
, int len
, uint32_t *start_time
) {
251 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SEND_FULL_MOD
);
253 if (*start_time
< DELAY_ARM_TO_TAG
) {
254 *start_time
= DELAY_ARM_TO_TAG
;
257 *start_time
= (*start_time
- DELAY_ARM_TO_TAG
) & 0xfffffff0;
259 if (GetCountSspClk() > *start_time
) { // we may miss the intended time
260 *start_time
= (GetCountSspClk() + 16) & 0xfffffff0; // next possible time
263 while (GetCountSspClk() < *start_time
)
267 for (int c
= 0; c
< len
; c
++) {
268 uint8_t data
= cmd
[c
];
269 for (int i
= 0; i
< 8; i
++) {
270 uint16_t send_word
= (data
& 0x80) ? 0xffff : 0x0000;
271 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
272 AT91C_BASE_SSC
->SSC_THR
= send_word
;
273 while (!(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
))) ;
274 AT91C_BASE_SSC
->SSC_THR
= send_word
;
282 *start_time
= *start_time
+ DELAY_ARM_TO_TAG
;
287 //-----------------------------------------------------------------------------
288 // Transmit the tag response (to the reader) that was placed in cmd[].
289 //-----------------------------------------------------------------------------
290 void TransmitTo15693Reader(const uint8_t *cmd
, size_t len
, uint32_t *start_time
, uint32_t slot_time
, bool slow
) {
291 // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
292 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_424K
);
294 uint32_t modulation_start_time
= *start_time
- DELAY_ARM_TO_READER
+ 3 * 8; // no need to transfer the unmodulated start of SOF
296 while (GetCountSspClk() > (modulation_start_time
& 0xfffffff8) + 3) { // we will miss the intended time
298 modulation_start_time
+= slot_time
; // use next available slot
300 modulation_start_time
= (modulation_start_time
& 0xfffffff8) + 8; // next possible time
304 while (GetCountSspClk() < (modulation_start_time
& 0xfffffff8))
307 uint8_t shift_delay
= modulation_start_time
& 0x00000007;
309 *start_time
= modulation_start_time
+ DELAY_ARM_TO_READER
- 3 * 8;
312 uint8_t bits_to_shift
= 0x00;
313 uint8_t bits_to_send
= 0x00;
314 for (size_t c
= 0; c
< len
; c
++) {
315 for (int i
= (c
==0?4:7); i
>= 0; i
--) {
316 uint8_t cmd_bits
= ((cmd
[c
] >> i
) & 0x01) ? 0xff : 0x00;
317 for (int j
= 0; j
< (slow
?4:1); ) {
318 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
319 bits_to_send
= bits_to_shift
<< (8 - shift_delay
) | cmd_bits
>> shift_delay
;
320 AT91C_BASE_SSC
->SSC_THR
= bits_to_send
;
321 bits_to_shift
= cmd_bits
;
328 // send the remaining bits, padded with 0:
329 bits_to_send
= bits_to_shift
<< (8 - shift_delay
);
331 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
332 AT91C_BASE_SSC
->SSC_THR
= bits_to_send
;
340 //=============================================================================
341 // An ISO 15693 decoder for tag responses (one subcarrier only).
342 // Uses cross correlation to identify each bit and EOF.
343 // This function is called 8 times per bit (every 2 subcarrier cycles).
344 // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
345 // i.e. function is called every 4,72us
347 // LED C -> ON once we have received the SOF and are expecting the rest.
348 // LED C -> OFF once we have received EOF or are unsynced
350 // Returns: true if we received a EOF
351 // false if we are still waiting for some more
352 //=============================================================================
354 #define NOISE_THRESHOLD 160 // don't try to correlate noise
355 #define MAX_PREVIOUS_AMPLITUDE (-1 - NOISE_THRESHOLD)
357 typedef struct DecodeTag
{
360 STATE_TAG_SOF_RISING_EDGE
,
362 STATE_TAG_SOF_HIGH_END
,
363 STATE_TAG_RECEIVING_DATA
,
382 uint16_t previous_amplitude
;
386 static int inline __attribute__((always_inline
)) Handle15693SamplesFromTag(uint16_t amplitude
, DecodeTag_t
*DecodeTag
)
388 switch(DecodeTag
->state
) {
389 case STATE_TAG_SOF_LOW
:
390 // waiting for a rising edge
391 if (amplitude
> NOISE_THRESHOLD
+ DecodeTag
->previous_amplitude
) {
392 if (DecodeTag
->posCount
> 10) {
393 DecodeTag
->threshold_sof
= amplitude
- DecodeTag
->previous_amplitude
;
394 DecodeTag
->threshold_half
= 0;
395 DecodeTag
->state
= STATE_TAG_SOF_RISING_EDGE
;
397 DecodeTag
->posCount
= 0;
400 DecodeTag
->posCount
++;
401 DecodeTag
->previous_amplitude
= amplitude
;
405 case STATE_TAG_SOF_RISING_EDGE
:
406 if (amplitude
- DecodeTag
->previous_amplitude
> DecodeTag
->threshold_sof
) { // edge still rising
407 if (amplitude
- DecodeTag
->threshold_sof
> DecodeTag
->threshold_sof
) { // steeper edge, take this as time reference
408 DecodeTag
->posCount
= 1;
410 DecodeTag
->posCount
= 2;
412 DecodeTag
->threshold_sof
= (amplitude
- DecodeTag
->previous_amplitude
) / 2;
414 DecodeTag
->posCount
= 2;
415 DecodeTag
->threshold_sof
= DecodeTag
->threshold_sof
/2;
417 // DecodeTag->posCount = 2;
418 DecodeTag
->state
= STATE_TAG_SOF_HIGH
;
421 case STATE_TAG_SOF_HIGH
:
422 // waiting for 10 times high. Take average over the last 8
423 if (amplitude
> DecodeTag
->threshold_sof
) {
424 DecodeTag
->posCount
++;
425 if (DecodeTag
->posCount
> 2) {
426 DecodeTag
->threshold_half
+= amplitude
; // keep track of average high value
428 if (DecodeTag
->posCount
== 10) {
429 DecodeTag
->threshold_half
>>= 2; // (4 times 1/2 average)
430 DecodeTag
->state
= STATE_TAG_SOF_HIGH_END
;
432 } else { // high phase was too short
433 DecodeTag
->posCount
= 1;
434 DecodeTag
->previous_amplitude
= amplitude
;
435 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
439 case STATE_TAG_SOF_HIGH_END
:
440 // check for falling edge
441 if (DecodeTag
->posCount
== 13 && amplitude
< DecodeTag
->threshold_sof
) {
442 DecodeTag
->lastBit
= SOF_PART1
; // detected 1st part of SOF (12 samples low and 12 samples high)
443 DecodeTag
->shiftReg
= 0;
444 DecodeTag
->bitCount
= 0;
446 DecodeTag
->sum1
= amplitude
;
448 DecodeTag
->posCount
= 2;
449 DecodeTag
->state
= STATE_TAG_RECEIVING_DATA
;
450 FpgaDisableTracing(); // DEBUGGING
451 // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
453 // DecodeTag->threshold_sof,
454 // DecodeTag->threshold_half/4,
455 // DecodeTag->previous_amplitude); // DEBUGGING
458 DecodeTag
->posCount
++;
459 if (DecodeTag
->posCount
> 13) { // high phase too long
460 DecodeTag
->posCount
= 0;
461 DecodeTag
->previous_amplitude
= amplitude
;
462 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
468 case STATE_TAG_RECEIVING_DATA
:
469 if (DecodeTag
->posCount
== 1) {
473 if (DecodeTag
->posCount
<= 4) {
474 DecodeTag
->sum1
+= amplitude
;
476 DecodeTag
->sum2
+= amplitude
;
478 if (DecodeTag
->posCount
== 8) {
479 if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
> DecodeTag
->threshold_half
) { // modulation in both halves
480 if (DecodeTag
->lastBit
== LOGIC0
) { // this was already part of EOF
481 DecodeTag
->state
= STATE_TAG_EOF
;
483 DecodeTag
->posCount
= 0;
484 DecodeTag
->previous_amplitude
= amplitude
;
485 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
488 } else if (DecodeTag
->sum1
< DecodeTag
->threshold_half
&& DecodeTag
->sum2
> DecodeTag
->threshold_half
) { // modulation in second half
490 if (DecodeTag
->lastBit
== SOF_PART1
) { // still part of SOF
491 DecodeTag
->lastBit
= SOF_PART2
; // SOF completed
493 DecodeTag
->lastBit
= LOGIC1
;
494 DecodeTag
->shiftReg
>>= 1;
495 DecodeTag
->shiftReg
|= 0x80;
496 DecodeTag
->bitCount
++;
497 if (DecodeTag
->bitCount
== 8) {
498 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
500 // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
501 if (DecodeTag
->len
> DecodeTag
->max_len
) {
502 // buffer overflow, give up
506 DecodeTag
->bitCount
= 0;
507 DecodeTag
->shiftReg
= 0;
510 } else if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // modulation in first half
512 if (DecodeTag
->lastBit
== SOF_PART1
) { // incomplete SOF
513 DecodeTag
->posCount
= 0;
514 DecodeTag
->previous_amplitude
= amplitude
;
515 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
518 DecodeTag
->lastBit
= LOGIC0
;
519 DecodeTag
->shiftReg
>>= 1;
520 DecodeTag
->bitCount
++;
521 if (DecodeTag
->bitCount
== 8) {
522 DecodeTag
->output
[DecodeTag
->len
] = DecodeTag
->shiftReg
;
524 // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
525 if (DecodeTag
->len
> DecodeTag
->max_len
) {
526 // buffer overflow, give up
527 DecodeTag
->posCount
= 0;
528 DecodeTag
->previous_amplitude
= amplitude
;
529 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
532 DecodeTag
->bitCount
= 0;
533 DecodeTag
->shiftReg
= 0;
536 } else { // no modulation
537 if (DecodeTag
->lastBit
== SOF_PART2
) { // only SOF (this is OK for iClass)
541 DecodeTag
->posCount
= 0;
542 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
546 DecodeTag
->posCount
= 0;
548 DecodeTag
->posCount
++;
552 if (DecodeTag
->posCount
== 1) {
556 if (DecodeTag
->posCount
<= 4) {
557 DecodeTag
->sum1
+= amplitude
;
559 DecodeTag
->sum2
+= amplitude
;
561 if (DecodeTag
->posCount
== 8) {
562 if (DecodeTag
->sum1
> DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // modulation in first half
563 DecodeTag
->posCount
= 0;
564 DecodeTag
->state
= STATE_TAG_EOF_TAIL
;
566 DecodeTag
->posCount
= 0;
567 DecodeTag
->previous_amplitude
= amplitude
;
568 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
572 DecodeTag
->posCount
++;
575 case STATE_TAG_EOF_TAIL
:
576 if (DecodeTag
->posCount
== 1) {
580 if (DecodeTag
->posCount
<= 4) {
581 DecodeTag
->sum1
+= amplitude
;
583 DecodeTag
->sum2
+= amplitude
;
585 if (DecodeTag
->posCount
== 8) {
586 if (DecodeTag
->sum1
< DecodeTag
->threshold_half
&& DecodeTag
->sum2
< DecodeTag
->threshold_half
) { // no modulation in both halves
590 DecodeTag
->posCount
= 0;
591 DecodeTag
->previous_amplitude
= amplitude
;
592 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
596 DecodeTag
->posCount
++;
604 static void DecodeTagInit(DecodeTag_t
*DecodeTag
, uint8_t *data
, uint16_t max_len
) {
605 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
606 DecodeTag
->posCount
= 0;
607 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
608 DecodeTag
->output
= data
;
609 DecodeTag
->max_len
= max_len
;
613 static void DecodeTagReset(DecodeTag_t
*DecodeTag
) {
614 DecodeTag
->posCount
= 0;
615 DecodeTag
->state
= STATE_TAG_SOF_LOW
;
616 DecodeTag
->previous_amplitude
= MAX_PREVIOUS_AMPLITUDE
;
621 * Receive and decode the tag response, also log to tracebuffer
623 int GetIso15693AnswerFromTag(uint8_t* response
, uint16_t max_len
, uint16_t timeout
, uint32_t *eof_time
) {
628 uint16_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
630 // the Decoder data structure
631 DecodeTag_t DecodeTag
= { 0 };
632 DecodeTagInit(&DecodeTag
, response
, max_len
);
634 // wait for last transfer to complete
635 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
637 // And put the FPGA in the appropriate mode
638 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
640 // Setup and start DMA.
641 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
642 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
643 uint32_t dma_start_time
= 0;
644 uint16_t *upTo
= dmaBuf
;
647 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
649 if (behindBy
== 0) continue;
653 // DMA has transferred the very first data
654 dma_start_time
= GetCountSspClk() & 0xfffffff0;
657 uint16_t tagdata
= *upTo
++;
659 if(upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
660 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
661 if(behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
662 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
667 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
668 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
669 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
672 if (Handle15693SamplesFromTag(tagdata
, &DecodeTag
)) {
673 *eof_time
= dma_start_time
+ samples
*16 - DELAY_TAG_TO_ARM
; // end of EOF
674 if (DecodeTag
.lastBit
== SOF_PART2
) {
675 *eof_time
-= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
677 if (DecodeTag
.len
> DecodeTag
.max_len
) {
678 ret
= -2; // buffer overflow
683 if (samples
> timeout
&& DecodeTag
.state
< STATE_TAG_RECEIVING_DATA
) {
692 if (DEBUG
) Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d",
693 samples
, ret
, DecodeTag
.state
, DecodeTag
.lastBit
, DecodeTag
.len
, DecodeTag
.bitCount
, DecodeTag
.posCount
);
699 uint32_t sof_time
= *eof_time
700 - DecodeTag
.len
* 8 * 8 * 16 // time for byte transfers
701 - 32 * 16 // time for SOF transfer
702 - (DecodeTag
.lastBit
!= SOF_PART2
?32*16:0); // time for EOF transfer
704 if (DEBUG
) Dbprintf("timing: sof_time = %d, eof_time = %d", sof_time
, *eof_time
);
706 LogTrace_ISO15693(DecodeTag
.output
, DecodeTag
.len
, sof_time
*4, *eof_time
*4, NULL
, false);
708 return DecodeTag
.len
;
712 //=============================================================================
713 // An ISO15693 decoder for reader commands.
715 // This function is called 4 times per bit (every 2 subcarrier cycles).
716 // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
718 // LED B -> ON once we have received the SOF and are expecting the rest.
719 // LED B -> OFF once we have received EOF or are in error state or unsynced
721 // Returns: true if we received a EOF
722 // false if we are still waiting for some more
723 //=============================================================================
725 typedef struct DecodeReader
{
727 STATE_READER_UNSYNCD
,
728 STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
,
729 STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
,
730 STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
,
731 STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
,
732 STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
,
733 STATE_READER_RECEIVE_DATA_1_OUT_OF_4
,
734 STATE_READER_RECEIVE_DATA_1_OUT_OF_256
750 static void DecodeReaderInit(DecodeReader_t
* DecodeReader
, uint8_t *data
, uint16_t max_len
)
752 DecodeReader
->output
= data
;
753 DecodeReader
->byteCountMax
= max_len
;
754 DecodeReader
->state
= STATE_READER_UNSYNCD
;
755 DecodeReader
->byteCount
= 0;
756 DecodeReader
->bitCount
= 0;
757 DecodeReader
->posCount
= 1;
758 DecodeReader
->shiftReg
= 0;
762 static void DecodeReaderReset(DecodeReader_t
* DecodeReader
)
764 DecodeReader
->state
= STATE_READER_UNSYNCD
;
768 static int inline __attribute__((always_inline
)) Handle15693SampleFromReader(uint8_t bit
, DecodeReader_t
*restrict DecodeReader
)
770 switch (DecodeReader
->state
) {
771 case STATE_READER_UNSYNCD
:
772 // wait for unmodulated carrier
774 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
778 case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
:
780 // we went low, so this could be the beginning of a SOF
781 DecodeReader
->posCount
= 1;
782 DecodeReader
->state
= STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
;
786 case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF
:
787 DecodeReader
->posCount
++;
788 if (bit
) { // detected rising edge
789 if (DecodeReader
->posCount
< 4) { // rising edge too early (nominally expected at 5)
790 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
792 DecodeReader
->state
= STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
;
795 if (DecodeReader
->posCount
> 5) { // stayed low for too long
796 DecodeReaderReset(DecodeReader
);
798 // do nothing, keep waiting
803 case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF
:
804 DecodeReader
->posCount
++;
805 if (!bit
) { // detected a falling edge
806 if (DecodeReader
->posCount
< 20) { // falling edge too early (nominally expected at 21 earliest)
807 DecodeReaderReset(DecodeReader
);
808 } else if (DecodeReader
->posCount
< 23) { // SOF for 1 out of 4 coding
809 DecodeReader
->Coding
= CODING_1_OUT_OF_4
;
810 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
811 } else if (DecodeReader
->posCount
< 28) { // falling edge too early (nominally expected at 29 latest)
812 DecodeReaderReset(DecodeReader
);
813 } else { // SOF for 1 out of 256 coding
814 DecodeReader
->Coding
= CODING_1_OUT_OF_256
;
815 DecodeReader
->state
= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
;
818 if (DecodeReader
->posCount
> 29) { // stayed high for too long
819 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
821 // do nothing, keep waiting
826 case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
:
827 DecodeReader
->posCount
++;
828 if (bit
) { // detected rising edge
829 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
830 if (DecodeReader
->posCount
< 32) { // rising edge too early (nominally expected at 33)
831 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
833 DecodeReader
->posCount
= 1;
834 DecodeReader
->bitCount
= 0;
835 DecodeReader
->byteCount
= 0;
836 DecodeReader
->sum1
= 1;
837 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_256
;
840 } else { // CODING_1_OUT_OF_4
841 if (DecodeReader
->posCount
< 24) { // rising edge too early (nominally expected at 25)
842 DecodeReader
->state
= STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF
;
844 DecodeReader
->posCount
= 1;
845 DecodeReader
->state
= STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
;
849 if (DecodeReader
->Coding
== CODING_1_OUT_OF_256
) {
850 if (DecodeReader
->posCount
> 34) { // signal stayed low for too long
851 DecodeReaderReset(DecodeReader
);
853 // do nothing, keep waiting
855 } else { // CODING_1_OUT_OF_4
856 if (DecodeReader
->posCount
> 26) { // signal stayed low for too long
857 DecodeReaderReset(DecodeReader
);
859 // do nothing, keep waiting
865 case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4
:
866 DecodeReader
->posCount
++;
868 if (DecodeReader
->posCount
== 9) {
869 DecodeReader
->posCount
= 1;
870 DecodeReader
->bitCount
= 0;
871 DecodeReader
->byteCount
= 0;
872 DecodeReader
->sum1
= 1;
873 DecodeReader
->state
= STATE_READER_RECEIVE_DATA_1_OUT_OF_4
;
876 // do nothing, keep waiting
878 } else { // unexpected falling edge
879 DecodeReaderReset(DecodeReader
);
883 case STATE_READER_RECEIVE_DATA_1_OUT_OF_4
:
885 DecodeReader
->posCount
++;
886 if (DecodeReader
->posCount
== 1) {
887 DecodeReader
->sum1
= bit
;
888 } else if (DecodeReader
->posCount
<= 4) {
889 DecodeReader
->sum1
+= bit
;
890 } else if (DecodeReader
->posCount
== 5) {
891 DecodeReader
->sum2
= bit
;
893 DecodeReader
->sum2
+= bit
;
895 if (DecodeReader
->posCount
== 8) {
896 DecodeReader
->posCount
= 0;
897 if (DecodeReader
->sum1
<= 1 && DecodeReader
->sum2
>= 3) { // EOF
898 LED_B_OFF(); // Finished receiving
899 DecodeReaderReset(DecodeReader
);
900 if (DecodeReader
->byteCount
!= 0) {
904 if (DecodeReader
->sum1
>= 3 && DecodeReader
->sum2
<= 1) { // detected a 2bit position
905 DecodeReader
->shiftReg
>>= 2;
906 DecodeReader
->shiftReg
|= (DecodeReader
->bitCount
<< 6);
908 if (DecodeReader
->bitCount
== 15) { // we have a full byte
909 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
910 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
911 // buffer overflow, give up
913 DecodeReaderReset(DecodeReader
);
915 DecodeReader
->bitCount
= 0;
916 DecodeReader
->shiftReg
= 0;
918 DecodeReader
->bitCount
++;
923 case STATE_READER_RECEIVE_DATA_1_OUT_OF_256
:
925 DecodeReader
->posCount
++;
926 if (DecodeReader
->posCount
== 1) {
927 DecodeReader
->sum1
= bit
;
928 } else if (DecodeReader
->posCount
<= 4) {
929 DecodeReader
->sum1
+= bit
;
930 } else if (DecodeReader
->posCount
== 5) {
931 DecodeReader
->sum2
= bit
;
933 DecodeReader
->sum2
+= bit
;
935 if (DecodeReader
->posCount
== 8) {
936 DecodeReader
->posCount
= 0;
937 if (DecodeReader
->sum1
<= 1 && DecodeReader
->sum2
>= 3) { // EOF
938 LED_B_OFF(); // Finished receiving
939 DecodeReaderReset(DecodeReader
);
940 if (DecodeReader
->byteCount
!= 0) {
944 if (DecodeReader
->sum1
>= 3 && DecodeReader
->sum2
<= 1) { // detected the bit position
945 DecodeReader
->shiftReg
= DecodeReader
->bitCount
;
947 if (DecodeReader
->bitCount
== 255) { // we have a full byte
948 DecodeReader
->output
[DecodeReader
->byteCount
++] = DecodeReader
->shiftReg
;
949 if (DecodeReader
->byteCount
> DecodeReader
->byteCountMax
) {
950 // buffer overflow, give up
952 DecodeReaderReset(DecodeReader
);
955 DecodeReader
->bitCount
++;
961 DecodeReaderReset(DecodeReader
);
969 //-----------------------------------------------------------------------------
970 // Receive a command (from the reader to us, where we are the simulated tag),
971 // and store it in the given buffer, up to the given maximum length. Keeps
972 // spinning, waiting for a well-framed command, until either we get one
973 // (returns len) or someone presses the pushbutton on the board (returns -1).
975 // Assume that we're called with the SSC (to the FPGA) and ADC path set
977 //-----------------------------------------------------------------------------
979 int GetIso15693CommandFromReader(uint8_t *received
, size_t max_len
, uint32_t *eof_time
) {
981 bool gotFrame
= false;
984 uint8_t dmaBuf
[ISO15693_DMA_BUFFER_SIZE
];
986 // the decoder data structure
987 DecodeReader_t DecodeReader
= {0};
988 DecodeReaderInit(&DecodeReader
, received
, max_len
);
990 // wait for last transfer to complete
991 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
));
994 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
996 // clear receive register and wait for next transfer
997 uint32_t temp
= AT91C_BASE_SSC
->SSC_RHR
;
999 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
)) ;
1001 uint32_t dma_start_time
= GetCountSspClk() & 0xfffffff8;
1003 // Setup and start DMA.
1004 FpgaSetupSscDma(dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1005 uint8_t *upTo
= dmaBuf
;
1008 uint16_t behindBy
= ((uint8_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
1010 if (behindBy
== 0) continue;
1013 if (upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1014 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
1015 if (behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
1016 Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy
);
1020 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1021 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1022 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
1025 for (int i
= 7; i
>= 0; i
--) {
1026 if (Handle15693SampleFromReader((b
>> i
) & 0x01, &DecodeReader
)) {
1027 *eof_time
= dma_start_time
+ samples
- DELAY_READER_TO_ARM
; // end of EOF
1038 if (BUTTON_PRESS()) {
1039 DecodeReader
.byteCount
= -1;
1046 FpgaDisableSscDma();
1048 if (DEBUG
) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
1049 samples
, gotFrame
, DecodeReader
.state
, DecodeReader
.byteCount
, DecodeReader
.bitCount
, DecodeReader
.posCount
);
1051 if (DecodeReader
.byteCount
> 0) {
1052 uint32_t sof_time
= *eof_time
1053 - DecodeReader
.byteCount
* (DecodeReader
.Coding
==CODING_1_OUT_OF_4
?128:2048) // time for byte transfers
1054 - 32 // time for SOF transfer
1055 - 16; // time for EOF transfer
1056 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, sof_time
*32, *eof_time
*32, NULL
, true);
1059 return DecodeReader
.byteCount
;
1063 // Encode (into the ToSend buffers) an identify request, which is the first
1064 // thing that you must send to a tag to get a response.
1065 static void BuildIdentifyRequest(void)
1070 // one sub-carrier, inventory, 1 slot, fast rate
1071 // AFI is at bit 5 (1<<4) when doing an INVENTORY
1072 cmd
[0] = (1 << 2) | (1 << 5) | (1 << 1);
1073 // inventory command code
1078 crc
= Iso15693Crc(cmd
, 3);
1079 cmd
[3] = crc
& 0xff;
1082 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1086 //-----------------------------------------------------------------------------
1087 // Start to read an ISO 15693 tag. We send an identify request, then wait
1088 // for the response. The response is not demodulated, just left in the buffer
1089 // so that it can be downloaded to a PC and processed there.
1090 //-----------------------------------------------------------------------------
1091 void AcquireRawAdcSamplesIso15693(void)
1095 uint8_t *dest
= BigBuf_get_addr();
1097 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1098 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1100 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1101 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1103 BuildIdentifyRequest();
1105 // Give the tags time to energize
1108 // Now send the command
1109 uint32_t start_time
= 0;
1110 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1112 // wait for last transfer to complete
1113 while (!(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXEMPTY
)) ;
1115 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_SUBCARRIER_424_KHZ
| FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE
);
1117 for(int c
= 0; c
< 4000; ) {
1118 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
1119 uint16_t r
= AT91C_BASE_SSC
->SSC_RHR
;
1124 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1129 void SnoopIso15693(void)
1133 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1139 // The DMA buffer, used to stream samples from the FPGA
1140 uint16_t* dmaBuf
= (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE
*sizeof(uint16_t));
1143 // Count of samples received so far, so that we can include timing
1144 // information in the trace buffer.
1147 DecodeTag_t DecodeTag
= {0};
1148 uint8_t response
[ISO15693_MAX_RESPONSE_LENGTH
];
1149 DecodeTagInit(&DecodeTag
, response
, sizeof(response
));
1151 DecodeReader_t DecodeReader
= {0};;
1152 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1153 DecodeReaderInit(&DecodeReader
, cmd
, sizeof(cmd
));
1155 // Print some debug information about the buffer sizes
1157 Dbprintf("Snooping buffers initialized:");
1158 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1159 Dbprintf(" Reader -> tag: %i bytes", ISO15693_MAX_COMMAND_LENGTH
);
1160 Dbprintf(" tag -> Reader: %i bytes", ISO15693_MAX_RESPONSE_LENGTH
);
1161 Dbprintf(" DMA: %i bytes", ISO15693_DMA_BUFFER_SIZE
* sizeof(uint16_t));
1163 Dbprintf("Snoop started. Press PM3 Button to stop.");
1165 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
| FPGA_HF_READER_MODE_SNOOP_AMPLITUDE
);
1166 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1168 // Setup for the DMA.
1169 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1171 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1173 bool TagIsActive
= false;
1174 bool ReaderIsActive
= false;
1175 bool ExpectTagAnswer
= false;
1177 // And now we loop, receiving samples.
1179 uint16_t behindBy
= ((uint16_t*)AT91C_BASE_PDC_SSC
->PDC_RPR
- upTo
) & (ISO15693_DMA_BUFFER_SIZE
-1);
1181 if (behindBy
== 0) continue;
1183 uint16_t snoopdata
= *upTo
++;
1185 if(upTo
>= dmaBuf
+ ISO15693_DMA_BUFFER_SIZE
) { // we have read all of the DMA buffer content.
1186 upTo
= dmaBuf
; // start reading the circular buffer from the beginning
1187 if(behindBy
> (9*ISO15693_DMA_BUFFER_SIZE
/10)) {
1188 Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy
, samples
);
1191 if (AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_ENDRX
)) { // DMA Counter Register had reached 0, already rotated.
1192 AT91C_BASE_PDC_SSC
->PDC_RNPR
= (uint32_t) dmaBuf
; // refresh the DMA Next Buffer and
1193 AT91C_BASE_PDC_SSC
->PDC_RNCR
= ISO15693_DMA_BUFFER_SIZE
; // DMA Next Counter registers
1195 if(BUTTON_PRESS()) {
1196 DbpString("Snoop stopped.");
1203 if (!TagIsActive
) { // no need to try decoding reader data if the tag is sending
1204 if (Handle15693SampleFromReader(snoopdata
& 0x02, &DecodeReader
)) {
1205 FpgaDisableSscDma();
1206 ExpectTagAnswer
= true;
1207 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, samples
*64, samples
*64, NULL
, true);
1208 /* And ready to receive another command. */
1209 DecodeReaderReset(&DecodeReader
);
1210 /* And also reset the demod code, which might have been */
1211 /* false-triggered by the commands from the reader. */
1212 DecodeTagReset(&DecodeTag
);
1214 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1216 if (Handle15693SampleFromReader(snoopdata
& 0x01, &DecodeReader
)) {
1217 FpgaDisableSscDma();
1218 ExpectTagAnswer
= true;
1219 LogTrace_ISO15693(DecodeReader
.output
, DecodeReader
.byteCount
, samples
*64, samples
*64, NULL
, true);
1220 /* And ready to receive another command. */
1221 DecodeReaderReset(&DecodeReader
);
1222 /* And also reset the demod code, which might have been */
1223 /* false-triggered by the commands from the reader. */
1224 DecodeTagReset(&DecodeTag
);
1226 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1228 ReaderIsActive
= (DecodeReader
.state
>= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF
);
1231 if (!ReaderIsActive
&& ExpectTagAnswer
) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
1232 if (Handle15693SamplesFromTag(snoopdata
>> 2, &DecodeTag
)) {
1233 FpgaDisableSscDma();
1234 //Use samples as a time measurement
1235 LogTrace_ISO15693(DecodeTag
.output
, DecodeTag
.len
, samples
*64, samples
*64, NULL
, false);
1236 // And ready to receive another response.
1237 DecodeTagReset(&DecodeTag
);
1238 DecodeReaderReset(&DecodeReader
);
1239 ExpectTagAnswer
= false;
1241 FpgaSetupSscDma((uint8_t*) dmaBuf
, ISO15693_DMA_BUFFER_SIZE
);
1243 TagIsActive
= (DecodeTag
.state
>= STATE_TAG_RECEIVING_DATA
);
1248 FpgaDisableSscDma();
1253 DbpString("Snoop statistics:");
1254 Dbprintf(" ExpectTagAnswer: %d", ExpectTagAnswer
);
1255 Dbprintf(" DecodeTag State: %d", DecodeTag
.state
);
1256 Dbprintf(" DecodeTag byteCnt: %d", DecodeTag
.len
);
1257 Dbprintf(" DecodeReader State: %d", DecodeReader
.state
);
1258 Dbprintf(" DecodeReader byteCnt: %d", DecodeReader
.byteCount
);
1259 Dbprintf(" Trace length: %d", BigBuf_get_traceLen());
1263 // Initialize the proxmark as iso15k reader
1264 void Iso15693InitReader() {
1265 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1267 // Start from off (no field generated)
1269 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1272 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1273 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1275 // Give the tags time to energize
1277 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1281 ///////////////////////////////////////////////////////////////////////
1282 // ISO 15693 Part 3 - Air Interface
1283 // This section basically contains transmission and receiving of bits
1284 ///////////////////////////////////////////////////////////////////////
1287 // uid is in transmission order (which is reverse of display order)
1288 static void BuildReadBlockRequest(uint8_t *uid
, uint8_t blockNumber
)
1293 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1294 // followed by the block data
1295 cmd
[0] = ISO15693_REQ_OPTION
| ISO15693_REQ_ADDRESS
| ISO15693_REQ_DATARATE_HIGH
;
1296 // READ BLOCK command code
1297 cmd
[1] = ISO15693_READBLOCK
;
1298 // UID may be optionally specified here
1307 cmd
[9] = uid
[7]; // 0xe0; // always e0 (not exactly unique)
1308 // Block number to read
1309 cmd
[10] = blockNumber
;
1311 crc
= Iso15693Crc(cmd
, 11); // the crc needs to be calculated over 11 bytes
1312 cmd
[11] = crc
& 0xff;
1315 CodeIso15693AsReader(cmd
, sizeof(cmd
));
1319 // Now the VICC>VCD responses when we are simulating a tag
1320 static void BuildInventoryResponse(uint8_t *uid
)
1326 cmd
[0] = 0; // No error, no protocol format extension
1327 cmd
[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
1329 cmd
[2] = uid
[7]; //0x32;
1330 cmd
[3] = uid
[6]; //0x4b;
1331 cmd
[4] = uid
[5]; //0x03;
1332 cmd
[5] = uid
[4]; //0x01;
1333 cmd
[6] = uid
[3]; //0x00;
1334 cmd
[7] = uid
[2]; //0x10;
1335 cmd
[8] = uid
[1]; //0x05;
1336 cmd
[9] = uid
[0]; //0xe0;
1338 crc
= Iso15693Crc(cmd
, 10);
1339 cmd
[10] = crc
& 0xff;
1342 CodeIso15693AsTag(cmd
, sizeof(cmd
));
1345 // Universal Method for sending to and recv bytes from a tag
1346 // init ... should we initialize the reader?
1347 // speed ... 0 low speed, 1 hi speed
1348 // *recv will contain the tag's answer
1349 // return: length of received data, or -1 for timeout
1350 int SendDataTag(uint8_t *send
, int sendlen
, bool init
, int speed
, uint8_t *recv
, uint16_t max_recv_len
, uint32_t start_time
, uint32_t *eof_time
) {
1353 Iso15693InitReader();
1360 // low speed (1 out of 256)
1361 CodeIso15693AsReader256(send
, sendlen
);
1363 // high speed (1 out of 4)
1364 CodeIso15693AsReader(send
, sendlen
);
1367 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1369 // Now wait for a response
1371 answerLen
= GetIso15693AnswerFromTag(recv
, max_recv_len
, ISO15693_READER_TIMEOUT
, eof_time
);
1378 // --------------------------------------------------------------------
1380 // --------------------------------------------------------------------
1382 // Decodes a message from a tag and displays its metadata and content
1383 #define DBD15STATLEN 48
1384 void DbdecodeIso15693Answer(int len
, uint8_t *d
) {
1385 char status
[DBD15STATLEN
+1]={0};
1389 if (d
[0] & ISO15693_RES_EXT
)
1390 strncat(status
,"ProtExt ", DBD15STATLEN
);
1391 if (d
[0] & ISO15693_RES_ERROR
) {
1393 strncat(status
,"Error ", DBD15STATLEN
);
1396 strncat(status
,"01:notSupp", DBD15STATLEN
);
1399 strncat(status
,"02:notRecog", DBD15STATLEN
);
1402 strncat(status
,"03:optNotSupp", DBD15STATLEN
);
1405 strncat(status
,"0f:noInfo", DBD15STATLEN
);
1408 strncat(status
,"10:doesn'tExist", DBD15STATLEN
);
1411 strncat(status
,"11:lockAgain", DBD15STATLEN
);
1414 strncat(status
,"12:locked", DBD15STATLEN
);
1417 strncat(status
,"13:progErr", DBD15STATLEN
);
1420 strncat(status
,"14:lockErr", DBD15STATLEN
);
1423 strncat(status
,"unknownErr", DBD15STATLEN
);
1425 strncat(status
," ", DBD15STATLEN
);
1427 strncat(status
,"NoErr ", DBD15STATLEN
);
1430 crc
=Iso15693Crc(d
,len
-2);
1431 if ( (( crc
& 0xff ) == d
[len
-2]) && (( crc
>> 8 ) == d
[len
-1]) )
1432 strncat(status
,"CrcOK",DBD15STATLEN
);
1434 strncat(status
,"CrcFail!",DBD15STATLEN
);
1436 Dbprintf("%s",status
);
1442 ///////////////////////////////////////////////////////////////////////
1443 // Functions called via USB/Client
1444 ///////////////////////////////////////////////////////////////////////
1446 void SetDebugIso15693(uint32_t debug
) {
1448 Dbprintf("Iso15693 Debug is now %s",DEBUG
?"on":"off");
1453 //---------------------------------------------------------------------------------------
1454 // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
1455 // all demodulation performed in arm rather than host. - greg
1456 //---------------------------------------------------------------------------------------
1457 void ReaderIso15693(uint32_t parameter
) {
1464 uint8_t TagUID
[8] = {0x00};
1466 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1468 uint8_t answer
[ISO15693_MAX_RESPONSE_LENGTH
];
1470 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1472 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER
);
1474 // Start from off (no field generated)
1475 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1478 // Give the tags time to energize
1480 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER
);
1485 // FIRST WE RUN AN INVENTORY TO GET THE TAG UID
1486 // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
1488 // Now send the IDENTIFY command
1489 BuildIdentifyRequest();
1490 uint32_t start_time
= 0;
1491 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1493 // Now wait for a response
1495 answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2, &eof_time
) ;
1496 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1498 if (answerLen
>=12) // we should do a better check than this
1500 TagUID
[0] = answer
[2];
1501 TagUID
[1] = answer
[3];
1502 TagUID
[2] = answer
[4];
1503 TagUID
[3] = answer
[5];
1504 TagUID
[4] = answer
[6];
1505 TagUID
[5] = answer
[7];
1506 TagUID
[6] = answer
[8]; // IC Manufacturer code
1507 TagUID
[7] = answer
[9]; // always E0
1511 Dbprintf("%d octets read from IDENTIFY request:", answerLen
);
1512 DbdecodeIso15693Answer(answerLen
, answer
);
1513 Dbhexdump(answerLen
, answer
, false);
1516 if (answerLen
>= 12)
1517 Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
1518 TagUID
[7],TagUID
[6],TagUID
[5],TagUID
[4],
1519 TagUID
[3],TagUID
[2],TagUID
[1],TagUID
[0]);
1522 // Dbprintf("%d octets read from SELECT request:", answerLen2);
1523 // DbdecodeIso15693Answer(answerLen2,answer2);
1524 // Dbhexdump(answerLen2,answer2,true);
1526 // Dbprintf("%d octets read from XXX request:", answerLen3);
1527 // DbdecodeIso15693Answer(answerLen3,answer3);
1528 // Dbhexdump(answerLen3,answer3,true);
1531 if (answerLen
>= 12 && DEBUG
) {
1532 for (int i
= 0; i
< 32; i
++) { // sanity check, assume max 32 pages
1533 BuildReadBlockRequest(TagUID
, i
);
1534 TransmitTo15693Tag(ToSend
, ToSendMax
, &start_time
);
1535 int answerLen
= GetIso15693AnswerFromTag(answer
, sizeof(answer
), DELAY_ISO15693_VCD_TO_VICC_READER
* 2, &eof_time
);
1536 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1537 if (answerLen
> 0) {
1538 Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i
, answerLen
);
1539 DbdecodeIso15693Answer(answerLen
, answer
);
1540 Dbhexdump(answerLen
, answer
, false);
1541 if ( *((uint32_t*) answer
) == 0x07160101 ) break; // exit on NoPageErr
1546 // for the time being, switch field off to protect rdv4.0
1547 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1548 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1555 // Simulate an ISO15693 TAG.
1556 // For Inventory command: print command and send Inventory Response with given UID
1557 // TODO: interpret other reader commands and send appropriate response
1558 void SimTagIso15693(uint32_t parameter
, uint8_t *uid
) {
1562 FpgaDownloadAndGo(FPGA_BITSTREAM_HF
);
1563 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
1564 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_NO_MODULATION
);
1565 FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR
);
1569 uint8_t cmd
[ISO15693_MAX_COMMAND_LENGTH
];
1571 // Build a suitable response to the reader INVENTORY command
1572 BuildInventoryResponse(uid
);
1575 while (!BUTTON_PRESS()) {
1576 uint32_t eof_time
= 0, start_time
= 0;
1577 int cmd_len
= GetIso15693CommandFromReader(cmd
, sizeof(cmd
), &eof_time
);
1579 if ((cmd_len
>= 5) && (cmd
[0] & ISO15693_REQ_INVENTORY
) && (cmd
[1] == ISO15693_INVENTORY
)) { // TODO: check more flags
1580 bool slow
= !(cmd
[0] & ISO15693_REQ_DATARATE_HIGH
);
1581 start_time
= eof_time
+ DELAY_ISO15693_VCD_TO_VICC_SIM
;
1582 TransmitTo15693Reader(ToSend
, ToSendMax
, &start_time
, 0, slow
);
1585 Dbprintf("%d bytes read from reader:", cmd_len
);
1586 Dbhexdump(cmd_len
, cmd
, false);
1589 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1595 // Since there is no standardized way of reading the AFI out of a tag, we will brute force it
1596 // (some manufactures offer a way to read the AFI, though)
1597 void BruteforceIso15693Afi(uint32_t speed
)
1602 uint8_t recv
[ISO15693_MAX_RESPONSE_LENGTH
];
1603 int datalen
= 0, recvlen
= 0;
1606 // first without AFI
1607 // Tags should respond without AFI and with AFI=0 even when AFI is active
1609 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_SLOT1
;
1610 data
[1] = ISO15693_INVENTORY
;
1611 data
[2] = 0; // mask length
1612 datalen
= Iso15693AddCrc(data
,3);
1613 uint32_t start_time
= GetCountSspClk();
1614 recvlen
= SendDataTag(data
, datalen
, true, speed
, recv
, sizeof(recv
), 0, &eof_time
);
1615 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1618 Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL
, &recv
[2]));
1623 data
[0] = ISO15693_REQ_DATARATE_HIGH
| ISO15693_REQ_INVENTORY
| ISO15693_REQINV_AFI
| ISO15693_REQINV_SLOT1
;
1624 data
[1] = ISO15693_INVENTORY
;
1626 data
[3] = 0; // mask length
1628 for (int i
= 0; i
< 256; i
++) {
1630 datalen
= Iso15693AddCrc(data
,4);
1631 recvlen
= SendDataTag(data
, datalen
, false, speed
, recv
, sizeof(recv
), start_time
, &eof_time
);
1632 start_time
= eof_time
+ DELAY_ISO15693_VICC_TO_VCD_READER
;
1634 if (recvlen
>= 12) {
1635 Dbprintf("AFI=%i UID=%s", i
, Iso15693sprintUID(NULL
, &recv
[2]));
1638 Dbprintf("AFI Bruteforcing done.");
1640 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1646 // Allows to directly send commands to the tag via the client
1647 void DirectTag15693Command(uint32_t datalen
, uint32_t speed
, uint32_t recv
, uint8_t data
[]) {
1652 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1657 Dbhexdump(datalen
, data
, false);
1660 recvlen
= SendDataTag(data
, datalen
, true, speed
, (recv
?recvbuf
:NULL
), sizeof(recvbuf
), 0, &eof_time
);
1662 // for the time being, switch field off to protect rdv4.0
1663 // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
1664 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1671 Dbhexdump(recvlen
, recvbuf
, false);
1672 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1675 if (recvlen
> ISO15693_MAX_RESPONSE_LENGTH
) {
1676 recvlen
= ISO15693_MAX_RESPONSE_LENGTH
;
1678 cmd_send(CMD_ACK
, recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1684 //-----------------------------------------------------------------------------
1685 // Work with "magic Chinese" card.
1687 //-----------------------------------------------------------------------------
1689 // Set the UID to the tag (based on Iceman work).
1690 void SetTag15693Uid(uint8_t *uid
) {
1694 uint8_t cmd
[4][9] = {0x00};
1698 uint8_t recvbuf
[ISO15693_MAX_RESPONSE_LENGTH
];
1701 // Command 1 : 02213E00000000
1710 // Command 2 : 02213F69960000
1719 // Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
1728 // Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
1737 for (int i
= 0; i
< 4; i
++) {
1739 crc
= Iso15693Crc(cmd
[i
], 7);
1740 cmd
[i
][7] = crc
& 0xff;
1741 cmd
[i
][8] = crc
>> 8;
1745 Dbhexdump(sizeof(cmd
[i
]), cmd
[i
], false);
1748 recvlen
= SendDataTag(cmd
[i
], sizeof(cmd
[i
]), true, 1, recvbuf
, sizeof(recvbuf
), 0, &eof_time
);
1753 Dbhexdump(recvlen
, recvbuf
, false);
1754 DbdecodeIso15693Answer(recvlen
, recvbuf
);
1758 cmd_send(CMD_ACK
, recvlen
>ISO15693_MAX_RESPONSE_LENGTH
?ISO15693_MAX_RESPONSE_LENGTH
:recvlen
, 0, 0, recvbuf
, ISO15693_MAX_RESPONSE_LENGTH
);
1766 // --------------------------------------------------------------------
1767 // -- Misc & deprecated functions
1768 // --------------------------------------------------------------------
1772 // do not use; has a fix UID
1773 static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
1778 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1779 // followed by the block data
1780 // one sub-carrier, inventory, 1 slot, fast rate
1781 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1782 // System Information command code
1784 // UID may be optionally specified here
1793 cmd[9]= 0xe0; // always e0 (not exactly unique)
1795 crc = Iso15693Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
1796 cmd[10] = crc & 0xff;
1799 CodeIso15693AsReader(cmd, sizeof(cmd));
1803 // do not use; has a fix UID
1804 static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
1809 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1810 // followed by the block data
1811 // one sub-carrier, inventory, 1 slot, fast rate
1812 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1813 // READ Multi BLOCK command code
1815 // UID may be optionally specified here
1824 cmd[9]= 0xe0; // always e0 (not exactly unique)
1825 // First Block number to read
1827 // Number of Blocks to read
1828 cmd[11] = 0x2f; // read quite a few
1830 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1831 cmd[12] = crc & 0xff;
1834 CodeIso15693AsReader(cmd, sizeof(cmd));
1837 // do not use; has a fix UID
1838 static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
1843 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1844 // followed by the block data
1845 // one sub-carrier, inventory, 1 slot, fast rate
1846 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1847 // READ BLOCK command code
1849 // UID may be optionally specified here
1858 cmd[9]= 0xe0; // always e0 (not exactly unique)
1864 // cmd[13] = 0x00; //Now the CRC
1865 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1866 cmd[12] = crc & 0xff;
1869 CodeIso15693AsReader(cmd, sizeof(cmd));
1872 // do not use; has a fix UID
1873 static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
1878 // If we set the Option_Flag in this request, the VICC will respond with the security status of the block
1879 // followed by the block data
1880 // one sub-carrier, inventory, 1 slot, fast rate
1881 cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
1882 // READ BLOCK command code
1884 // UID may be optionally specified here
1893 cmd[9]= 0xe0; // always e0 (not exactly unique)
1895 cmd[10] = 0x05; // for custom codes this must be manufacturer code
1899 // cmd[13] = 0x00; //Now the CRC
1900 crc = Iso15693Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
1901 cmd[12] = crc & 0xff;
1904 CodeIso15693AsReader(cmd, sizeof(cmd));