1 //-----------------------------------------------------------------------------
2 // Jonathan Westhues, Mar 2006
3 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
5 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
6 // at your option, any later version. See the LICENSE.txt file for the text of
8 //-----------------------------------------------------------------------------
9 // The main application code. This is the first thing called after start.c
11 //-----------------------------------------------------------------------------
16 #include "proxmark3.h"
31 #define abs(x) ( ((x)<0) ? -(x) : (x) )
33 //=============================================================================
34 // A buffer where we can queue things up to be sent through the FPGA, for
35 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
36 // is the order in which they go out on the wire.
37 //=============================================================================
42 struct common_area common_area
__attribute__((section(".commonarea")));
44 void BufferClear(void)
46 memset(BigBuf
,0,sizeof(BigBuf
));
47 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf
));
50 void ToSendReset(void)
56 void ToSendStuffBit(int b
)
60 ToSend
[ToSendMax
] = 0;
65 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
70 if(ToSendBit
>= sizeof(ToSend
)) {
72 DbpString("ToSendStuffBit overflowed!");
76 //=============================================================================
77 // Debug print functions, to go out over USB, to the usual PC-side client.
78 //=============================================================================
80 void DbpString(char *str
)
82 byte_t len
= strlen(str
);
83 cmd_send(CMD_DEBUG_PRINT_STRING
,len
,0,0,(byte_t
*)str
,len
);
84 // /* this holds up stuff unless we're connected to usb */
85 // if (!UsbConnected())
89 // c.cmd = CMD_DEBUG_PRINT_STRING;
90 // c.arg[0] = strlen(str);
91 // if(c.arg[0] > sizeof(c.d.asBytes)) {
92 // c.arg[0] = sizeof(c.d.asBytes);
94 // memcpy(c.d.asBytes, str, c.arg[0]);
96 // UsbSendPacket((uint8_t *)&c, sizeof(c));
97 // // TODO fix USB so stupid things like this aren't req'd
102 void DbpIntegers(int x1
, int x2
, int x3
)
104 cmd_send(CMD_DEBUG_PRINT_INTEGERS
,x1
,x2
,x3
,0,0);
105 // /* this holds up stuff unless we're connected to usb */
106 // if (!UsbConnected())
110 // c.cmd = CMD_DEBUG_PRINT_INTEGERS;
115 // UsbSendPacket((uint8_t *)&c, sizeof(c));
121 void Dbprintf(const char *fmt
, ...) {
122 // should probably limit size here; oh well, let's just use a big buffer
123 char output_string
[128];
127 kvsprintf(fmt
, output_string
, 10, ap
);
130 DbpString(output_string
);
133 // prints HEX & ASCII
134 void Dbhexdump(int len
, uint8_t *d
, bool bAsci
) {
147 if (ascii
[i
]<32 || ascii
[i
]>126) ascii
[i
]='.';
150 Dbprintf("%-8s %*D",ascii
,l
,d
," ");
152 Dbprintf("%*D",l
,d
," ");
160 //-----------------------------------------------------------------------------
161 // Read an ADC channel and block till it completes, then return the result
162 // in ADC units (0 to 1023). Also a routine to average 32 samples and
164 //-----------------------------------------------------------------------------
165 static int ReadAdc(int ch
)
169 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
170 AT91C_BASE_ADC
->ADC_MR
=
171 ADC_MODE_PRESCALE(32) |
172 ADC_MODE_STARTUP_TIME(16) |
173 ADC_MODE_SAMPLE_HOLD_TIME(8);
174 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
176 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
177 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
179 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
184 int AvgAdc(int ch
) // was static - merlok
189 for(i
= 0; i
< 32; i
++) {
193 return (a
+ 15) >> 5;
196 void MeasureAntennaTuning(void)
198 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
199 int i
, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0; //ptr = 0
200 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
205 DbpString("Measuring antenna characteristics, please wait...");
206 memset(dest
,0,sizeof(FREE_BUFFER_SIZE
));
209 * Sweeps the useful LF range of the proxmark from
210 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
211 * read the voltage in the antenna, the result left
212 * in the buffer is a graph which should clearly show
213 * the resonating frequency of your LF antenna
214 * ( hopefully around 95 if it is tuned to 125kHz!)
217 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
218 for (i
=255; i
>19; i
--) {
220 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
222 // Vref = 3.3V, and a 10000:240 voltage divider on the input
223 // can measure voltages up to 137500 mV
224 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
225 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
226 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
228 dest
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
238 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
239 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
241 // Vref = 3300mV, and an 10:1 voltage divider on the input
242 // can measure voltages up to 33000 mV
243 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
245 // c.cmd = CMD_MEASURED_ANTENNA_TUNING;
246 // c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
248 // c.arg[2] = peakf | (peakv << 16);
250 DbpString("Measuring complete, sending report back to host");
251 cmd_send(CMD_MEASURED_ANTENNA_TUNING
,vLf125
|(vLf134
<<16),vHf
,peakf
|(peakv
<<16),0,0);
252 // UsbSendPacket((uint8_t *)&c, sizeof(c));
253 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
259 void MeasureAntennaTuningHf(void)
261 int vHf
= 0; // in mV
263 DbpString("Measuring HF antenna, press button to exit");
266 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
267 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
269 // Vref = 3300mV, and an 10:1 voltage divider on the input
270 // can measure voltages up to 33000 mV
271 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
273 Dbprintf("%d mV",vHf
);
274 if (BUTTON_PRESS()) break;
276 DbpString("cancelled");
280 void SimulateTagHfListen(void)
282 uint8_t *dest
= (uint8_t *)BigBuf
+FREE_BUFFER_OFFSET
;
287 // We're using this mode just so that I can test it out; the simulated
288 // tag mode would work just as well and be simpler.
289 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
291 // We need to listen to the high-frequency, peak-detected path.
292 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
298 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
299 AT91C_BASE_SSC
->SSC_THR
= 0xff;
301 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
302 uint8_t r
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
316 if(i
>= FREE_BUFFER_SIZE
) {
322 DbpString("simulate tag (now type bitsamples)");
325 void ReadMem(int addr
)
327 const uint8_t *data
= ((uint8_t *)addr
);
329 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
330 addr
, data
[0], data
[1], data
[2], data
[3], data
[4], data
[5], data
[6], data
[7]);
333 /* osimage version information is linked in */
334 extern struct version_information version_information
;
335 /* bootrom version information is pointed to from _bootphase1_version_pointer */
336 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
337 void SendVersion(void)
339 char temp
[48]; /* Limited data payload in USB packets */
340 DbpString("Prox/RFID mark3 RFID instrument");
342 /* Try to find the bootrom version information. Expect to find a pointer at
343 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
344 * pointer, then use it.
346 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
347 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
348 DbpString("bootrom version information appears invalid");
350 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
354 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
357 FpgaGatherVersion(temp
, sizeof(temp
));
362 // samy's sniff and repeat routine
365 DbpString("Stand-alone mode! No PC necessary.");
367 // 3 possible options? no just 2 for now
370 int high
[OPTS
], low
[OPTS
];
372 // Oooh pretty -- notify user we're in elite samy mode now
374 LED(LED_ORANGE
, 200);
376 LED(LED_ORANGE
, 200);
378 LED(LED_ORANGE
, 200);
380 LED(LED_ORANGE
, 200);
386 // Turn on selected LED
387 LED(selected
+ 1, 0);
395 // Was our button held down or pressed?
396 int button_pressed
= BUTTON_HELD(1000);
399 // Button was held for a second, begin recording
400 if (button_pressed
> 0)
403 LED(selected
+ 1, 0);
407 DbpString("Starting recording");
409 // wait for button to be released
410 while(BUTTON_PRESS())
413 /* need this delay to prevent catching some weird data */
416 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
417 Dbprintf("Recorded %x %x %x", selected
, high
[selected
], low
[selected
]);
420 LED(selected
+ 1, 0);
421 // Finished recording
423 // If we were previously playing, set playing off
424 // so next button push begins playing what we recorded
428 // Change where to record (or begin playing)
429 else if (button_pressed
)
431 // Next option if we were previously playing
433 selected
= (selected
+ 1) % OPTS
;
437 LED(selected
+ 1, 0);
439 // Begin transmitting
443 DbpString("Playing");
444 // wait for button to be released
445 while(BUTTON_PRESS())
447 Dbprintf("%x %x %x", selected
, high
[selected
], low
[selected
]);
448 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
449 DbpString("Done playing");
450 if (BUTTON_HELD(1000) > 0)
452 DbpString("Exiting");
457 /* We pressed a button so ignore it here with a delay */
460 // when done, we're done playing, move to next option
461 selected
= (selected
+ 1) % OPTS
;
464 LED(selected
+ 1, 0);
467 while(BUTTON_PRESS())
476 Listen and detect an external reader. Determine the best location
480 Inside the ListenReaderField() function, there is two mode.
481 By default, when you call the function, you will enter mode 1.
482 If you press the PM3 button one time, you will enter mode 2.
483 If you press the PM3 button a second time, you will exit the function.
485 DESCRIPTION OF MODE 1:
486 This mode just listens for an external reader field and lights up green
487 for HF and/or red for LF. This is the original mode of the detectreader
490 DESCRIPTION OF MODE 2:
491 This mode will visually represent, using the LEDs, the actual strength of the
492 current compared to the maximum current detected. Basically, once you know
493 what kind of external reader is present, it will help you spot the best location to place
494 your antenna. You will probably not get some good results if there is a LF and a HF reader
495 at the same place! :-)
499 static const char LIGHT_SCHEME
[] = {
500 0x0, /* ---- | No field detected */
501 0x1, /* X--- | 14% of maximum current detected */
502 0x2, /* -X-- | 29% of maximum current detected */
503 0x4, /* --X- | 43% of maximum current detected */
504 0x8, /* ---X | 57% of maximum current detected */
505 0xC, /* --XX | 71% of maximum current detected */
506 0xE, /* -XXX | 86% of maximum current detected */
507 0xF, /* XXXX | 100% of maximum current detected */
509 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
511 void ListenReaderField(int limit
)
513 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
514 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
515 int mode
=1, display_val
, display_max
, i
;
522 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
524 if(limit
!= HF_ONLY
) {
525 Dbprintf("LF 125/134 Baseline: %d", lf_av
);
529 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
531 if (limit
!= LF_ONLY
) {
532 Dbprintf("HF 13.56 Baseline: %d", hf_av
);
537 if (BUTTON_PRESS()) {
542 DbpString("Signal Strength Mode");
546 DbpString("Stopped");
554 if (limit
!= HF_ONLY
) {
556 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
561 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
562 // see if there's a significant change
563 if(abs(lf_av
- lf_av_new
) > 10) {
564 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av
, lf_av_new
, lf_count
);
572 if (limit
!= LF_ONLY
) {
574 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
579 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
580 // see if there's a significant change
581 if(abs(hf_av
- hf_av_new
) > 10) {
582 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av
, hf_av_new
, hf_count
);
591 if (limit
== LF_ONLY
) {
593 display_max
= lf_max
;
594 } else if (limit
== HF_ONLY
) {
596 display_max
= hf_max
;
597 } else { /* Pick one at random */
598 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
600 display_max
= hf_max
;
603 display_max
= lf_max
;
606 for (i
=0; i
<LIGHT_LEN
; i
++) {
607 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
608 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
609 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
610 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
611 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
619 void UsbPacketReceived(uint8_t *packet
, int len
)
621 UsbCommand
*c
= (UsbCommand
*)packet
;
623 // Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
627 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
628 AcquireRawAdcSamples125k(c
->arg
[0]);
629 cmd_send(CMD_ACK
,0,0,0,0,0);
631 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
632 ModThenAcquireRawAdcSamples125k(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
634 case CMD_HID_DEMOD_FSK
:
635 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
637 case CMD_HID_SIM_TAG
:
638 CmdHIDsimTAG(c
->arg
[0], c
->arg
[1], 1); // Simulate HID tag by ID
640 case CMD_HID_CLONE_TAG
:
641 CopyHIDtoT55x7(c
->arg
[0], c
->arg
[1]); // Clone HID tag by ID to T55x7
643 case CMD_EM410X_WRITE_TAG
:
644 WriteEM410x(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
646 case CMD_READ_TI_TYPE
:
649 case CMD_WRITE_TI_TYPE
:
650 WriteTItag(c
->arg
[0],c
->arg
[1],c
->arg
[2]);
652 case CMD_SIMULATE_TAG_125K
:
654 SimulateTagLowFrequency(c
->arg
[0], c
->arg
[1], 1);
657 case CMD_LF_SIMULATE_BIDIR
:
658 SimulateTagLowFrequencyBidir(c
->arg
[0], c
->arg
[1]);
660 case CMD_INDALA_CLONE_TAG
: // Clone Indala 64-bit tag by UID to T55x7
661 CopyIndala64toT55x7(c
->arg
[0], c
->arg
[1]);
663 case CMD_INDALA_CLONE_TAG_L
: // Clone Indala 224-bit tag by UID to T55x7
664 CopyIndala224toT55x7(c
->d
.asDwords
[0], c
->d
.asDwords
[1], c
->d
.asDwords
[2], c
->d
.asDwords
[3], c
->d
.asDwords
[4], c
->d
.asDwords
[5], c
->d
.asDwords
[6]);
669 case CMD_SNOOP_HITAG
: // Eavesdrop Hitag tag, args = type
670 SnoopHitag(c
->arg
[0]);
672 case CMD_SIMULATE_HITAG
: // Simulate Hitag tag, args = memory content
673 SimulateHitagTag((bool)c
->arg
[0],(byte_t
*)c
->d
.asBytes
);
675 case CMD_READER_HITAG
: // Reader for Hitag tags, args = type and function
676 ReaderHitag((hitag_function
)c
->arg
[0],(hitag_data
*)c
->d
.asBytes
);
681 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
682 AcquireRawAdcSamplesIso15693();
684 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693
:
685 RecordRawAdcSamplesIso15693();
688 case CMD_ISO_15693_COMMAND
:
689 DirectTag15693Command(c
->arg
[0],c
->arg
[1],c
->arg
[2],c
->d
.asBytes
);
692 case CMD_ISO_15693_FIND_AFI
:
693 BruteforceIso15693Afi(c
->arg
[0]);
696 case CMD_ISO_15693_DEBUG
:
697 SetDebugIso15693(c
->arg
[0]);
700 case CMD_READER_ISO_15693
:
701 ReaderIso15693(c
->arg
[0]);
703 case CMD_SIMTAG_ISO_15693
:
704 SimTagIso15693(c
->arg
[0]);
709 case CMD_SIMULATE_TAG_LEGIC_RF
:
710 LegicRfSimulate(c
->arg
[0], c
->arg
[1], c
->arg
[2]);
713 case CMD_WRITER_LEGIC_RF
:
714 LegicRfWriter(c
->arg
[1], c
->arg
[0]);
717 case CMD_READER_LEGIC_RF
:
718 LegicRfReader(c
->arg
[0], c
->arg
[1]);
722 #ifdef WITH_ISO14443b
723 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
724 AcquireRawAdcSamplesIso14443(c
->arg
[0]);
726 case CMD_READ_SRI512_TAG
:
727 ReadSRI512Iso14443(c
->arg
[0]);
729 case CMD_READ_SRIX4K_TAG
:
730 ReadSRIX4KIso14443(c
->arg
[0]);
732 case CMD_SNOOP_ISO_14443
:
735 case CMD_SIMULATE_TAG_ISO_14443
:
736 SimulateIso14443Tag();
740 #ifdef WITH_ISO14443a
741 case CMD_SNOOP_ISO_14443a
:
742 SnoopIso14443a(c
->arg
[0]);
744 case CMD_READER_ISO_14443a
:
747 case CMD_SIMULATE_TAG_ISO_14443a
:
748 SimulateIso14443aTag(c
->arg
[0], c
->arg
[1], c
->arg
[2]); // ## Simulate iso14443a tag - pass tag type & UID
750 case CMD_EPA_PACE_COLLECT_NONCE
:
751 EPA_PACE_Collect_Nonce(c
);
754 case CMD_READER_MIFARE
:
755 ReaderMifare(c
->arg
[0]);
757 case CMD_MIFARE_READBL
:
758 MifareReadBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
760 case CMD_MIFARE_READSC
:
761 MifareReadSector(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
763 case CMD_MIFARE_WRITEBL
:
764 MifareWriteBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
766 case CMD_MIFARE_NESTED
:
767 MifareNested(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
769 case CMD_MIFARE_CHKKEYS
:
770 MifareChkKeys(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
772 case CMD_SIMULATE_MIFARE_CARD
:
773 Mifare1ksim(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
777 case CMD_MIFARE_SET_DBGMODE
:
778 MifareSetDbgLvl(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
780 case CMD_MIFARE_EML_MEMCLR
:
781 MifareEMemClr(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
783 case CMD_MIFARE_EML_MEMSET
:
784 MifareEMemSet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
786 case CMD_MIFARE_EML_MEMGET
:
787 MifareEMemGet(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
789 case CMD_MIFARE_EML_CARDLOAD
:
790 MifareECardLoad(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
793 // Work with "magic Chinese" card
794 case CMD_MIFARE_EML_CSETBLOCK
:
795 MifareCSetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
797 case CMD_MIFARE_EML_CGETBLOCK
:
798 MifareCGetBlock(c
->arg
[0], c
->arg
[1], c
->arg
[2], c
->d
.asBytes
);
802 case CMD_MIFARE_SNIFFER
:
803 SniffMifare(c
->arg
[0]);
808 // Makes use of ISO14443a FPGA Firmware
809 case CMD_SNOOP_ICLASS
:
812 case CMD_SIMULATE_TAG_ICLASS
:
813 SimulateIClass(c
->arg
[0], c
->d
.asBytes
);
815 case CMD_READER_ICLASS
:
816 ReaderIClass(c
->arg
[0]);
820 case CMD_SIMULATE_TAG_HF_LISTEN
:
821 SimulateTagHfListen();
828 case CMD_MEASURE_ANTENNA_TUNING
:
829 MeasureAntennaTuning();
832 case CMD_MEASURE_ANTENNA_TUNING_HF
:
833 MeasureAntennaTuningHf();
836 case CMD_LISTEN_READER_FIELD
:
837 ListenReaderField(c
->arg
[0]);
840 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
841 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
843 LED_D_OFF(); // LED D indicates field ON or OFF
846 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
848 // if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
849 // n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
851 // n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
853 // n.arg[0] = c->arg[0];
854 // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
856 // usb_write((uint8_t *)&n, sizeof(n));
857 // UsbSendPacket((uint8_t *)&n, sizeof(n));
861 for(size_t i
=0; i
<c
->arg
[1]; i
+= USB_CMD_DATA_SIZE
) {
862 size_t len
= MIN((c
->arg
[1] - i
),USB_CMD_DATA_SIZE
);
863 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
,i
,len
,0,((byte_t
*)BigBuf
)+c
->arg
[0]+i
,len
);
865 // Trigger a finish downloading signal with an ACK frame
866 cmd_send(CMD_ACK
,0,0,0,0,0);
870 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
871 uint8_t *b
= (uint8_t *)BigBuf
;
872 memcpy(b
+c
->arg
[0], c
->d
.asBytes
, 48);
873 //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
874 // UsbSendPacket((uint8_t*)&ack, sizeof(ack));
875 cmd_send(CMD_ACK
,0,0,0,0,0);
882 case CMD_SET_LF_DIVISOR
:
883 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->arg
[0]);
886 case CMD_SET_ADC_MUX
:
888 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
889 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
890 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
891 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
907 case CMD_SETUP_WRITE
:
908 case CMD_FINISH_WRITE
:
909 case CMD_HARDWARE_RESET
: {
913 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
915 // We're going to reset, and the bootrom will take control.
919 case CMD_START_FLASH
: {
920 if(common_area
.flags
.bootrom_present
) {
921 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
924 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
928 case CMD_DEVICE_INFO
: {
929 uint32_t dev_info
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
930 if(common_area
.flags
.bootrom_present
) dev_info
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
931 // UsbSendPacket((uint8_t*)&c, sizeof(c));
932 cmd_send(CMD_DEVICE_INFO
,dev_info
,0,0,0,0);
936 Dbprintf("%s: 0x%04x","unknown command:",c
->cmd
);
941 void __attribute__((noreturn
)) AppMain(void)
945 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
946 /* Initialize common area */
947 memset(&common_area
, 0, sizeof(common_area
));
948 common_area
.magic
= COMMON_AREA_MAGIC
;
949 common_area
.version
= 1;
951 common_area
.flags
.osimage_present
= 1;
962 // The FPGA gets its clock from us from PCK0 output, so set that up.
963 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
964 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
965 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
966 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
967 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
968 AT91C_PMC_PRES_CLK_4
;
969 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
972 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
974 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
976 // Load the FPGA image, which we have stored in our flash.
985 byte_t rx
[sizeof(UsbCommand
)];
990 rx_len
= usb_read(rx
,sizeof(UsbCommand
));
992 UsbPacketReceived(rx
,rx_len
);
1000 if (BUTTON_HELD(1000) > 0)