1 //-----------------------------------------------------------------------------
2 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
3 // at your option, any later version. See the LICENSE.txt file for the text of
5 //-----------------------------------------------------------------------------
6 // Miscellaneous routines for low frequency tag operations.
7 // Tags supported here so far are Texas Instruments (TI), HID
8 // Also routines for raw mode reading/simulating of LF waveform
9 //-----------------------------------------------------------------------------
11 #include "proxmark3.h"
25 * @brief Pushes bit onto the stream
29 void pushBit( BitstreamOut
* stream
, bool bit
)
31 int bytepos
= stream
->position
>> 3; // divide by 8
32 int bitpos
= stream
->position
& 7;
33 *(stream
->buffer
+bytepos
) |= (bit
& 1) << (7 - bitpos
);
37 void DoAcquisition(int decimation
, int quantization
, int trigger_threshold
, bool averaging
)
39 //A decimation of 2 means we keep every 2nd sample
40 //A decimation of 3 means we keep 1 in 3 samples.
41 //A quantization of 1 means one bit is discarded from the sample (division by 2).
42 uint8_t *dest
= (uint8_t *)BigBuf
;
43 int bufsize
= BIGBUF_SIZE
;
44 memset(dest
, 0, bufsize
);
45 // You can't decimate 8 bits more than 7 times
46 if(quantization
> 7) quantization
= 7;
47 // Use a bit stream to handle the output
48 BitstreamOut data
= { dest
, 0, 0};
49 int sample_counter
= 0;
51 //If we want to do averaging
52 uint32_t sample_sum
=0 ;
53 uint32_t sample_total_numbers
=0 ;
54 uint32_t sample_total_saved
=0 ;
58 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
59 AT91C_BASE_SSC
->SSC_THR
= 0x43;
62 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
63 sample
= (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
64 if (trigger_threshold
!= -1 && sample
< trigger_threshold
)
66 sample_total_numbers
++;
69 trigger_threshold
= -1;
73 if(sample_counter
< decimation
) continue;
75 if(averaging
) sample
= sample_sum
/ decimation
;
79 sample_total_saved
++;
80 pushBit(&data
, sample
& 0x80);
81 if(quantization
< 7) pushBit(&data
, sample
& 0x40);
82 if(quantization
< 6) pushBit(&data
, sample
& 0x20);
83 if(quantization
< 5) pushBit(&data
, sample
& 0x10);
84 if(quantization
< 4) pushBit(&data
, sample
& 0x08);
85 if(quantization
< 3) pushBit(&data
, sample
& 0x04);
86 if(quantization
< 2) pushBit(&data
, sample
& 0x02);
87 if(quantization
< 1) pushBit(&data
, sample
& 0x01);
89 if((data
.numbits
/ 8) +1 >= bufsize
) break;
92 Dbprintf("Done, saved %l out of %l seen samples.",sample_total_saved
, sample_total_numbers
);
98 * Does the sample acquisition. If threshold is specified, the actual sampling
99 * is not commenced until the threshold has been reached.
100 * @param trigger_threshold - the threshold
101 * @param silent - is true, now outputs are made. If false, dbprints the status
103 void DoAcquisition125k_internal(int trigger_threshold
,bool silent
)
105 uint8_t *dest
= (uint8_t *)BigBuf
;
106 int n
= sizeof(BigBuf
);
112 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
113 AT91C_BASE_SSC
->SSC_THR
= 0x43;
116 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
117 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
119 if (trigger_threshold
!= -1 && dest
[i
] < trigger_threshold
)
122 trigger_threshold
= -1;
128 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
129 dest
[0], dest
[1], dest
[2], dest
[3], dest
[4], dest
[5], dest
[6], dest
[7]);
134 * Perform sample aquisition.
136 void DoAcquisition125k(int trigger_threshold
)
138 DoAcquisition125k_internal(trigger_threshold
, false);
142 * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
143 * if not already loaded, sets divisor and starts up the antenna.
144 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
145 * 0 or 95 ==> 125 KHz
148 void LFSetupFPGAForADC(int divisor
, bool lf_field
)
150 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
151 if ( (divisor
== 1) || (divisor
< 0) || (divisor
> 255) )
152 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
153 else if (divisor
== 0)
154 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
156 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor
);
158 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| (lf_field
? FPGA_LF_ADC_READER_FIELD
: 0));
160 // Connect the A/D to the peak-detected low-frequency path.
161 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
162 // Give it a bit of time for the resonant antenna to settle.
164 // Now set up the SSC to get the ADC samples that are now streaming at us.
168 * Initializes the FPGA, and acquires the samples.
170 void AcquireRawAdcSamples125k(int divisor
)
172 LFSetupFPGAForADC(divisor
, true);
173 // Now call the acquisition routine
174 DoAcquisition125k_internal(-1,false);
177 * Initializes the FPGA for snoop-mode, and acquires the samples.
180 void SnoopLFRawAdcSamples(int divisor
, int trigger_threshold
)
182 LFSetupFPGAForADC(divisor
, false);
183 DoAcquisition125k(trigger_threshold
);
186 void ModThenAcquireRawAdcSamples125k(int delay_off
, int period_0
, int period_1
, uint8_t *command
)
189 /* Make sure the tag is reset */
190 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
191 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
195 int divisor_used
= 95; // 125 KHz
196 // see if 'h' was specified
198 if (command
[strlen((char *) command
) - 1] == 'h')
199 divisor_used
= 88; // 134.8 KHz
202 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
203 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
204 // Give it a bit of time for the resonant antenna to settle.
207 // And a little more time for the tag to fully power up
210 // Now set up the SSC to get the ADC samples that are now streaming at us.
213 // now modulate the reader field
214 while(*command
!= '\0' && *command
!= ' ') {
215 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
217 SpinDelayUs(delay_off
);
218 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
220 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
222 if(*(command
++) == '0')
223 SpinDelayUs(period_0
);
225 SpinDelayUs(period_1
);
227 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
229 SpinDelayUs(delay_off
);
230 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, divisor_used
);
232 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
235 DoAcquisition125k(-1);
238 /* blank r/w tag data stream
239 ...0000000000000000 01111111
240 1010101010101010101010101010101010101010101010101010101010101010
243 101010101010101[0]000...
245 [5555fe852c5555555555555555fe0000]
249 // some hardcoded initial params
250 // when we read a TI tag we sample the zerocross line at 2Mhz
251 // TI tags modulate a 1 as 16 cycles of 123.2Khz
252 // TI tags modulate a 0 as 16 cycles of 134.2Khz
253 #define FSAMPLE 2000000
254 #define FREQLO 123200
255 #define FREQHI 134200
257 signed char *dest
= (signed char *)BigBuf
;
258 int n
= sizeof(BigBuf
);
259 // 128 bit shift register [shift3:shift2:shift1:shift0]
260 uint32_t shift3
= 0, shift2
= 0, shift1
= 0, shift0
= 0;
262 int i
, cycles
=0, samples
=0;
263 // how many sample points fit in 16 cycles of each frequency
264 uint32_t sampleslo
= (FSAMPLE
<<4)/FREQLO
, sampleshi
= (FSAMPLE
<<4)/FREQHI
;
265 // when to tell if we're close enough to one freq or another
266 uint32_t threshold
= (sampleslo
- sampleshi
+ 1)>>1;
268 // TI tags charge at 134.2Khz
269 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
270 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
272 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
273 // connects to SSP_DIN and the SSP_DOUT logic level controls
274 // whether we're modulating the antenna (high)
275 // or listening to the antenna (low)
276 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
278 // get TI tag data into the buffer
281 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
283 for (i
=0; i
<n
-1; i
++) {
284 // count cycles by looking for lo to hi zero crossings
285 if ( (dest
[i
]<0) && (dest
[i
+1]>0) ) {
287 // after 16 cycles, measure the frequency
290 samples
=i
-samples
; // number of samples in these 16 cycles
292 // TI bits are coming to us lsb first so shift them
293 // right through our 128 bit right shift register
294 shift0
= (shift0
>>1) | (shift1
<< 31);
295 shift1
= (shift1
>>1) | (shift2
<< 31);
296 shift2
= (shift2
>>1) | (shift3
<< 31);
299 // check if the cycles fall close to the number
300 // expected for either the low or high frequency
301 if ( (samples
>(sampleslo
-threshold
)) && (samples
<(sampleslo
+threshold
)) ) {
302 // low frequency represents a 1
304 } else if ( (samples
>(sampleshi
-threshold
)) && (samples
<(sampleshi
+threshold
)) ) {
305 // high frequency represents a 0
307 // probably detected a gay waveform or noise
308 // use this as gaydar or discard shift register and start again
309 shift3
= shift2
= shift1
= shift0
= 0;
313 // for each bit we receive, test if we've detected a valid tag
315 // if we see 17 zeroes followed by 6 ones, we might have a tag
316 // remember the bits are backwards
317 if ( ((shift0
& 0x7fffff) == 0x7e0000) ) {
318 // if start and end bytes match, we have a tag so break out of the loop
319 if ( ((shift0
>>16)&0xff) == ((shift3
>>8)&0xff) ) {
320 cycles
= 0xF0B; //use this as a flag (ugly but whatever)
328 // if flag is set we have a tag
330 DbpString("Info: No valid tag detected.");
332 // put 64 bit data into shift1 and shift0
333 shift0
= (shift0
>>24) | (shift1
<< 8);
334 shift1
= (shift1
>>24) | (shift2
<< 8);
336 // align 16 bit crc into lower half of shift2
337 shift2
= ((shift2
>>24) | (shift3
<< 8)) & 0x0ffff;
339 // if r/w tag, check ident match
340 if (shift3
& (1<<15) ) {
341 DbpString("Info: TI tag is rewriteable");
342 // only 15 bits compare, last bit of ident is not valid
343 if (((shift3
>> 16) ^ shift0
) & 0x7fff ) {
344 DbpString("Error: Ident mismatch!");
346 DbpString("Info: TI tag ident is valid");
349 DbpString("Info: TI tag is readonly");
352 // WARNING the order of the bytes in which we calc crc below needs checking
353 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
354 // bytes in reverse or something
358 crc
= update_crc16(crc
, (shift0
)&0xff);
359 crc
= update_crc16(crc
, (shift0
>>8)&0xff);
360 crc
= update_crc16(crc
, (shift0
>>16)&0xff);
361 crc
= update_crc16(crc
, (shift0
>>24)&0xff);
362 crc
= update_crc16(crc
, (shift1
)&0xff);
363 crc
= update_crc16(crc
, (shift1
>>8)&0xff);
364 crc
= update_crc16(crc
, (shift1
>>16)&0xff);
365 crc
= update_crc16(crc
, (shift1
>>24)&0xff);
367 Dbprintf("Info: Tag data: %x%08x, crc=%x",
368 (unsigned int)shift1
, (unsigned int)shift0
, (unsigned int)shift2
& 0xFFFF);
369 if (crc
!= (shift2
&0xffff)) {
370 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc
);
372 DbpString("Info: CRC is good");
377 void WriteTIbyte(uint8_t b
)
381 // modulate 8 bits out to the antenna
385 // stop modulating antenna
392 // stop modulating antenna
402 void AcquireTiType(void)
405 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
406 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
407 #define TIBUFLEN 1250
410 memset(BigBuf
,0,sizeof(BigBuf
));
412 // Set up the synchronous serial port
413 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DIN
;
414 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
;
416 // steal this pin from the SSP and use it to control the modulation
417 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
418 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
420 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
421 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_RXEN
| AT91C_SSC_TXEN
;
423 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
424 // 48/2 = 24 MHz clock must be divided by 12
425 AT91C_BASE_SSC
->SSC_CMR
= 12;
427 AT91C_BASE_SSC
->SSC_RCMR
= SSC_CLOCK_MODE_SELECT(0);
428 AT91C_BASE_SSC
->SSC_RFMR
= SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF
;
429 AT91C_BASE_SSC
->SSC_TCMR
= 0;
430 AT91C_BASE_SSC
->SSC_TFMR
= 0;
437 // Charge TI tag for 50ms.
440 // stop modulating antenna and listen
447 if(AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
448 BigBuf
[i
] = AT91C_BASE_SSC
->SSC_RHR
; // store 32 bit values in buffer
449 i
++; if(i
>= TIBUFLEN
) break;
454 // return stolen pin to SSP
455 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_SSC_DOUT
;
456 AT91C_BASE_PIOA
->PIO_ASR
= GPIO_SSC_DIN
| GPIO_SSC_DOUT
;
458 char *dest
= (char *)BigBuf
;
461 for (i
=TIBUFLEN
-1; i
>=0; i
--) {
462 for (j
=0; j
<32; j
++) {
463 if(BigBuf
[i
] & (1 << j
)) {
472 // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
473 // if crc provided, it will be written with the data verbatim (even if bogus)
474 // if not provided a valid crc will be computed from the data and written.
475 void WriteTItag(uint32_t idhi
, uint32_t idlo
, uint16_t crc
)
477 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
479 crc
= update_crc16(crc
, (idlo
)&0xff);
480 crc
= update_crc16(crc
, (idlo
>>8)&0xff);
481 crc
= update_crc16(crc
, (idlo
>>16)&0xff);
482 crc
= update_crc16(crc
, (idlo
>>24)&0xff);
483 crc
= update_crc16(crc
, (idhi
)&0xff);
484 crc
= update_crc16(crc
, (idhi
>>8)&0xff);
485 crc
= update_crc16(crc
, (idhi
>>16)&0xff);
486 crc
= update_crc16(crc
, (idhi
>>24)&0xff);
488 Dbprintf("Writing to tag: %x%08x, crc=%x",
489 (unsigned int) idhi
, (unsigned int) idlo
, crc
);
491 // TI tags charge at 134.2Khz
492 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 88); //134.8Khz
493 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
494 // connects to SSP_DIN and the SSP_DOUT logic level controls
495 // whether we're modulating the antenna (high)
496 // or listening to the antenna (low)
497 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU
);
500 // steal this pin from the SSP and use it to control the modulation
501 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
;
502 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
504 // writing algorithm:
505 // a high bit consists of a field off for 1ms and field on for 1ms
506 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
507 // initiate a charge time of 50ms (field on) then immediately start writing bits
508 // start by writing 0xBB (keyword) and 0xEB (password)
509 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
510 // finally end with 0x0300 (write frame)
511 // all data is sent lsb firts
512 // finish with 15ms programming time
516 SpinDelay(50); // charge time
518 WriteTIbyte(0xbb); // keyword
519 WriteTIbyte(0xeb); // password
520 WriteTIbyte( (idlo
)&0xff );
521 WriteTIbyte( (idlo
>>8 )&0xff );
522 WriteTIbyte( (idlo
>>16)&0xff );
523 WriteTIbyte( (idlo
>>24)&0xff );
524 WriteTIbyte( (idhi
)&0xff );
525 WriteTIbyte( (idhi
>>8 )&0xff );
526 WriteTIbyte( (idhi
>>16)&0xff );
527 WriteTIbyte( (idhi
>>24)&0xff ); // data hi to lo
528 WriteTIbyte( (crc
)&0xff ); // crc lo
529 WriteTIbyte( (crc
>>8 )&0xff ); // crc hi
530 WriteTIbyte(0x00); // write frame lo
531 WriteTIbyte(0x03); // write frame hi
533 SpinDelay(50); // programming time
537 // get TI tag data into the buffer
540 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
541 DbpString("Now use tiread to check");
544 void SimulateTagLowFrequency(int period
, int gap
, int ledcontrol
)
547 uint8_t *tab
= (uint8_t *)BigBuf
;
549 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
550 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT
);
552 AT91C_BASE_PIOA
->PIO_PER
= GPIO_SSC_DOUT
| GPIO_SSC_CLK
;
554 AT91C_BASE_PIOA
->PIO_OER
= GPIO_SSC_DOUT
;
555 AT91C_BASE_PIOA
->PIO_ODR
= GPIO_SSC_CLK
;
557 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
558 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
562 while(!(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
)) {
564 DbpString("Stopped");
581 while(AT91C_BASE_PIOA
->PIO_PDSR
& GPIO_SSC_CLK
) {
583 DbpString("Stopped");
600 #define DEBUG_FRAME_CONTENTS 1
601 void SimulateTagLowFrequencyBidir(int divisor
, int t0
)
605 // compose fc/8 fc/10 waveform
606 static void fc(int c
, int *n
) {
607 uint8_t *dest
= (uint8_t *)BigBuf
;
610 // for when we want an fc8 pattern every 4 logical bits
621 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
623 for (idx
=0; idx
<6; idx
++) {
635 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
637 for (idx
=0; idx
<5; idx
++) {
652 // prepare a waveform pattern in the buffer based on the ID given then
653 // simulate a HID tag until the button is pressed
654 void CmdHIDsimTAG(int hi
, int lo
, int ledcontrol
)
658 HID tag bitstream format
659 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
660 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
661 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
662 A fc8 is inserted before every 4 bits
663 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
664 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
668 DbpString("Tags can only have 44 bits.");
672 // special start of frame marker containing invalid bit sequences
673 fc(8, &n
); fc(8, &n
); // invalid
674 fc(8, &n
); fc(10, &n
); // logical 0
675 fc(10, &n
); fc(10, &n
); // invalid
676 fc(8, &n
); fc(10, &n
); // logical 0
679 // manchester encode bits 43 to 32
680 for (i
=11; i
>=0; i
--) {
681 if ((i
%4)==3) fc(0,&n
);
683 fc(10, &n
); fc(8, &n
); // low-high transition
685 fc(8, &n
); fc(10, &n
); // high-low transition
690 // manchester encode bits 31 to 0
691 for (i
=31; i
>=0; i
--) {
692 if ((i
%4)==3) fc(0,&n
);
694 fc(10, &n
); fc(8, &n
); // low-high transition
696 fc(8, &n
); fc(10, &n
); // high-low transition
702 SimulateTagLowFrequency(n
, 0, ledcontrol
);
708 // loop to get raw HID waveform then FSK demodulate the TAG ID from it
709 void CmdHIDdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
711 uint8_t *dest
= (uint8_t *)BigBuf
;
713 size_t size
=0; //, found=0;
714 uint32_t hi2
=0, hi
=0, lo
=0;
716 // Configure to go in 125Khz listen mode
717 LFSetupFPGAForADC(95, true);
719 while(!BUTTON_PRESS()) {
722 if (ledcontrol
) LED_A_ON();
724 DoAcquisition125k_internal(-1,true);
726 size
= HIDdemodFSK(dest
, sizeof(BigBuf
), &hi2
, &hi
, &lo
);
731 // final loop, go over previously decoded manchester data and decode into usable tag ID
732 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
733 if (hi2
!= 0){ //extra large HID tags
734 Dbprintf("TAG ID: %x%08x%08x (%d)",
735 (unsigned int) hi2
, (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF);
736 }else { //standard HID tags <38 bits
737 //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
740 uint32_t cardnum
= 0;
741 if (((hi
>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
743 lo2
=(((hi
& 31) << 12) | (lo
>>20)); //get bits 21-37 to check for format len bit
745 while(lo2
> 1){ //find last bit set to 1 (format len bit)
753 cardnum
= (lo
>>1)&0xFFFF;
757 cardnum
= (lo
>>1)&0x7FFFF;
758 fc
= ((hi
&0xF)<<12)|(lo
>>20);
761 cardnum
= (lo
>>1)&0xFFFF;
762 fc
= ((hi
&1)<<15)|(lo
>>17);
765 cardnum
= (lo
>>1)&0xFFFFF;
766 fc
= ((hi
&1)<<11)|(lo
>>21);
769 else { //if bit 38 is not set then 37 bit format is used
774 cardnum
= (lo
>>1)&0x7FFFF;
775 fc
= ((hi
&0xF)<<12)|(lo
>>20);
778 //Dbprintf("TAG ID: %x%08x (%d)",
779 // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
780 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
781 (unsigned int) hi
, (unsigned int) lo
, (unsigned int) (lo
>>1) & 0xFFFF,
782 (unsigned int) bitlen
, (unsigned int) fc
, (unsigned int) cardnum
);
785 if (ledcontrol
) LED_A_OFF();
793 DbpString("Stopped");
794 if (ledcontrol
) LED_A_OFF();
797 void CmdEM410xdemod(int findone
, int *high
, int *low
, int ledcontrol
)
799 uint8_t *dest
= (uint8_t *)BigBuf
;
802 int clk
=0, invert
=0, errCnt
=0;
804 // Configure to go in 125Khz listen mode
805 LFSetupFPGAForADC(95, true);
807 while(!BUTTON_PRESS()) {
810 if (ledcontrol
) LED_A_ON();
812 DoAcquisition125k_internal(-1,true);
813 size
= sizeof(BigBuf
);
814 //Dbprintf("DEBUG: Buffer got");
815 //askdemod and manchester decode
816 errCnt
= askmandemod(dest
, &size
, &clk
, &invert
);
817 //Dbprintf("DEBUG: ASK Got");
821 lo
= Em410xDecode(dest
,size
);
822 //Dbprintf("DEBUG: EM GOT");
824 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
827 (uint32_t)(lo
&0xFFFF),
828 (uint32_t)((lo
>>16LL) & 0xFF),
829 (uint32_t)(lo
& 0xFFFFFF));
832 if (ledcontrol
) LED_A_OFF();
836 //Dbprintf("DEBUG: No Tag");
845 DbpString("Stopped");
846 if (ledcontrol
) LED_A_OFF();
849 void CmdIOdemodFSK(int findone
, int *high
, int *low
, int ledcontrol
)
851 uint8_t *dest
= (uint8_t *)BigBuf
;
853 uint32_t code
=0, code2
=0;
855 uint8_t facilitycode
=0;
857 // Configure to go in 125Khz listen mode
858 LFSetupFPGAForADC(95, true);
860 while(!BUTTON_PRESS()) {
862 if (ledcontrol
) LED_A_ON();
863 DoAcquisition125k_internal(-1,true);
864 //fskdemod and get start index
866 idx
= IOdemodFSK(dest
,sizeof(BigBuf
));
871 //0 10 20 30 40 50 60
873 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
874 //-----------------------------------------------------------------------------
875 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
877 //XSF(version)facility:codeone+codetwo
879 if(findone
){ //only print binary if we are doing one
880 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
], dest
[idx
+1], dest
[idx
+2],dest
[idx
+3],dest
[idx
+4],dest
[idx
+5],dest
[idx
+6],dest
[idx
+7],dest
[idx
+8]);
881 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+9], dest
[idx
+10],dest
[idx
+11],dest
[idx
+12],dest
[idx
+13],dest
[idx
+14],dest
[idx
+15],dest
[idx
+16],dest
[idx
+17]);
882 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+18],dest
[idx
+19],dest
[idx
+20],dest
[idx
+21],dest
[idx
+22],dest
[idx
+23],dest
[idx
+24],dest
[idx
+25],dest
[idx
+26]);
883 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+27],dest
[idx
+28],dest
[idx
+29],dest
[idx
+30],dest
[idx
+31],dest
[idx
+32],dest
[idx
+33],dest
[idx
+34],dest
[idx
+35]);
884 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+36],dest
[idx
+37],dest
[idx
+38],dest
[idx
+39],dest
[idx
+40],dest
[idx
+41],dest
[idx
+42],dest
[idx
+43],dest
[idx
+44]);
885 Dbprintf("%d%d%d%d%d%d%d%d %d",dest
[idx
+45],dest
[idx
+46],dest
[idx
+47],dest
[idx
+48],dest
[idx
+49],dest
[idx
+50],dest
[idx
+51],dest
[idx
+52],dest
[idx
+53]);
886 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest
[idx
+54],dest
[idx
+55],dest
[idx
+56],dest
[idx
+57],dest
[idx
+58],dest
[idx
+59],dest
[idx
+60],dest
[idx
+61],dest
[idx
+62],dest
[idx
+63]);
888 code
= bytebits_to_byte(dest
+idx
,32);
889 code2
= bytebits_to_byte(dest
+idx
+32,32);
890 version
= bytebits_to_byte(dest
+idx
+27,8); //14,4
891 facilitycode
= bytebits_to_byte(dest
+idx
+18,8) ;
892 number
= (bytebits_to_byte(dest
+idx
+36,8)<<8)|(bytebits_to_byte(dest
+idx
+45,8)); //36,9
894 Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version
,facilitycode
,number
,code
,code2
);
895 // if we're only looking for one tag
897 if (ledcontrol
) LED_A_OFF();
902 version
=facilitycode
=0;
908 DbpString("Stopped");
909 if (ledcontrol
) LED_A_OFF();
912 /*------------------------------
913 * T5555/T5557/T5567 routines
914 *------------------------------
917 /* T55x7 configuration register definitions */
918 #define T55x7_POR_DELAY 0x00000001
919 #define T55x7_ST_TERMINATOR 0x00000008
920 #define T55x7_PWD 0x00000010
921 #define T55x7_MAXBLOCK_SHIFT 5
922 #define T55x7_AOR 0x00000200
923 #define T55x7_PSKCF_RF_2 0
924 #define T55x7_PSKCF_RF_4 0x00000400
925 #define T55x7_PSKCF_RF_8 0x00000800
926 #define T55x7_MODULATION_DIRECT 0
927 #define T55x7_MODULATION_PSK1 0x00001000
928 #define T55x7_MODULATION_PSK2 0x00002000
929 #define T55x7_MODULATION_PSK3 0x00003000
930 #define T55x7_MODULATION_FSK1 0x00004000
931 #define T55x7_MODULATION_FSK2 0x00005000
932 #define T55x7_MODULATION_FSK1a 0x00006000
933 #define T55x7_MODULATION_FSK2a 0x00007000
934 #define T55x7_MODULATION_MANCHESTER 0x00008000
935 #define T55x7_MODULATION_BIPHASE 0x00010000
936 #define T55x7_BITRATE_RF_8 0
937 #define T55x7_BITRATE_RF_16 0x00040000
938 #define T55x7_BITRATE_RF_32 0x00080000
939 #define T55x7_BITRATE_RF_40 0x000C0000
940 #define T55x7_BITRATE_RF_50 0x00100000
941 #define T55x7_BITRATE_RF_64 0x00140000
942 #define T55x7_BITRATE_RF_100 0x00180000
943 #define T55x7_BITRATE_RF_128 0x001C0000
945 /* T5555 (Q5) configuration register definitions */
946 #define T5555_ST_TERMINATOR 0x00000001
947 #define T5555_MAXBLOCK_SHIFT 0x00000001
948 #define T5555_MODULATION_MANCHESTER 0
949 #define T5555_MODULATION_PSK1 0x00000010
950 #define T5555_MODULATION_PSK2 0x00000020
951 #define T5555_MODULATION_PSK3 0x00000030
952 #define T5555_MODULATION_FSK1 0x00000040
953 #define T5555_MODULATION_FSK2 0x00000050
954 #define T5555_MODULATION_BIPHASE 0x00000060
955 #define T5555_MODULATION_DIRECT 0x00000070
956 #define T5555_INVERT_OUTPUT 0x00000080
957 #define T5555_PSK_RF_2 0
958 #define T5555_PSK_RF_4 0x00000100
959 #define T5555_PSK_RF_8 0x00000200
960 #define T5555_USE_PWD 0x00000400
961 #define T5555_USE_AOR 0x00000800
962 #define T5555_BITRATE_SHIFT 12
963 #define T5555_FAST_WRITE 0x00004000
964 #define T5555_PAGE_SELECT 0x00008000
967 * Relevant times in microsecond
968 * To compensate antenna falling times shorten the write times
969 * and enlarge the gap ones.
971 #define START_GAP 250
972 #define WRITE_GAP 160
973 #define WRITE_0 144 // 192
974 #define WRITE_1 400 // 432 for T55x7; 448 for E5550
976 // Write one bit to card
977 void T55xxWriteBit(int bit
)
979 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
980 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
981 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
983 SpinDelayUs(WRITE_0
);
985 SpinDelayUs(WRITE_1
);
986 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
987 SpinDelayUs(WRITE_GAP
);
990 // Write one card block in page 0, no lock
991 void T55xxWriteBlock(uint32_t Data
, uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
993 //unsigned int i; //enio adjustment 12/10/14
996 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
997 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
998 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1000 // Give it a bit of time for the resonant antenna to settle.
1001 // And for the tag to fully power up
1004 // Now start writting
1005 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1006 SpinDelayUs(START_GAP
);
1010 T55xxWriteBit(0); //Page 0
1013 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1014 T55xxWriteBit(Pwd
& i
);
1020 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1021 T55xxWriteBit(Data
& i
);
1024 for (i
= 0x04; i
!= 0; i
>>= 1)
1025 T55xxWriteBit(Block
& i
);
1027 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
1028 // so wait a little more)
1029 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1030 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1032 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1035 // Read one card block in page 0
1036 void T55xxReadBlock(uint32_t Block
, uint32_t Pwd
, uint8_t PwdMode
)
1038 uint8_t *dest
= (uint8_t *)BigBuf
;
1039 //int m=0, i=0; //enio adjustment 12/10/14
1041 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1043 // Clear destination buffer before sending the command
1044 memset(dest
, 128, m
);
1045 // Connect the A/D to the peak-detected low-frequency path.
1046 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1047 // Now set up the SSC to get the ADC samples that are now streaming at us.
1051 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1052 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1054 // Give it a bit of time for the resonant antenna to settle.
1055 // And for the tag to fully power up
1058 // Now start writting
1059 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1060 SpinDelayUs(START_GAP
);
1064 T55xxWriteBit(0); //Page 0
1067 for (i
= 0x80000000; i
!= 0; i
>>= 1)
1068 T55xxWriteBit(Pwd
& i
);
1073 for (i
= 0x04; i
!= 0; i
>>= 1)
1074 T55xxWriteBit(Block
& i
);
1076 // Turn field on to read the response
1077 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1078 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1080 // Now do the acquisition
1083 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1084 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1086 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1087 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1088 // we don't care about actual value, only if it's more or less than a
1089 // threshold essentially we capture zero crossings for later analysis
1090 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1096 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1101 // Read card traceability data (page 1)
1102 void T55xxReadTrace(void){
1103 uint8_t *dest
= (uint8_t *)BigBuf
;
1106 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1108 // Clear destination buffer before sending the command
1109 memset(dest
, 128, m
);
1110 // Connect the A/D to the peak-detected low-frequency path.
1111 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1112 // Now set up the SSC to get the ADC samples that are now streaming at us.
1116 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1117 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1119 // Give it a bit of time for the resonant antenna to settle.
1120 // And for the tag to fully power up
1123 // Now start writting
1124 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
1125 SpinDelayUs(START_GAP
);
1129 T55xxWriteBit(1); //Page 1
1131 // Turn field on to read the response
1132 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1133 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1135 // Now do the acquisition
1138 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1139 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1141 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1142 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1148 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1153 /*-------------- Cloning routines -----------*/
1154 // Copy HID id to card and setup block 0 config
1155 void CopyHIDtoT55x7(uint32_t hi2
, uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1157 int data1
=0, data2
=0, data3
=0, data4
=0, data5
=0, data6
=0; //up to six blocks for long format
1161 // Ensure no more than 84 bits supplied
1163 DbpString("Tags can only have 84 bits.");
1166 // Build the 6 data blocks for supplied 84bit ID
1168 data1
= 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1169 for (int i
=0;i
<4;i
++) {
1170 if (hi2
& (1<<(19-i
)))
1171 data1
|= (1<<(((3-i
)*2)+1)); // 1 -> 10
1173 data1
|= (1<<((3-i
)*2)); // 0 -> 01
1177 for (int i
=0;i
<16;i
++) {
1178 if (hi2
& (1<<(15-i
)))
1179 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1181 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1185 for (int i
=0;i
<16;i
++) {
1186 if (hi
& (1<<(31-i
)))
1187 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1189 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1193 for (int i
=0;i
<16;i
++) {
1194 if (hi
& (1<<(15-i
)))
1195 data4
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1197 data4
|= (1<<((15-i
)*2)); // 0 -> 01
1201 for (int i
=0;i
<16;i
++) {
1202 if (lo
& (1<<(31-i
)))
1203 data5
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1205 data5
|= (1<<((15-i
)*2)); // 0 -> 01
1209 for (int i
=0;i
<16;i
++) {
1210 if (lo
& (1<<(15-i
)))
1211 data6
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1213 data6
|= (1<<((15-i
)*2)); // 0 -> 01
1217 // Ensure no more than 44 bits supplied
1219 DbpString("Tags can only have 44 bits.");
1223 // Build the 3 data blocks for supplied 44bit ID
1226 data1
= 0x1D000000; // load preamble
1228 for (int i
=0;i
<12;i
++) {
1229 if (hi
& (1<<(11-i
)))
1230 data1
|= (1<<(((11-i
)*2)+1)); // 1 -> 10
1232 data1
|= (1<<((11-i
)*2)); // 0 -> 01
1236 for (int i
=0;i
<16;i
++) {
1237 if (lo
& (1<<(31-i
)))
1238 data2
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1240 data2
|= (1<<((15-i
)*2)); // 0 -> 01
1244 for (int i
=0;i
<16;i
++) {
1245 if (lo
& (1<<(15-i
)))
1246 data3
|= (1<<(((15-i
)*2)+1)); // 1 -> 10
1248 data3
|= (1<<((15-i
)*2)); // 0 -> 01
1253 // Program the data blocks for supplied ID
1254 // and the block 0 for HID format
1255 T55xxWriteBlock(data1
,1,0,0);
1256 T55xxWriteBlock(data2
,2,0,0);
1257 T55xxWriteBlock(data3
,3,0,0);
1259 if (longFMT
) { // if long format there are 6 blocks
1260 T55xxWriteBlock(data4
,4,0,0);
1261 T55xxWriteBlock(data5
,5,0,0);
1262 T55xxWriteBlock(data6
,6,0,0);
1265 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1266 T55xxWriteBlock(T55x7_BITRATE_RF_50
|
1267 T55x7_MODULATION_FSK2a
|
1268 last_block
<< T55x7_MAXBLOCK_SHIFT
,
1276 void CopyIOtoT55x7(uint32_t hi
, uint32_t lo
, uint8_t longFMT
)
1278 int data1
=0, data2
=0; //up to six blocks for long format
1280 data1
= hi
; // load preamble
1284 // Program the data blocks for supplied ID
1285 // and the block 0 for HID format
1286 T55xxWriteBlock(data1
,1,0,0);
1287 T55xxWriteBlock(data2
,2,0,0);
1290 T55xxWriteBlock(0x00147040,0,0,0);
1296 // Define 9bit header for EM410x tags
1297 #define EM410X_HEADER 0x1FF
1298 #define EM410X_ID_LENGTH 40
1300 void WriteEM410x(uint32_t card
, uint32_t id_hi
, uint32_t id_lo
)
1303 uint64_t id
= EM410X_HEADER
;
1304 uint64_t rev_id
= 0; // reversed ID
1305 int c_parity
[4]; // column parity
1306 int r_parity
= 0; // row parity
1309 // Reverse ID bits given as parameter (for simpler operations)
1310 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1312 rev_id
= (rev_id
<< 1) | (id_lo
& 1);
1315 rev_id
= (rev_id
<< 1) | (id_hi
& 1);
1320 for (i
= 0; i
< EM410X_ID_LENGTH
; ++i
) {
1321 id_bit
= rev_id
& 1;
1324 // Don't write row parity bit at start of parsing
1326 id
= (id
<< 1) | r_parity
;
1327 // Start counting parity for new row
1334 // First elements in column?
1336 // Fill out first elements
1337 c_parity
[i
] = id_bit
;
1339 // Count column parity
1340 c_parity
[i
% 4] ^= id_bit
;
1343 id
= (id
<< 1) | id_bit
;
1347 // Insert parity bit of last row
1348 id
= (id
<< 1) | r_parity
;
1350 // Fill out column parity at the end of tag
1351 for (i
= 0; i
< 4; ++i
)
1352 id
= (id
<< 1) | c_parity
[i
];
1357 Dbprintf("Started writing %s tag ...", card
? "T55x7":"T5555");
1361 T55xxWriteBlock((uint32_t)(id
>> 32), 1, 0, 0);
1362 T55xxWriteBlock((uint32_t)id
, 2, 0, 0);
1364 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1366 // Clock rate is stored in bits 8-15 of the card value
1367 clock
= (card
& 0xFF00) >> 8;
1368 Dbprintf("Clock rate: %d", clock
);
1372 clock
= T55x7_BITRATE_RF_32
;
1375 clock
= T55x7_BITRATE_RF_16
;
1378 // A value of 0 is assumed to be 64 for backwards-compatibility
1381 clock
= T55x7_BITRATE_RF_64
;
1384 Dbprintf("Invalid clock rate: %d", clock
);
1388 // Writing configuration for T55x7 tag
1389 T55xxWriteBlock(clock
|
1390 T55x7_MODULATION_MANCHESTER
|
1391 2 << T55x7_MAXBLOCK_SHIFT
,
1395 // Writing configuration for T5555(Q5) tag
1396 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT
|
1397 T5555_MODULATION_MANCHESTER
|
1398 2 << T5555_MAXBLOCK_SHIFT
,
1402 Dbprintf("Tag %s written with 0x%08x%08x\n", card
? "T55x7":"T5555",
1403 (uint32_t)(id
>> 32), (uint32_t)id
);
1406 // Clone Indala 64-bit tag by UID to T55x7
1407 void CopyIndala64toT55x7(int hi
, int lo
)
1410 //Program the 2 data blocks for supplied 64bit UID
1411 // and the block 0 for Indala64 format
1412 T55xxWriteBlock(hi
,1,0,0);
1413 T55xxWriteBlock(lo
,2,0,0);
1414 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1415 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1416 T55x7_MODULATION_PSK1
|
1417 2 << T55x7_MAXBLOCK_SHIFT
,
1419 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1420 // T5567WriteBlock(0x603E1042,0);
1426 void CopyIndala224toT55x7(int uid1
, int uid2
, int uid3
, int uid4
, int uid5
, int uid6
, int uid7
)
1429 //Program the 7 data blocks for supplied 224bit UID
1430 // and the block 0 for Indala224 format
1431 T55xxWriteBlock(uid1
,1,0,0);
1432 T55xxWriteBlock(uid2
,2,0,0);
1433 T55xxWriteBlock(uid3
,3,0,0);
1434 T55xxWriteBlock(uid4
,4,0,0);
1435 T55xxWriteBlock(uid5
,5,0,0);
1436 T55xxWriteBlock(uid6
,6,0,0);
1437 T55xxWriteBlock(uid7
,7,0,0);
1438 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1439 T55xxWriteBlock(T55x7_BITRATE_RF_32
|
1440 T55x7_MODULATION_PSK1
|
1441 7 << T55x7_MAXBLOCK_SHIFT
,
1443 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1444 // T5567WriteBlock(0x603E10E2,0);
1451 #define abs(x) ( ((x)<0) ? -(x) : (x) )
1452 #define max(x,y) ( x<y ? y:x)
1454 int DemodPCF7931(uint8_t **outBlocks
) {
1455 uint8_t BitStream
[256];
1456 uint8_t Blocks
[8][16];
1457 uint8_t *GraphBuffer
= (uint8_t *)BigBuf
;
1458 int GraphTraceLen
= sizeof(BigBuf
);
1459 int i
, j
, lastval
, bitidx
, half_switch
;
1461 int tolerance
= clock
/ 8;
1462 int pmc
, block_done
;
1463 int lc
, warnings
= 0;
1465 int lmin
=128, lmax
=128;
1468 AcquireRawAdcSamples125k(0);
1475 /* Find first local max/min */
1476 if(GraphBuffer
[1] > GraphBuffer
[0]) {
1477 while(i
< GraphTraceLen
) {
1478 if( !(GraphBuffer
[i
] > GraphBuffer
[i
-1]) && GraphBuffer
[i
] > lmax
)
1485 while(i
< GraphTraceLen
) {
1486 if( !(GraphBuffer
[i
] < GraphBuffer
[i
-1]) && GraphBuffer
[i
] < lmin
)
1498 for (bitidx
= 0; i
< GraphTraceLen
; i
++)
1500 if ( (GraphBuffer
[i
-1] > GraphBuffer
[i
] && dir
== 1 && GraphBuffer
[i
] > lmax
) || (GraphBuffer
[i
-1] < GraphBuffer
[i
] && dir
== 0 && GraphBuffer
[i
] < lmin
))
1505 // Switch depending on lc length:
1506 // Tolerance is 1/8 of clock rate (arbitrary)
1507 if (abs(lc
-clock
/4) < tolerance
) {
1509 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1511 i
+= (128+127+16+32+33+16)-1;
1519 } else if (abs(lc
-clock
/2) < tolerance
) {
1521 if((i
- pmc
) == lc
) { /* 16T0 was previous one */
1523 i
+= (128+127+16+32+33)-1;
1528 else if(half_switch
== 1) {
1529 BitStream
[bitidx
++] = 0;
1534 } else if (abs(lc
-clock
) < tolerance
) {
1536 BitStream
[bitidx
++] = 1;
1542 Dbprintf("Error: too many detection errors, aborting.");
1547 if(block_done
== 1) {
1549 for(j
=0; j
<16; j
++) {
1550 Blocks
[num_blocks
][j
] = 128*BitStream
[j
*8+7]+
1551 64*BitStream
[j
*8+6]+
1552 32*BitStream
[j
*8+5]+
1553 16*BitStream
[j
*8+4]+
1565 if(i
< GraphTraceLen
)
1567 if (GraphBuffer
[i
-1] > GraphBuffer
[i
]) dir
=0;
1574 if(num_blocks
== 4) break;
1576 memcpy(outBlocks
, Blocks
, 16*num_blocks
);
1580 int IsBlock0PCF7931(uint8_t *Block
) {
1581 // Assume RFU means 0 :)
1582 if((memcmp(Block
, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1584 if((memcmp(Block
+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block
[7] == 0) // PAC disabled, can it *really* happen ?
1589 int IsBlock1PCF7931(uint8_t *Block
) {
1590 // Assume RFU means 0 :)
1591 if(Block
[10] == 0 && Block
[11] == 0 && Block
[12] == 0 && Block
[13] == 0)
1592 if((Block
[14] & 0x7f) <= 9 && Block
[15] <= 9)
1600 void ReadPCF7931() {
1601 uint8_t Blocks
[8][17];
1602 uint8_t tmpBlocks
[4][16];
1603 int i
, j
, ind
, ind2
, n
;
1610 memset(Blocks
, 0, 8*17*sizeof(uint8_t));
1613 memset(tmpBlocks
, 0, 4*16*sizeof(uint8_t));
1614 n
= DemodPCF7931((uint8_t**)tmpBlocks
);
1617 if(error
==10 && num_blocks
== 0) {
1618 Dbprintf("Error, no tag or bad tag");
1621 else if (tries
==20 || error
==10) {
1622 Dbprintf("Error reading the tag");
1623 Dbprintf("Here is the partial content");
1628 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1629 tmpBlocks
[i
][0], tmpBlocks
[i
][1], tmpBlocks
[i
][2], tmpBlocks
[i
][3], tmpBlocks
[i
][4], tmpBlocks
[i
][5], tmpBlocks
[i
][6], tmpBlocks
[i
][7],
1630 tmpBlocks
[i
][8], tmpBlocks
[i
][9], tmpBlocks
[i
][10], tmpBlocks
[i
][11], tmpBlocks
[i
][12], tmpBlocks
[i
][13], tmpBlocks
[i
][14], tmpBlocks
[i
][15]);
1632 for(i
=0; i
<n
; i
++) {
1633 if(IsBlock0PCF7931(tmpBlocks
[i
])) {
1635 if(i
< n
-1 && IsBlock1PCF7931(tmpBlocks
[i
+1])) {
1639 memcpy(Blocks
[0], tmpBlocks
[i
], 16);
1640 Blocks
[0][ALLOC
] = 1;
1641 memcpy(Blocks
[1], tmpBlocks
[i
+1], 16);
1642 Blocks
[1][ALLOC
] = 1;
1643 max_blocks
= max((Blocks
[1][14] & 0x7f), Blocks
[1][15]) + 1;
1645 Dbprintf("(dbg) Max blocks: %d", max_blocks
);
1647 // Handle following blocks
1648 for(j
=i
+2, ind2
=2; j
!=i
; j
++, ind2
++, num_blocks
++) {
1651 memcpy(Blocks
[ind2
], tmpBlocks
[j
], 16);
1652 Blocks
[ind2
][ALLOC
] = 1;
1660 for(i
=0; i
<n
; i
++) { // Look for identical block in known blocks
1661 if(memcmp(tmpBlocks
[i
], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1662 for(j
=0; j
<max_blocks
; j
++) {
1663 if(Blocks
[j
][ALLOC
] == 1 && !memcmp(tmpBlocks
[i
], Blocks
[j
], 16)) {
1664 // Found an identical block
1665 for(ind
=i
-1,ind2
=j
-1; ind
>= 0; ind
--,ind2
--) {
1668 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1669 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1670 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1671 Blocks
[ind2
][ALLOC
] = 1;
1673 if(num_blocks
== max_blocks
) goto end
;
1676 for(ind
=i
+1,ind2
=j
+1; ind
< n
; ind
++,ind2
++) {
1677 if(ind2
> max_blocks
)
1679 if(!Blocks
[ind2
][ALLOC
]) { // Block ind2 not already found
1680 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1681 memcpy(Blocks
[ind2
], tmpBlocks
[ind
], 16);
1682 Blocks
[ind2
][ALLOC
] = 1;
1684 if(num_blocks
== max_blocks
) goto end
;
1693 if (BUTTON_PRESS()) return;
1694 } while (num_blocks
!= max_blocks
);
1696 Dbprintf("-----------------------------------------");
1697 Dbprintf("Memory content:");
1698 Dbprintf("-----------------------------------------");
1699 for(i
=0; i
<max_blocks
; i
++) {
1700 if(Blocks
[i
][ALLOC
]==1)
1701 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1702 Blocks
[i
][0], Blocks
[i
][1], Blocks
[i
][2], Blocks
[i
][3], Blocks
[i
][4], Blocks
[i
][5], Blocks
[i
][6], Blocks
[i
][7],
1703 Blocks
[i
][8], Blocks
[i
][9], Blocks
[i
][10], Blocks
[i
][11], Blocks
[i
][12], Blocks
[i
][13], Blocks
[i
][14], Blocks
[i
][15]);
1705 Dbprintf("<missing block %d>", i
);
1707 Dbprintf("-----------------------------------------");
1713 //-----------------------------------
1714 // EM4469 / EM4305 routines
1715 //-----------------------------------
1716 #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1717 #define FWD_CMD_WRITE 0xA
1718 #define FWD_CMD_READ 0x9
1719 #define FWD_CMD_DISABLE 0x5
1722 uint8_t forwardLink_data
[64]; //array of forwarded bits
1723 uint8_t * forward_ptr
; //ptr for forward message preparation
1724 uint8_t fwd_bit_sz
; //forwardlink bit counter
1725 uint8_t * fwd_write_ptr
; //forwardlink bit pointer
1727 //====================================================================
1728 // prepares command bits
1730 //====================================================================
1731 //--------------------------------------------------------------------
1732 uint8_t Prepare_Cmd( uint8_t cmd
) {
1733 //--------------------------------------------------------------------
1735 *forward_ptr
++ = 0; //start bit
1736 *forward_ptr
++ = 0; //second pause for 4050 code
1738 *forward_ptr
++ = cmd
;
1740 *forward_ptr
++ = cmd
;
1742 *forward_ptr
++ = cmd
;
1744 *forward_ptr
++ = cmd
;
1746 return 6; //return number of emited bits
1749 //====================================================================
1750 // prepares address bits
1752 //====================================================================
1754 //--------------------------------------------------------------------
1755 uint8_t Prepare_Addr( uint8_t addr
) {
1756 //--------------------------------------------------------------------
1758 register uint8_t line_parity
;
1763 *forward_ptr
++ = addr
;
1764 line_parity
^= addr
;
1768 *forward_ptr
++ = (line_parity
& 1);
1770 return 7; //return number of emited bits
1773 //====================================================================
1774 // prepares data bits intreleaved with parity bits
1776 //====================================================================
1778 //--------------------------------------------------------------------
1779 uint8_t Prepare_Data( uint16_t data_low
, uint16_t data_hi
) {
1780 //--------------------------------------------------------------------
1782 register uint8_t line_parity
;
1783 register uint8_t column_parity
;
1784 register uint8_t i
, j
;
1785 register uint16_t data
;
1790 for(i
=0; i
<4; i
++) {
1792 for(j
=0; j
<8; j
++) {
1793 line_parity
^= data
;
1794 column_parity
^= (data
& 1) << j
;
1795 *forward_ptr
++ = data
;
1798 *forward_ptr
++ = line_parity
;
1803 for(j
=0; j
<8; j
++) {
1804 *forward_ptr
++ = column_parity
;
1805 column_parity
>>= 1;
1809 return 45; //return number of emited bits
1812 //====================================================================
1813 // Forward Link send function
1814 // Requires: forwarLink_data filled with valid bits (1 bit per byte)
1815 // fwd_bit_count set with number of bits to be sent
1816 //====================================================================
1817 void SendForward(uint8_t fwd_bit_count
) {
1819 fwd_write_ptr
= forwardLink_data
;
1820 fwd_bit_sz
= fwd_bit_count
;
1825 FpgaDownloadAndGo(FPGA_BITSTREAM_LF
);
1826 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1827 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);
1829 // Give it a bit of time for the resonant antenna to settle.
1830 // And for the tag to fully power up
1833 // force 1st mod pulse (start gap must be longer for 4305)
1834 fwd_bit_sz
--; //prepare next bit modulation
1836 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1837 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1838 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1839 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1840 SpinDelayUs(16*8); //16 cycles on (8us each)
1842 // now start writting
1843 while(fwd_bit_sz
-- > 0) { //prepare next bit modulation
1844 if(((*fwd_write_ptr
++) & 1) == 1)
1845 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1847 //These timings work for 4469/4269/4305 (with the 55*8 above)
1848 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1849 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1850 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, 95); //125Khz
1851 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC
| FPGA_LF_ADC_READER_FIELD
);//field on
1852 SpinDelayUs(9*8); //16 cycles on (8us each)
1857 void EM4xLogin(uint32_t Password
) {
1859 uint8_t fwd_bit_count
;
1861 forward_ptr
= forwardLink_data
;
1862 fwd_bit_count
= Prepare_Cmd( FWD_CMD_LOGIN
);
1863 fwd_bit_count
+= Prepare_Data( Password
&0xFFFF, Password
>>16 );
1865 SendForward(fwd_bit_count
);
1867 //Wait for command to complete
1872 void EM4xReadWord(uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1874 uint8_t fwd_bit_count
;
1875 uint8_t *dest
= (uint8_t *)BigBuf
;
1878 //If password mode do login
1879 if (PwdMode
== 1) EM4xLogin(Pwd
);
1881 forward_ptr
= forwardLink_data
;
1882 fwd_bit_count
= Prepare_Cmd( FWD_CMD_READ
);
1883 fwd_bit_count
+= Prepare_Addr( Address
);
1886 // Clear destination buffer before sending the command
1887 memset(dest
, 128, m
);
1888 // Connect the A/D to the peak-detected low-frequency path.
1889 SetAdcMuxFor(GPIO_MUXSEL_LOPKD
);
1890 // Now set up the SSC to get the ADC samples that are now streaming at us.
1893 SendForward(fwd_bit_count
);
1895 // Now do the acquisition
1898 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_TXRDY
) {
1899 AT91C_BASE_SSC
->SSC_THR
= 0x43;
1901 if (AT91C_BASE_SSC
->SSC_SR
& AT91C_SSC_RXRDY
) {
1902 dest
[i
] = (uint8_t)AT91C_BASE_SSC
->SSC_RHR
;
1907 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off
1911 void EM4xWriteWord(uint32_t Data
, uint8_t Address
, uint32_t Pwd
, uint8_t PwdMode
) {
1913 uint8_t fwd_bit_count
;
1915 //If password mode do login
1916 if (PwdMode
== 1) EM4xLogin(Pwd
);
1918 forward_ptr
= forwardLink_data
;
1919 fwd_bit_count
= Prepare_Cmd( FWD_CMD_WRITE
);
1920 fwd_bit_count
+= Prepare_Addr( Address
);
1921 fwd_bit_count
+= Prepare_Data( Data
&0xFFFF, Data
>>16 );
1923 SendForward(fwd_bit_count
);
1925 //Wait for write to complete
1927 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
); // field off