1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "../include/proxmark3.h"
14 #include "../include/hitag2.h"
15 #include "../common/crc16.h"
18 #include "mifareutil.h"
20 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
22 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
23 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
24 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
25 else if (divisor
== 0)
26 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
28 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
30 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
32 // Connect the A/D to the peak-detected low-frequency path.
33 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
35 // Give it a bit of time for the resonant antenna to settle.
38 // Now set up the SSC to get the ADC samples that are now streaming at us.
42 void AcquireRawAdcSamples125k(int divisor
)
44 LFSetupFPGAForADC(divisor
, true);
48 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
50 LFSetupFPGAForADC(divisor
, false);
51 DoAcquisition125k_threshold(trigger_threshold
);
54 // split into two routines so we can avoid timing issues after sending commands //
55 void DoAcquisition125k_internal(int trigger_threshold
, bool silent
)
57 uint8_t *dest
= mifare_get_bigbufptr();
61 memset(dest
, 0x00, n
);
64 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
65 AT91C_BASE_SSC
->SSC_THR
= 0x43;
68 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
69 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
71 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
74 trigger_threshold
= -1;
79 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
80 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
83 void DoAcquisition125k_threshold(int trigger_threshold
) {
84 DoAcquisition125k_internal(trigger_threshold
, true);
86 void DoAcquisition125k() {
87 DoAcquisition125k_internal(-1, true);
90 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
93 /* Make sure the tag is reset */
94 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
95 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
98 int divisor_used
= 95; // 125 KHz
99 // see if 'h' was specified
101 if (command
[strlen((char *) command
) - 1] == 'h')
102 divisor_used
= 88; // 134.8 KHz
104 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
105 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
106 // Give it a bit of time for the resonant antenna to settle.
110 // And a little more time for the tag to fully power up
113 // Now set up the SSC to get the ADC samples that are now streaming at us.
116 // now modulate the reader field
117 while(*command
!= '\0' && *command
!= ' ') {
118 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
120 SpinDelayUs(delay_off
);
121 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
123 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
125 if(*(command
++) == '0')
126 SpinDelayUs(period_0
);
128 SpinDelayUs(period_1
);
130 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
132 SpinDelayUs(delay_off
);
133 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
135 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
138 DoAcquisition125k(-1);
141 /* blank r/w tag data stream
142 ...0000000000000000 01111111
143 1010101010101010101010101010101010101010101010101010101010101010
146 101010101010101[0]000...
148 [5555fe852c5555555555555555fe0000]
152 // some hardcoded initial params
153 // when we read a TI tag we sample the zerocross line at 2Mhz
154 // TI tags modulate a 1 as 16 cycles of 123.2Khz
155 // TI tags modulate a 0 as 16 cycles of 134.2Khz
156 #define FSAMPLE 2000000
157 #define FREQLO 123200
158 #define FREQHI 134200
160 signed char *dest
= (signed char *)BigBuf
;
161 int n
= sizeof(BigBuf
);
162 // int *dest = GraphBuffer;
163 // int n = GraphTraceLen;
165 // 128 bit shift register [shift3:shift2:shift1:shift0]
166 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
168 int i
, cycles
=0, samples
=0;
169 // how many sample points fit in 16 cycles of each frequency
170 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
171 // when to tell if we're close enough to one freq or another
172 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
174 // TI tags charge at 134.2Khz
175 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
176 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
178 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
179 // connects to SSP_DIN and the SSP_DOUT logic level controls
180 // whether we're modulating the antenna (high)
181 // or listening to the antenna (low)
182 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
184 // get TI tag data into the buffer
187 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
189 for (i
=0; i
<n
-1; i
++) {
190 // count cycles by looking for lo to hi zero crossings
191 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
193 // after 16 cycles, measure the frequency
196 samples
=i
-samples
; // number of samples in these 16 cycles
198 // TI bits are coming to us lsb first so shift them
199 // right through our 128 bit right shift register
200 shift0
= (shift0
>>1) | (shift1
<< 31);
201 shift1
= (shift1
>>1) | (shift2
<< 31);
202 shift2
= (shift2
>>1) | (shift3
<< 31);
205 // check if the cycles fall close to the number
206 // expected for either the low or high frequency
207 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
208 // low frequency represents a 1
210 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
211 // high frequency represents a 0
213 // probably detected a gay waveform or noise
214 // use this as gaydar or discard shift register and start again
215 shift3
= shift2
= shift1
= shift0
= 0;
219 // for each bit we receive, test if we've detected a valid tag
221 // if we see 17 zeroes followed by 6 ones, we might have a tag
222 // remember the bits are backwards
223 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
224 // if start and end bytes match, we have a tag so break out of the loop
225 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
226 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
234 // if flag is set we have a tag
236 DbpString("Info: No valid tag detected.");
238 // put 64 bit data into shift1 and shift0
239 shift0
= (shift0
>>24) | (shift1
<< 8);
240 shift1
= (shift1
>>24) | (shift2
<< 8);
242 // align 16 bit crc into lower half of shift2
243 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
245 // if r/w tag, check ident match
246 if ( shift3
&(1<<15) ) {
247 DbpString("Info: TI tag is rewriteable");
248 // only 15 bits compare, last bit of ident is not valid
249 if ( ((shift3
>>16)^shift0
)&0x7fff ) {
250 DbpString("Error: Ident mismatch!");
252 DbpString("Info: TI tag ident is valid");
255 DbpString("Info: TI tag is readonly");
258 // WARNING the order of the bytes in which we calc crc below needs checking
259 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
260 // bytes in reverse or something
264 crc
= update_crc16(crc
, (shift0
)&0xff);
265 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
266 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
267 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
268 crc
= update_crc16(crc
, (shift1
)&0xff);
269 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
270 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
271 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
273 Dbprintf("Info: Tag data: %x%08x, crc=%x",
274 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
275 if (crc
!= (shift2
&0xffff)) {
276 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
278 DbpString("Info: CRC is good");
283 void WriteTIbyte(uint8_t b
)
287 // modulate 8 bits out to the antenna
291 // stop modulating antenna
298 // stop modulating antenna
308 void AcquireTiType(void)
311 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
312 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
313 #define TIBUFLEN 1250
316 memset(BigBuf
,0,sizeof(BigBuf
));
318 // Set up the synchronous serial port
319 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
320 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
322 // steal this pin from the SSP and use it to control the modulation
323 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
324 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
326 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
327 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
329 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
330 // 48/2 = 24 MHz clock must be divided by 12
331 AT91C_BASE_SSC
->SSC_CMR
= 12;
333 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
334 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
335 AT91C_BASE_SSC
->SSC_TCMR
= 0;
336 AT91C_BASE_SSC
->SSC_TFMR
= 0;
343 // Charge TI tag for 50ms.
346 // stop modulating antenna and listen
353 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
354 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
355 i
++; if(i
>= TIBUFLEN
) break;
360 // return stolen pin to SSP
361 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
362 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
364 char *dest
= (char *)BigBuf
;
367 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
368 for (j
=0; j
<32; j
++) {
369 if(BigBuf
[i
] & (1 << j
)) {
378 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
379 // if crc provided, it will be written with the data verbatim (even if bogus)
380 // if not provided a valid crc will be computed from the data and written.
381 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
383 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
385 crc
= update_crc16(crc
, (idlo
)&0xff);
386 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
387 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
388 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
389 crc
= update_crc16(crc
, (idhi
)&0xff);
390 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
391 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
392 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
394 Dbprintf("Writing to tag: %x%08x, crc=%x",
395 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
397 // TI tags charge at 134.2Khz
398 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
399 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
400 // connects to SSP_DIN and the SSP_DOUT logic level controls
401 // whether we're modulating the antenna (high)
402 // or listening to the antenna (low)
403 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
406 // steal this pin from the SSP and use it to control the modulation
407 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
408 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
410 // writing algorithm:
411 // a high bit consists of a field off for 1ms and field on for 1ms
412 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
413 // initiate a charge time of 50ms (field on) then immediately start writing bits
414 // start by writing 0xBB (keyword) and 0xEB (password)
415 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
416 // finally end with 0x0300 (write frame)
417 // all data is sent lsb firts
418 // finish with 15ms programming time
422 SpinDelay(50); // charge time
424 WriteTIbyte(0xbb); // keyword
425 WriteTIbyte(0xeb); // password
426 WriteTIbyte( (idlo
)&0xff );
427 WriteTIbyte( (idlo
>>8 )&0xff );
428 WriteTIbyte( (idlo
>>16)&0xff );
429 WriteTIbyte( (idlo
>>24)&0xff );
430 WriteTIbyte( (idhi
)&0xff );
431 WriteTIbyte( (idhi
>>8 )&0xff );
432 WriteTIbyte( (idhi
>>16)&0xff );
433 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
434 WriteTIbyte( (crc
)&0xff ); // crc lo
435 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
436 WriteTIbyte(0x00); // write frame lo
437 WriteTIbyte(0x03); // write frame hi
439 SpinDelay(50); // programming time
443 // get TI tag data into the buffer
446 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
447 DbpString("Now use tiread to check");
450 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
453 uint8_t *tab
= (uint8_t *)BigBuf
;
455 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
456 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
458 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
460 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
461 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
463 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
464 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
468 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
470 DbpString("Stopped");
487 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
489 DbpString("Stopped");
506 #define DEBUG_FRAME_CONTENTS 1
507 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
511 // compose fc/8 fc/10 waveform
512 static void fc(int c
, int *n
) {
513 uint8_t *dest
= (uint8_t *)BigBuf
;
516 // for when we want an fc8 pattern every 4 logical bits
527 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
529 for (idx
=0; idx
<6; idx
++) {
541 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
543 for (idx
=0; idx
<5; idx
++) {
558 // prepare a waveform pattern in the buffer based on the ID given then
559 // simulate a HID tag until the button is pressed
560 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
564 HID tag bitstream format
565 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
566 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
567 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
568 A fc8 is inserted before every 4 bits
569 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
570 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
574 DbpString("Tags can only have 44 bits.");
578 // special start of frame marker containing invalid bit sequences
579 fc(8, &n
); fc(8, &n
); // invalid
580 fc(8, &n
); fc(10, &n
); // logical 0
581 fc(10, &n
); fc(10, &n
); // invalid
582 fc(8, &n
); fc(10, &n
); // logical 0
585 // manchester encode bits 43 to 32
586 for (i
=11; i
>=0; i
--) {
587 if ((i
%4)==3) fc(0,&n
);
589 fc(10, &n
); fc(8, &n
); // low-high transition
591 fc(8, &n
); fc(10, &n
); // high-low transition
596 // manchester encode bits 31 to 0
597 for (i
=31; i
>=0; i
--) {
598 if ((i
%4)==3) fc(0,&n
);
600 fc(10, &n
); fc(8, &n
); // low-high transition
602 fc(8, &n
); fc(10, &n
); // high-low transition
608 SimulateTagLowFrequency(n
, 0, ledcontrol
);
614 size_t fsk_demod(uint8_t * dest
, size_t size
)
616 uint32_t last_transition
= 0;
619 // we don't care about actual value, only if it's more or less than a
620 // threshold essentially we capture zero crossings for later analysis
621 uint8_t threshold_value
= 127;
623 // sync to first lo-hi transition, and threshold
625 //Need to threshold first sample
626 dest
[0] = (dest
[0] < threshold_value
) ? 0 : 1;
629 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
630 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
631 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
632 for(idx
= 1; idx
< size
; idx
++) {
633 // threshold current value
634 dest
[idx
] = (dest
[idx
] < threshold_value
) ? 0 : 1;
636 // Check for 0->1 transition
637 if (dest
[idx
-1] < dest
[idx
]) { // 0 -> 1 transition
639 dest
[numBits
] = (idx
-last_transition
< 9) ? 1 : 0;
640 last_transition
= idx
;
644 return numBits
; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
648 size_t aggregate_bits(uint8_t *dest
,size_t size
, uint8_t h2l_crossing_value
,uint8_t l2h_crossing_value
, uint8_t maxConsequtiveBits
)
650 uint8_t lastval
=dest
[0];
655 for( idx
=1; idx
< size
; idx
++) {
657 if (dest
[idx
]==lastval
) {
661 //if lastval was 1, we have a 1->0 crossing
663 n
=(n
+1) / h2l_crossing_value
;
664 } else {// 0->1 crossing
665 n
=(n
+1) / l2h_crossing_value
;
669 if(n
< maxConsequtiveBits
)
671 memset(dest
+numBits
, dest
[idx
-1] , n
);
681 // loop to capture raw HID waveform then FSK demodulate the TAG ID from it
682 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
684 uint8_t *dest
= (uint8_t *)BigBuf
;
686 size_t size
=0,idx
=0; //, found=0;
687 uint32_t hi2
=0, hi
=0, lo
=0;
689 // Configure to go in 125Khz listen mode
690 LFSetupFPGAForADC(0, true);
692 while(!BUTTON_PRESS()) {
695 if (ledcontrol
) LED_A_ON();
697 DoAcquisition125k_internal(-1,true);
698 size
= sizeof(BigBuf
);
701 size
= fsk_demod(dest
, size
);
703 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
704 // 1->0 : fc/8 in sets of 6
705 // 0->1 : fc/10 in sets of 5
706 size
= aggregate_bits(dest
,size
, 6,5,5);
710 // final loop, go over previously decoded manchester data and decode into usable tag ID
711 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
712 uint8_t frame_marker_mask
[] = {1,1,1,0,0,0};
715 while( idx
+ sizeof(frame_marker_mask
) < size
) {
716 // search for a start of frame marker
717 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
718 { // frame marker found
719 idx
+=sizeof(frame_marker_mask
);
721 while(dest
[idx
] != dest
[idx
+1] && idx
< size
-2)
723 // Keep going until next frame marker (or error)
724 // Shift in a bit. Start by shifting high registers
725 hi2
=(hi2
<<1)|(hi
>>31);
727 //Then, shift in a 0 or one into low
728 if (dest
[idx
] && !dest
[idx
+1]) // 1 0
736 //Dbprintf("Num shifts: %d ", numshifts);
737 // Hopefully, we read a tag and hit upon the next frame marker
738 if(idx
+ sizeof(frame_marker_mask
) < size
)
740 if ( memcmp(dest
+idx
, frame_marker_mask
, sizeof(frame_marker_mask
)) == 0)
743 Dbprintf("TAG ID: %x%08x%08x (%d)",
744 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
747 Dbprintf("TAG ID: %x%08x (%d)",
748 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
765 DbpString("Stopped");
766 if (ledcontrol
) LED_A_OFF();
769 uint32_t bytebits_to_byte(uint8_t* src
, int numbits
)
772 for(int i
= 0 ; i
< numbits
; i
++)
774 num
= (num
<< 1) | (*src
);
781 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
783 uint8_t *dest
= (uint8_t *)BigBuf
;
785 size_t size
=0, idx
=0;
786 uint32_t code
=0, code2
=0;
788 // Configure to go in 125Khz listen mode
789 LFSetupFPGAForADC(0, true);
791 while(!BUTTON_PRESS()) {
795 if (ledcontrol
) LED_A_ON();
797 DoAcquisition125k_internal(-1,true);
798 size
= sizeof(BigBuf
);
801 size
= fsk_demod(dest
, size
);
803 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
804 // 1->0 : fc/8 in sets of 7
805 // 0->1 : fc/10 in sets of 6
806 size
= aggregate_bits(dest
, size
, 7,6,13);
811 uint8_t mask
[] = {0,0,0,0,0,0,0,0,0,1};
812 for( idx
=0; idx
< size
- 64; idx
++) {
814 if ( memcmp(dest
+ idx
, mask
, sizeof(mask
)) ) continue;
816 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7]);
817 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+8], dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15]);
818 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+16],dest
[idx
+17],dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23]);
819 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+24],dest
[idx
+25],dest
[idx
+26],dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31]);
820 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35],dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39]);
821 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44],dest
[idx
+45],dest
[idx
+46],dest
[idx
+47]);
822 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53],dest
[idx
+54],dest
[idx
+55]);
823 Dbprintf("%d%d%d%d%d%d%d%d",dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
825 code
= bytebits_to_byte(dest
+idx
,32);
826 code2
= bytebits_to_byte(dest
+idx
+32,32);
828 short version
= bytebits_to_byte(dest
+idx
+14,4);
829 char unknown
= bytebits_to_byte(dest
+idx
+19,8) ;
830 uint16_t number
= bytebits_to_byte(dest
+idx
+36,9);
832 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version
,unknown
,number
,code
,code2
);
833 if (ledcontrol
) LED_D_OFF();
835 // if we're only looking for one tag
843 DbpString("Stopped");
844 if (ledcontrol
) LED_A_OFF();
847 /*------------------------------
848 * T5555/T5557/T5567 routines
849 *------------------------------
852 /* T55x7 configuration register definitions */
853 #define T55x7_POR_DELAY 0x00000001
854 #define T55x7_ST_TERMINATOR 0x00000008
855 #define T55x7_PWD 0x00000010
856 #define T55x7_MAXBLOCK_SHIFT 5
857 #define T55x7_AOR 0x00000200
858 #define T55x7_PSKCF_RF_2 0
859 #define T55x7_PSKCF_RF_4 0x00000400
860 #define T55x7_PSKCF_RF_8 0x00000800
861 #define T55x7_MODULATION_DIRECT 0
862 #define T55x7_MODULATION_PSK1 0x00001000
863 #define T55x7_MODULATION_PSK2 0x00002000
864 #define T55x7_MODULATION_PSK3 0x00003000
865 #define T55x7_MODULATION_FSK1 0x00004000
866 #define T55x7_MODULATION_FSK2 0x00005000
867 #define T55x7_MODULATION_FSK1a 0x00006000
868 #define T55x7_MODULATION_FSK2a 0x00007000
869 #define T55x7_MODULATION_MANCHESTER 0x00008000
870 #define T55x7_MODULATION_BIPHASE 0x00010000
871 #define T55x7_BITRATE_RF_8 0
872 #define T55x7_BITRATE_RF_16 0x00040000
873 #define T55x7_BITRATE_RF_32 0x00080000
874 #define T55x7_BITRATE_RF_40 0x000C0000
875 #define T55x7_BITRATE_RF_50 0x00100000
876 #define T55x7_BITRATE_RF_64 0x00140000
877 #define T55x7_BITRATE_RF_100 0x00180000
878 #define T55x7_BITRATE_RF_128 0x001C0000
880 /* T5555 (Q5) configuration register definitions */
881 #define T5555_ST_TERMINATOR 0x00000001
882 #define T5555_MAXBLOCK_SHIFT 0x00000001
883 #define T5555_MODULATION_MANCHESTER 0
884 #define T5555_MODULATION_PSK1 0x00000010
885 #define T5555_MODULATION_PSK2 0x00000020
886 #define T5555_MODULATION_PSK3 0x00000030
887 #define T5555_MODULATION_FSK1 0x00000040
888 #define T5555_MODULATION_FSK2 0x00000050
889 #define T5555_MODULATION_BIPHASE 0x00000060
890 #define T5555_MODULATION_DIRECT 0x00000070
891 #define T5555_INVERT_OUTPUT 0x00000080
892 #define T5555_PSK_RF_2 0
893 #define T5555_PSK_RF_4 0x00000100
894 #define T5555_PSK_RF_8 0x00000200
895 #define T5555_USE_PWD 0x00000400
896 #define T5555_USE_AOR 0x00000800
897 #define T5555_BITRATE_SHIFT 12
898 #define T5555_FAST_WRITE 0x00004000
899 #define T5555_PAGE_SELECT 0x00008000
902 * Relevant times in microsecond
903 * To compensate antenna falling times shorten the write times
904 * and enlarge the gap ones.
906 #define START_GAP 30*8 // 10 - 50fc 250
907 #define WRITE_GAP 20*8 // 8 - 30fc
908 #define WRITE_0 24*8 // 16 - 31fc 24fc 192
909 #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
911 // VALUES TAKEN FROM EM4x function: SendForward
912 // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
913 // WRITE_GAP = 128; (16*8)
914 // WRITE_1 = 256 32*8; (32*8)
916 // These timings work for 4469/4269/4305 (with the 55*8 above)
917 // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
919 #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
921 // Write one bit to card
922 void T55xxWriteBit(int bit
)
924 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
925 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
926 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
928 SpinDelayUs(WRITE_0
);
930 SpinDelayUs(WRITE_1
);
931 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
932 SpinDelayUs(WRITE_GAP
);
935 // Write one card block in page 0, no lock
936 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
940 // Set up FPGA, 125kHz
941 // Wait for config.. (192+8190xPOW)x8 == 67ms
942 LFSetupFPGAForADC(0, true);
944 // Now start writting
945 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
946 SpinDelayUs(START_GAP
);
950 T55xxWriteBit(0); //Page 0
953 for (i
= 0x80000000; i
!= 0; i
>>= 1)
954 T55xxWriteBit(Pwd
& i
);
960 for (i
= 0x80000000; i
!= 0; i
>>= 1)
961 T55xxWriteBit(Data
& i
);
964 for (i
= 0x04; i
!= 0; i
>>= 1)
965 T55xxWriteBit(Block
& i
);
967 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
968 // so wait a little more)
969 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
970 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
972 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
975 // Read one card block in page 0
976 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
978 uint8_t *dest
= mifare_get_bigbufptr();
979 uint16_t bufferlength
= T55xx_SAMPLES_SIZE
;
982 // Clear destination buffer before sending the command 0x80 = average.
983 memset(dest
, 0x80, bufferlength
);
985 // Set up FPGA, 125kHz
986 // Wait for config.. (192+8190xPOW)x8 == 67ms
987 LFSetupFPGAForADC(0, true);
989 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
990 SpinDelayUs(START_GAP
);
994 T55xxWriteBit(0); //Page 0
997 for (i
= 0x80000000; i
!= 0; i
>>= 1)
998 T55xxWriteBit(Pwd
& i
);
1003 for (i
= 0x04; i
!= 0; i
>>= 1)
1004 T55xxWriteBit(Block
& i
);
1006 // Turn field on to read the response
1009 // Now do the acquisition
1012 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1013 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1016 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1017 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1020 if (i
> bufferlength
) break;
1024 cmd_send(CMD_ACK
,0,0,0,0,0);
1025 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1029 // Read card traceability data (page 1)
1030 void T55xxReadTrace(void){
1031 uint8_t *dest
= mifare_get_bigbufptr();
1032 uint16_t bufferlength
= T55xx_SAMPLES_SIZE
;
1035 // Clear destination buffer before sending the command 0x80 = average
1036 memset(dest
, 0x80, bufferlength
);
1038 LFSetupFPGAForADC(0, true);
1040 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1041 SpinDelayUs(START_GAP
);
1045 T55xxWriteBit(1); //Page 1
1047 // Turn field on to read the response
1050 // Now do the acquisition
1052 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1053 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1056 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1057 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1061 if (i
>= bufferlength
) break;
1065 cmd_send(CMD_ACK
,0,0,0,0,0);
1066 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1070 void TurnReadLFOn(){
1071 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1072 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1073 // Give it a bit of time for the resonant antenna to settle.
1078 /*-------------- Cloning routines -----------*/
1079 // Copy HID id to card and setup block 0 config
1080 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1082 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1086 // Ensure no more than 84 bits supplied
1088 DbpString("Tags can only have 84 bits.");
1091 // Build the 6 data blocks for supplied 84bit ID
1093 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1094 for (int i
=0;i
<4;i
++) {
1095 if (hi2
& (1<<(19-i
)))
1096 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1098 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1102 for (int i
=0;i
<16;i
++) {
1103 if (hi2
& (1<<(15-i
)))
1104 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1106 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1110 for (int i
=0;i
<16;i
++) {
1111 if (hi
& (1<<(31-i
)))
1112 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1114 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1118 for (int i
=0;i
<16;i
++) {
1119 if (hi
& (1<<(15-i
)))
1120 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1122 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1126 for (int i
=0;i
<16;i
++) {
1127 if (lo
& (1<<(31-i
)))
1128 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1130 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1134 for (int i
=0;i
<16;i
++) {
1135 if (lo
& (1<<(15-i
)))
1136 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1138 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1142 // Ensure no more than 44 bits supplied
1144 DbpString("Tags can only have 44 bits.");
1148 // Build the 3 data blocks for supplied 44bit ID
1151 data1
= 0x1D000000; // load preamble
1153 for (int i
=0;i
<12;i
++) {
1154 if (hi
& (1<<(11-i
)))
1155 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1157 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1161 for (int i
=0;i
<16;i
++) {
1162 if (lo
& (1<<(31-i
)))
1163 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1165 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1169 for (int i
=0;i
<16;i
++) {
1170 if (lo
& (1<<(15-i
)))
1171 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1173 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1178 // Program the data blocks for supplied ID
1179 // and the block 0 for HID format
1180 T55xxWriteBlock(data1
,1,0,0);
1181 T55xxWriteBlock(data2
,2,0,0);
1182 T55xxWriteBlock(data3
,3,0,0);
1184 if (longFMT
) { // if long format there are 6 blocks
1185 T55xxWriteBlock(data4
,4,0,0);
1186 T55xxWriteBlock(data5
,5,0,0);
1187 T55xxWriteBlock(data6
,6,0,0);
1190 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1191 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1192 T55x7_MODULATION_FSK2a
|
1193 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1201 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1203 int data1
=0, data2
=0; //up to six blocks for long format
1205 data1
= hi
; // load preamble
1209 // Program the data blocks for supplied ID
1210 // and the block 0 for HID format
1211 T55xxWriteBlock(data1
,1,0,0);
1212 T55xxWriteBlock(data2
,2,0,0);
1215 T55xxWriteBlock(0x00147040,0,0,0);
1221 // Define 9bit header for EM410x tags
1222 #define EM410X_HEADER 0x1FF
1223 #define EM410X_ID_LENGTH 40
1225 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1228 uint64_t id
= EM410X_HEADER
;
1229 uint64_t rev_id
= 0; // reversed ID
1230 int c_parity
[4]; // column parity
1231 int r_parity
= 0; // row parity
1234 // Reverse ID bits given as parameter (for simpler operations)
1235 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1237 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1240 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1245 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1246 id_bit
= rev_id
& 1;
1249 // Don't write row parity bit at start of parsing
1251 id
= (id
<< 1) | r_parity
;
1252 // Start counting parity for new row
1259 // First elements in column?
1261 // Fill out first elements
1262 c_parity
[i
] = id_bit
;
1264 // Count column parity
1265 c_parity
[i
% 4] ^= id_bit
;
1268 id
= (id
<< 1) | id_bit
;
1272 // Insert parity bit of last row
1273 id
= (id
<< 1) | r_parity
;
1275 // Fill out column parity at the end of tag
1276 for (i
= 0; i
< 4; ++i
)
1277 id
= (id
<< 1) | c_parity
[i
];
1282 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1286 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1287 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1289 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1291 // Clock rate is stored in bits 8-15 of the card value
1292 clock
= (card
& 0xFF00) >> 8;
1293 Dbprintf("Clock rate: %d", clock
);
1297 clock
= T55x7_BITRATE_RF_32
;
1300 clock
= T55x7_BITRATE_RF_16
;
1303 // A value of 0 is assumed to be 64 for backwards-compatibility
1306 clock
= T55x7_BITRATE_RF_64
;
1309 Dbprintf("Invalid clock rate: %d", clock
);
1313 // Writing configuration for T55x7 tag
1314 T55xxWriteBlock(clock
|
1315 T55x7_MODULATION_MANCHESTER
|
1316 2 << T55x7_MAXBLOCK_SHIFT
,
1320 // Writing configuration for T5555(Q5) tag
1321 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1322 T5555_MODULATION_MANCHESTER
|
1323 2 << T5555_MAXBLOCK_SHIFT
,
1327 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1328 (uint32_t)(id
>> 32), (uint32_t)id
);
1331 // Clone Indala 64-bit tag by UID to T55x7
1332 void CopyIndala64toT55x7(int hi
, int lo
)
1334 //Program the 2 data blocks for supplied 64bit UID
1335 // and the block 0 for Indala64 format
1336 T55xxWriteBlock(hi
,1,0,0);
1337 T55xxWriteBlock(lo
,2,0,0);
1338 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1339 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1340 T55x7_MODULATION_PSK1
|
1341 2 << T55x7_MAXBLOCK_SHIFT
,
1343 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1344 // T5567WriteBlock(0x603E1042,0);
1349 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1351 //Program the 7 data blocks for supplied 224bit UID
1352 // and the block 0 for Indala224 format
1353 T55xxWriteBlock(uid1
,1,0,0);
1354 T55xxWriteBlock(uid2
,2,0,0);
1355 T55xxWriteBlock(uid3
,3,0,0);
1356 T55xxWriteBlock(uid4
,4,0,0);
1357 T55xxWriteBlock(uid5
,5,0,0);
1358 T55xxWriteBlock(uid6
,6,0,0);
1359 T55xxWriteBlock(uid7
,7,0,0);
1360 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1361 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1362 T55x7_MODULATION_PSK1
|
1363 7 << T55x7_MAXBLOCK_SHIFT
,
1365 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1366 // T5567WriteBlock(0x603E10E2,0);
1372 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1373 #define max(x,y) ( x<y ? y:x)
1375 int DemodPCF7931(uint8_t **outBlocks
) {
1376 uint8_t BitStream
[256];
1377 uint8_t Blocks
[8][16];
1378 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1379 int GraphTraceLen
= sizeof(BigBuf
);
1380 int i
, j
, lastval
, bitidx
, half_switch
;
1382 int tolerance
= clock
/ 8;
1383 int pmc
, block_done
;
1384 int lc
, warnings
= 0;
1386 int lmin
=128, lmax
=128;
1389 AcquireRawAdcSamples125k(0);
1396 /* Find first local max/min */
1397 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1398 while(i
< GraphTraceLen
) {
1399 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1406 while(i
< GraphTraceLen
) {
1407 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1419 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1421 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1426 // Switch depending on lc length:
1427 // Tolerance is 1/8 of clock rate (arbitrary)
1428 if (abs(lc
-clock
/4) < tolerance
) {
1430 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1432 i
+= (128+127+16+32+33+16)-1;
1440 } else if (abs(lc
-clock
/2) < tolerance
) {
1442 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1444 i
+= (128+127+16+32+33)-1;
1449 else if(half_switch
== 1) {
1450 BitStream
[bitidx
++] = 0;
1455 } else if (abs(lc
-clock
) < tolerance
) {
1457 BitStream
[bitidx
++] = 1;
1463 Dbprintf("Error: too many detection errors, aborting.");
1468 if(block_done
== 1) {
1470 for(j
=0; j
<16; j
++) {
1471 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1472 64*BitStream
[j
*8+6]+
1473 32*BitStream
[j
*8+5]+
1474 16*BitStream
[j
*8+4]+
1486 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1492 if(num_blocks
== 4) break;
1494 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1498 int IsBlock0PCF7931(uint8_t *Block
) {
1499 // Assume RFU means 0 :)
1500 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1502 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1507 int IsBlock1PCF7931(uint8_t *Block
) {
1508 // Assume RFU means 0 :)
1509 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1510 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1517 void ReadPCF7931() {
1518 uint8_t Blocks
[8][17];
1519 uint8_t tmpBlocks
[4][16];
1520 int i
, j
, ind
, ind2
, n
;
1527 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1530 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1531 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1534 if(error
==10 && num_blocks
== 0) {
1535 Dbprintf("Error, no tag or bad tag");
1538 else if (tries
==20 || error
==10) {
1539 Dbprintf("Error reading the tag");
1540 Dbprintf("Here is the partial content");
1545 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1546 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1547 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1549 for(i
=0; i
<n
; i
++) {
1550 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1552 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1556 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1557 Blocks
[0][ALLOC
] = 1;
1558 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1559 Blocks
[1][ALLOC
] = 1;
1560 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1562 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1564 // Handle following blocks
1565 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1568 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1569 Blocks
[ind2
][ALLOC
] = 1;
1577 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1578 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1579 for(j
=0; j
<max_blocks
; j
++) {
1580 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1581 // Found an identical block
1582 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1585 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1586 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1587 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1588 Blocks
[ind2
][ALLOC
] = 1;
1590 if(num_blocks
== max_blocks
) goto end
;
1593 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1594 if(ind2
> max_blocks
)
1596 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1597 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1598 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1599 Blocks
[ind2
][ALLOC
] = 1;
1601 if(num_blocks
== max_blocks
) goto end
;
1610 if (BUTTON_PRESS()) return;
1611 } while (num_blocks
!= max_blocks
);
1613 Dbprintf("-----------------------------------------");
1614 Dbprintf("Memory content:");
1615 Dbprintf("-----------------------------------------");
1616 for(i
=0; i
<max_blocks
; i
++) {
1617 if(Blocks
[i
][ALLOC
]==1)
1618 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1619 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1620 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1622 Dbprintf("<missing block %d>", i
);
1624 Dbprintf("-----------------------------------------");
1630 //-----------------------------------
1631 // EM4469 / EM4305 routines
1632 //-----------------------------------
1633 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1634 #define FWD_CMD_WRITE 0xA
1635 #define FWD_CMD_READ 0x9
1636 #define FWD_CMD_DISABLE 0x5
1639 uint8_t forwardLink_data
[64]; //array of forwarded bits
1640 uint8_t * forward_ptr
; //ptr for forward message preparation
1641 uint8_t fwd_bit_sz
; //forwardlink bit counter
1642 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1644 //====================================================================
1645 // prepares command bits
1647 //====================================================================
1648 //--------------------------------------------------------------------
1649 uint8_t Prepare_Cmd( uint8_t cmd
) {
1650 //--------------------------------------------------------------------
1652 *forward_ptr
++ = 0; //start bit
1653 *forward_ptr
++ = 0; //second pause for 4050 code
1655 *forward_ptr
++ = cmd
;
1657 *forward_ptr
++ = cmd
;
1659 *forward_ptr
++ = cmd
;
1661 *forward_ptr
++ = cmd
;
1663 return 6; //return number of emited bits
1666 //====================================================================
1667 // prepares address bits
1669 //====================================================================
1671 //--------------------------------------------------------------------
1672 uint8_t Prepare_Addr( uint8_t addr
) {
1673 //--------------------------------------------------------------------
1675 register uint8_t line_parity
;
1680 *forward_ptr
++ = addr
;
1681 line_parity
^= addr
;
1685 *forward_ptr
++ = (line_parity
& 1);
1687 return 7; //return number of emited bits
1690 //====================================================================
1691 // prepares data bits intreleaved with parity bits
1693 //====================================================================
1695 //--------------------------------------------------------------------
1696 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1697 //--------------------------------------------------------------------
1699 register uint8_t line_parity
;
1700 register uint8_t column_parity
;
1701 register uint8_t i
, j
;
1702 register uint16_t data
;
1707 for(i
=0; i
<4; i
++) {
1709 for(j
=0; j
<8; j
++) {
1710 line_parity
^= data
;
1711 column_parity
^= (data
& 1) << j
;
1712 *forward_ptr
++ = data
;
1715 *forward_ptr
++ = line_parity
;
1720 for(j
=0; j
<8; j
++) {
1721 *forward_ptr
++ = column_parity
;
1722 column_parity
>>= 1;
1726 return 45; //return number of emited bits
1729 //====================================================================
1730 // Forward Link send function
1731 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1732 // fwd_bit_count set with number of bits to be sent
1733 //====================================================================
1734 void SendForward(uint8_t fwd_bit_count
) {
1736 fwd_write_ptr
= forwardLink_data
;
1737 fwd_bit_sz
= fwd_bit_count
;
1742 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1743 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1744 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1746 // Give it a bit of time for the resonant antenna to settle.
1747 // And for the tag to fully power up
1750 // force 1st mod pulse (start gap must be longer for 4305)
1751 fwd_bit_sz
--; //prepare next bit modulation
1753 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1754 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1755 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1756 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1757 SpinDelayUs(16*8); //16 cycles on (8us each)
1759 // now start writting
1760 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1761 if(((*fwd_write_ptr
++) & 1) == 1)
1762 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1764 //These timings work for 4469/4269/4305 (with the 55*8 above)
1765 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1766 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1767 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1768 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1769 SpinDelayUs(9*8); //16 cycles on (8us each)
1775 void EM4xLogin(uint32_t Password
) {
1777 uint8_t fwd_bit_count
;
1779 forward_ptr
= forwardLink_data
;
1780 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1781 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1783 SendForward(fwd_bit_count
);
1785 //Wait for command to complete
1790 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1792 uint8_t *dest
= mifare_get_bigbufptr();
1793 uint16_t bufferlength
= 12000;
1796 // Clear destination buffer before sending the command 0x80 = average.
1797 memset(dest
, 0x80, bufferlength
);
1799 uint8_t fwd_bit_count
;
1801 //If password mode do login
1802 if (PwdMode
== 1) EM4xLogin(Pwd
);
1804 forward_ptr
= forwardLink_data
;
1805 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1806 fwd_bit_count
+= Prepare_Addr( Address
);
1808 // Connect the A/D to the peak-detected low-frequency path.
1809 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1810 // Now set up the SSC to get the ADC samples that are now streaming at us.
1813 SendForward(fwd_bit_count
);
1815 // // Turn field on to read the response
1818 // Now do the acquisition
1821 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1822 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1824 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1825 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1827 if (i
>= bufferlength
) break;
1831 cmd_send(CMD_ACK
,0,0,0,0,0);
1832 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1836 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1838 uint8_t fwd_bit_count
;
1840 //If password mode do login
1841 if (PwdMode
== 1) EM4xLogin(Pwd
);
1843 forward_ptr
= forwardLink_data
;
1844 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1845 fwd_bit_count
+= Prepare_Addr( Address
);
1846 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1848 SendForward(fwd_bit_count
);
1850 //Wait for write to complete
1852 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off