]> git.zerfleddert.de Git - proxmark3-svn/blob - client/hardnested/hardnested_bitarray_core.c
c7e7f70fae429bddf3bcc6ea4a1f3ae2ae13ea44
[proxmark3-svn] / client / hardnested / hardnested_bitarray_core.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2016, 2017 by piwi
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.ch b
7 //-----------------------------------------------------------------------------
8 // Implements a card only attack based on crypto text (encrypted nonces
9 // received during a nested authentication) only. Unlike other card only
10 // attacks this doesn't rely on implementation errors but only on the
11 // inherent weaknesses of the crypto1 cypher. Described in
12 // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13 // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14 // Computer and Communications Security, 2015
15 //-----------------------------------------------------------------------------
16 // some helper functions which can benefit from SIMD instructions or other special instructions
17 //
18
19 #include "hardnested_bitarray_core.h"
20
21 #include <stdint.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <malloc.h>
25
26 // #include <stdint.h>
27 // #include <stdbool.h>
28 // #include <stdlib.h>
29 // #include <stdio.h>
30 // #include <malloc.h>
31 // #include <string.h>
32 // #include "crapto1/crapto1.h"
33 // #include "parity.h"
34
35
36 // this needs to be compiled several times for each instruction set.
37 // For each instruction set, define a dedicated function name:
38 #if defined (__AVX512F__)
39 #define MALLOC_BITARRAY malloc_bitarray_AVX512
40 #define FREE_BITARRAY free_bitarray_AVX512
41 #define BITCOUNT bitcount_AVX512
42 #define COUNT_STATES count_states_AVX512
43 #define BITARRAY_AND bitarray_AND_AVX512
44 #define BITARRAY_LOW20_AND bitarray_low20_AND_AVX512
45 #define COUNT_BITARRAY_AND count_bitarray_AND_AVX512
46 #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_AVX512
47 #define BITARRAY_AND4 bitarray_AND4_AVX512
48 #define BITARRAY_OR bitarray_OR_AVX512
49 #define COUNT_BITARRAY_AND2 count_bitarray_AND2_AVX512
50 #define COUNT_BITARRAY_AND3 count_bitarray_AND3_AVX512
51 #define COUNT_BITARRAY_AND4 count_bitarray_AND4_AVX512
52 #elif defined (__AVX2__)
53 #define MALLOC_BITARRAY malloc_bitarray_AVX2
54 #define FREE_BITARRAY free_bitarray_AVX2
55 #define BITCOUNT bitcount_AVX2
56 #define COUNT_STATES count_states_AVX2
57 #define BITARRAY_AND bitarray_AND_AVX2
58 #define BITARRAY_LOW20_AND bitarray_low20_AND_AVX2
59 #define COUNT_BITARRAY_AND count_bitarray_AND_AVX2
60 #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_AVX2
61 #define BITARRAY_AND4 bitarray_AND4_AVX2
62 #define BITARRAY_OR bitarray_OR_AVX2
63 #define COUNT_BITARRAY_AND2 count_bitarray_AND2_AVX2
64 #define COUNT_BITARRAY_AND3 count_bitarray_AND3_AVX2
65 #define COUNT_BITARRAY_AND4 count_bitarray_AND4_AVX2
66 #elif defined (__AVX__)
67 #define MALLOC_BITARRAY malloc_bitarray_AVX
68 #define FREE_BITARRAY free_bitarray_AVX
69 #define BITCOUNT bitcount_AVX
70 #define COUNT_STATES count_states_AVX
71 #define BITARRAY_AND bitarray_AND_AVX
72 #define BITARRAY_LOW20_AND bitarray_low20_AND_AVX
73 #define COUNT_BITARRAY_AND count_bitarray_AND_AVX
74 #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_AVX
75 #define BITARRAY_AND4 bitarray_AND4_AVX
76 #define BITARRAY_OR bitarray_OR_AVX
77 #define COUNT_BITARRAY_AND2 count_bitarray_AND2_AVX
78 #define COUNT_BITARRAY_AND3 count_bitarray_AND3_AVX
79 #define COUNT_BITARRAY_AND4 count_bitarray_AND4_AVX
80 #elif defined (__SSE2__)
81 #define MALLOC_BITARRAY malloc_bitarray_SSE2
82 #define FREE_BITARRAY free_bitarray_SSE2
83 #define BITCOUNT bitcount_SSE2
84 #define COUNT_STATES count_states_SSE2
85 #define BITARRAY_AND bitarray_AND_SSE2
86 #define BITARRAY_LOW20_AND bitarray_low20_AND_SSE2
87 #define COUNT_BITARRAY_AND count_bitarray_AND_SSE2
88 #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_SSE2
89 #define BITARRAY_AND4 bitarray_AND4_SSE2
90 #define BITARRAY_OR bitarray_OR_SSE2
91 #define COUNT_BITARRAY_AND2 count_bitarray_AND2_SSE2
92 #define COUNT_BITARRAY_AND3 count_bitarray_AND3_SSE2
93 #define COUNT_BITARRAY_AND4 count_bitarray_AND4_SSE2
94 #elif defined (__MMX__)
95 #define MALLOC_BITARRAY malloc_bitarray_MMX
96 #define FREE_BITARRAY free_bitarray_MMX
97 #define BITCOUNT bitcount_MMX
98 #define COUNT_STATES count_states_MMX
99 #define BITARRAY_AND bitarray_AND_MMX
100 #define BITARRAY_LOW20_AND bitarray_low20_AND_MMX
101 #define COUNT_BITARRAY_AND count_bitarray_AND_MMX
102 #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_MMX
103 #define BITARRAY_AND4 bitarray_AND4_MMX
104 #define BITARRAY_OR bitarray_OR_MMX
105 #define COUNT_BITARRAY_AND2 count_bitarray_AND2_MMX
106 #define COUNT_BITARRAY_AND3 count_bitarray_AND3_MMX
107 #define COUNT_BITARRAY_AND4 count_bitarray_AND4_MMX
108 #endif
109
110
111 // typedefs and declaration of functions:
112 typedef uint32_t* malloc_bitarray_t(uint32_t);
113 malloc_bitarray_t malloc_bitarray_AVX512, malloc_bitarray_AVX2, malloc_bitarray_AVX, malloc_bitarray_SSE2, malloc_bitarray_MMX, malloc_bitarray_dispatch;
114 typedef void free_bitarray_t(uint32_t*);
115 free_bitarray_t free_bitarray_AVX512, free_bitarray_AVX2, free_bitarray_AVX, free_bitarray_SSE2, free_bitarray_MMX, free_bitarray_dispatch;
116 typedef uint32_t bitcount_t(uint32_t);
117 bitcount_t bitcount_AVX512, bitcount_AVX2, bitcount_AVX, bitcount_SSE2, bitcount_MMX, bitcount_dispatch;
118 typedef uint32_t count_states_t(uint32_t*);
119 count_states_t count_states_AVX512, count_states_AVX2, count_states_AVX, count_states_SSE2, count_states_MMX, count_states_dispatch;
120 typedef void bitarray_AND_t(uint32_t[], uint32_t[]);
121 bitarray_AND_t bitarray_AND_AVX512, bitarray_AND_AVX2, bitarray_AND_AVX, bitarray_AND_SSE2, bitarray_AND_MMX, bitarray_AND_dispatch;
122 typedef void bitarray_low20_AND_t(uint32_t*, uint32_t*);
123 bitarray_low20_AND_t bitarray_low20_AND_AVX512, bitarray_low20_AND_AVX2, bitarray_low20_AND_AVX, bitarray_low20_AND_SSE2, bitarray_low20_AND_MMX, bitarray_low20_AND_dispatch;
124 typedef uint32_t count_bitarray_AND_t(uint32_t*, uint32_t*);
125 count_bitarray_AND_t count_bitarray_AND_AVX512, count_bitarray_AND_AVX2, count_bitarray_AND_AVX, count_bitarray_AND_SSE2, count_bitarray_AND_MMX, count_bitarray_AND_dispatch;
126 typedef uint32_t count_bitarray_low20_AND_t(uint32_t*, uint32_t*);
127 count_bitarray_low20_AND_t count_bitarray_low20_AND_AVX512, count_bitarray_low20_AND_AVX2, count_bitarray_low20_AND_AVX, count_bitarray_low20_AND_SSE2, count_bitarray_low20_AND_MMX, count_bitarray_low20_AND_dispatch;
128 typedef void bitarray_AND4_t(uint32_t*, uint32_t*, uint32_t*, uint32_t*);
129 bitarray_AND4_t bitarray_AND4_AVX512, bitarray_AND4_AVX2, bitarray_AND4_AVX, bitarray_AND4_SSE2, bitarray_AND4_MMX, bitarray_AND4_dispatch;
130 typedef void bitarray_OR_t(uint32_t[], uint32_t[]);
131 bitarray_OR_t bitarray_OR_AVX512, bitarray_OR_AVX2, bitarray_OR_AVX, bitarray_OR_SSE2, bitarray_OR_MMX, bitarray_OR_dispatch;
132 typedef uint32_t count_bitarray_AND2_t(uint32_t*, uint32_t*);
133 count_bitarray_AND2_t count_bitarray_AND2_AVX512, count_bitarray_AND2_AVX2, count_bitarray_AND2_AVX, count_bitarray_AND2_SSE2, count_bitarray_AND2_MMX, count_bitarray_AND2_dispatch;
134 typedef uint32_t count_bitarray_AND3_t(uint32_t*, uint32_t*, uint32_t*);
135 count_bitarray_AND3_t count_bitarray_AND3_AVX512, count_bitarray_AND3_AVX2, count_bitarray_AND3_AVX, count_bitarray_AND3_SSE2, count_bitarray_AND3_MMX, count_bitarray_AND3_dispatch;
136 typedef uint32_t count_bitarray_AND4_t(uint32_t*, uint32_t*, uint32_t*, uint32_t*);
137 count_bitarray_AND4_t count_bitarray_AND4_AVX512, count_bitarray_AND4_AVX2, count_bitarray_AND4_AVX, count_bitarray_AND4_SSE2, count_bitarray_AND4_MMX, count_bitarray_AND4_dispatch;
138
139
140 inline uint32_t *MALLOC_BITARRAY(uint32_t x)
141 {
142 #ifdef _WIN32
143 return __builtin_assume_aligned(_aligned_malloc((x), __BIGGEST_ALIGNMENT__), __BIGGEST_ALIGNMENT__);
144 #else
145 return __builtin_assume_aligned(memalign(__BIGGEST_ALIGNMENT__, (x)), __BIGGEST_ALIGNMENT__);
146 #endif
147 }
148
149
150 inline void FREE_BITARRAY(uint32_t *x)
151 {
152 #ifdef _WIN32
153 _aligned_free(x);
154 #else
155 free(x);
156 #endif
157 }
158
159
160 inline uint32_t BITCOUNT(uint32_t a)
161 {
162 return __builtin_popcountl(a);
163 }
164
165
166 inline uint32_t COUNT_STATES(uint32_t *A)
167 {
168 uint32_t count = 0;
169 for (uint32_t i = 0; i < (1<<19); i++) {
170 count += BITCOUNT(A[i]);
171 }
172 return count;
173 }
174
175
176 inline void BITARRAY_AND(uint32_t *restrict A, uint32_t *restrict B)
177 {
178 A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
179 B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
180 for (uint32_t i = 0; i < (1<<19); i++) {
181 A[i] &= B[i];
182 }
183 }
184
185
186 inline void BITARRAY_LOW20_AND(uint32_t *restrict A, uint32_t *restrict B)
187 {
188 uint16_t *a = (uint16_t *)__builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
189 uint16_t *b = (uint16_t *)__builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
190
191 for (uint32_t i = 0; i < (1<<20); i++) {
192 if (!b[i]) {
193 a[i] = 0;
194 }
195 }
196 }
197
198
199 inline uint32_t COUNT_BITARRAY_AND(uint32_t *restrict A, uint32_t *restrict B)
200 {
201 A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
202 B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
203 uint32_t count = 0;
204 for (uint32_t i = 0; i < (1<<19); i++) {
205 A[i] &= B[i];
206 count += BITCOUNT(A[i]);
207 }
208 return count;
209 }
210
211
212 inline uint32_t COUNT_BITARRAY_LOW20_AND(uint32_t *restrict A, uint32_t *restrict B)
213 {
214 uint16_t *a = (uint16_t *)__builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
215 uint16_t *b = (uint16_t *)__builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
216 uint32_t count = 0;
217
218 for (uint32_t i = 0; i < (1<<20); i++) {
219 if (!b[i]) {
220 a[i] = 0;
221 }
222 count += BITCOUNT(a[i]);
223 }
224 return count;
225 }
226
227
228 inline void BITARRAY_AND4(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C, uint32_t *restrict D)
229 {
230 A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
231 B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
232 C = __builtin_assume_aligned(C, __BIGGEST_ALIGNMENT__);
233 D = __builtin_assume_aligned(D, __BIGGEST_ALIGNMENT__);
234 for (uint32_t i = 0; i < (1<<19); i++) {
235 A[i] = B[i] & C[i] & D[i];
236 }
237 }
238
239
240 inline void BITARRAY_OR(uint32_t *restrict A, uint32_t *restrict B)
241 {
242 A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
243 B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
244 for (uint32_t i = 0; i < (1<<19); i++) {
245 A[i] |= B[i];
246 }
247 }
248
249
250 inline uint32_t COUNT_BITARRAY_AND2(uint32_t *restrict A, uint32_t *restrict B)
251 {
252 A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
253 B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
254 uint32_t count = 0;
255 for (uint32_t i = 0; i < (1<<19); i++) {
256 count += BITCOUNT(A[i] & B[i]);
257 }
258 return count;
259 }
260
261
262 inline uint32_t COUNT_BITARRAY_AND3(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C)
263 {
264 A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
265 B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
266 C = __builtin_assume_aligned(C, __BIGGEST_ALIGNMENT__);
267 uint32_t count = 0;
268 for (uint32_t i = 0; i < (1<<19); i++) {
269 count += BITCOUNT(A[i] & B[i] & C[i]);
270 }
271 return count;
272 }
273
274
275 inline uint32_t COUNT_BITARRAY_AND4(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C, uint32_t *restrict D)
276 {
277 A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
278 B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
279 C = __builtin_assume_aligned(C, __BIGGEST_ALIGNMENT__);
280 D = __builtin_assume_aligned(D, __BIGGEST_ALIGNMENT__);
281 uint32_t count = 0;
282 for (uint32_t i = 0; i < (1<<19); i++) {
283 count += BITCOUNT(A[i] & B[i] & C[i] & D[i]);
284 }
285 return count;
286 }
287
288 #ifndef __MMX__
289
290 // pointers to functions:
291 malloc_bitarray_t *malloc_bitarray_function_p = &malloc_bitarray_dispatch;
292 free_bitarray_t *free_bitarray_function_p = &free_bitarray_dispatch;
293 bitcount_t *bitcount_function_p = &bitcount_dispatch;
294 count_states_t *count_states_function_p = &count_states_dispatch;
295 bitarray_AND_t *bitarray_AND_function_p = &bitarray_AND_dispatch;
296 bitarray_low20_AND_t *bitarray_low20_AND_function_p = &bitarray_low20_AND_dispatch;
297 count_bitarray_AND_t *count_bitarray_AND_function_p = &count_bitarray_AND_dispatch;
298 count_bitarray_low20_AND_t *count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_dispatch;
299 bitarray_AND4_t *bitarray_AND4_function_p = &bitarray_AND4_dispatch;
300 bitarray_OR_t *bitarray_OR_function_p = &bitarray_OR_dispatch;
301 count_bitarray_AND2_t *count_bitarray_AND2_function_p = &count_bitarray_AND2_dispatch;
302 count_bitarray_AND3_t *count_bitarray_AND3_function_p = &count_bitarray_AND3_dispatch;
303 count_bitarray_AND4_t *count_bitarray_AND4_function_p = &count_bitarray_AND4_dispatch;
304
305 // determine the available instruction set at runtime and call the correct function
306 uint32_t *malloc_bitarray_dispatch(uint32_t x) {
307 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
308 if (__builtin_cpu_supports("avx512f")) malloc_bitarray_function_p = &malloc_bitarray_AVX512;
309 else if (__builtin_cpu_supports("avx2")) malloc_bitarray_function_p = &malloc_bitarray_AVX2;
310 #else
311 if (__builtin_cpu_supports("avx2")) malloc_bitarray_function_p = &malloc_bitarray_AVX2;
312 #endif
313 else if (__builtin_cpu_supports("avx")) malloc_bitarray_function_p = &malloc_bitarray_AVX;
314 else if (__builtin_cpu_supports("sse2")) malloc_bitarray_function_p = &malloc_bitarray_SSE2;
315 else if (__builtin_cpu_supports("mmx")) malloc_bitarray_function_p = &malloc_bitarray_MMX;
316 else {
317 printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n");
318 exit(5);
319 }
320 // call the most optimized function for this CPU
321 return (*malloc_bitarray_function_p)(x);
322 }
323
324 void free_bitarray_dispatch(uint32_t *x) {
325 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
326 if (__builtin_cpu_supports("avx512f")) free_bitarray_function_p = &free_bitarray_AVX512;
327 else if (__builtin_cpu_supports("avx2")) free_bitarray_function_p = &free_bitarray_AVX2;
328 #else
329 if (__builtin_cpu_supports("avx2")) free_bitarray_function_p = &free_bitarray_AVX2;
330 #endif
331 else if (__builtin_cpu_supports("avx")) free_bitarray_function_p = &free_bitarray_AVX;
332 else if (__builtin_cpu_supports("sse2")) free_bitarray_function_p = &free_bitarray_SSE2;
333 else if (__builtin_cpu_supports("mmx")) free_bitarray_function_p = &free_bitarray_MMX;
334 else {
335 printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n");
336 exit(5);
337 }
338 // call the most optimized function for this CPU
339 (*free_bitarray_function_p)(x);
340 }
341
342 uint32_t bitcount_dispatch(uint32_t a) {
343 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
344 if (__builtin_cpu_supports("avx512f")) bitcount_function_p = &bitcount_AVX512;
345 else if (__builtin_cpu_supports("avx2")) bitcount_function_p = &bitcount_AVX2;
346 #else
347 if (__builtin_cpu_supports("avx2")) bitcount_function_p = &bitcount_AVX2;
348 #endif
349 else if (__builtin_cpu_supports("avx")) bitcount_function_p = &bitcount_AVX;
350 else if (__builtin_cpu_supports("sse2")) bitcount_function_p = &bitcount_SSE2;
351 else if (__builtin_cpu_supports("mmx")) bitcount_function_p = &bitcount_MMX;
352 else {
353 printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n");
354 exit(5);
355 }
356 // call the most optimized function for this CPU
357 return (*bitcount_function_p)(a);
358 }
359
360 uint32_t count_states_dispatch(uint32_t *bitarray) {
361 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
362 if (__builtin_cpu_supports("avx512f")) count_states_function_p = &count_states_AVX512;
363 else if (__builtin_cpu_supports("avx2")) count_states_function_p = &count_states_AVX2;
364 #else
365 if (__builtin_cpu_supports("avx2")) count_states_function_p = &count_states_AVX2;
366 #endif
367 else if (__builtin_cpu_supports("avx")) count_states_function_p = &count_states_AVX;
368 else if (__builtin_cpu_supports("sse2")) count_states_function_p = &count_states_SSE2;
369 else if (__builtin_cpu_supports("mmx")) count_states_function_p = &count_states_MMX;
370 else {
371 printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n");
372 exit(5);
373 }
374 // call the most optimized function for this CPU
375 return (*count_states_function_p)(bitarray);
376 }
377
378 void bitarray_AND_dispatch(uint32_t *A, uint32_t *B) {
379 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
380 if (__builtin_cpu_supports("avx512f")) bitarray_AND_function_p = &bitarray_AND_AVX512;
381 else if (__builtin_cpu_supports("avx2")) bitarray_AND_function_p = &bitarray_AND_AVX2;
382 #else
383 if (__builtin_cpu_supports("avx2")) bitarray_AND_function_p = &bitarray_AND_AVX2;
384 #endif
385 else if (__builtin_cpu_supports("avx")) bitarray_AND_function_p = &bitarray_AND_AVX;
386 else if (__builtin_cpu_supports("sse2")) bitarray_AND_function_p = &bitarray_AND_SSE2;
387 else if (__builtin_cpu_supports("mmx")) bitarray_AND_function_p = &bitarray_AND_MMX;
388 else {
389 printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n");
390 exit(5);
391 }
392 // call the most optimized function for this CPU
393 (*bitarray_AND_function_p)(A,B);
394 }
395
396 void bitarray_low20_AND_dispatch(uint32_t *A, uint32_t *B) {
397 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
398 if (__builtin_cpu_supports("avx512f")) bitarray_low20_AND_function_p = &bitarray_low20_AND_AVX512;
399 else if (__builtin_cpu_supports("avx2")) bitarray_low20_AND_function_p = &bitarray_low20_AND_AVX2;
400 #else
401 if (__builtin_cpu_supports("avx2")) bitarray_low20_AND_function_p = &bitarray_low20_AND_AVX2;
402 #endif
403 else if (__builtin_cpu_supports("avx")) bitarray_low20_AND_function_p = &bitarray_low20_AND_AVX;
404 else if (__builtin_cpu_supports("sse2")) bitarray_low20_AND_function_p = &bitarray_low20_AND_SSE2;
405 else if (__builtin_cpu_supports("mmx")) bitarray_low20_AND_function_p = &bitarray_low20_AND_MMX;
406 else {
407 printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n");
408 exit(5);
409 }
410 // call the most optimized function for this CPU
411 (*bitarray_low20_AND_function_p)(A, B);
412 }
413
414 uint32_t count_bitarray_AND_dispatch(uint32_t *A, uint32_t *B) {
415 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
416 if (__builtin_cpu_supports("avx512f")) count_bitarray_AND_function_p = &count_bitarray_AND_AVX512;
417 else if (__builtin_cpu_supports("avx2")) count_bitarray_AND_function_p = &count_bitarray_AND_AVX2;
418 #else
419 if (__builtin_cpu_supports("avx2")) count_bitarray_AND_function_p = &count_bitarray_AND_AVX2;
420 #endif
421 else if (__builtin_cpu_supports("avx")) count_bitarray_AND_function_p = &count_bitarray_AND_AVX;
422 else if (__builtin_cpu_supports("sse2")) count_bitarray_AND_function_p = &count_bitarray_AND_SSE2;
423 else if (__builtin_cpu_supports("mmx")) count_bitarray_AND_function_p = &count_bitarray_AND_MMX;
424 else {
425 printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n");
426 exit(5);
427 }
428 // call the most optimized function for this CPU
429 return (*count_bitarray_AND_function_p)(A, B);
430 }
431
432 uint32_t count_bitarray_low20_AND_dispatch(uint32_t *A, uint32_t *B) {
433 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
434 if (__builtin_cpu_supports("avx512f")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_AVX512;
435 else if (__builtin_cpu_supports("avx2")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_AVX2;
436 #else
437 if (__builtin_cpu_supports("avx2")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_AVX2;
438 #endif
439 else if (__builtin_cpu_supports("avx")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_AVX;
440 else if (__builtin_cpu_supports("sse2")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_SSE2;
441 else if (__builtin_cpu_supports("mmx")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_MMX;
442 else {
443 printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n");
444 exit(5);
445 }
446 // call the most optimized function for this CPU
447 return (*count_bitarray_low20_AND_function_p)(A, B);
448 }
449
450 void bitarray_AND4_dispatch(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) {
451 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
452 if (__builtin_cpu_supports("avx512f")) bitarray_AND4_function_p = &bitarray_AND4_AVX512;
453 else if (__builtin_cpu_supports("avx2")) bitarray_AND4_function_p = &bitarray_AND4_AVX2;
454 #else
455 if (__builtin_cpu_supports("avx2")) bitarray_AND4_function_p = &bitarray_AND4_AVX2;
456 #endif
457 else if (__builtin_cpu_supports("avx")) bitarray_AND4_function_p = &bitarray_AND4_AVX;
458 else if (__builtin_cpu_supports("sse2")) bitarray_AND4_function_p = &bitarray_AND4_SSE2;
459 else if (__builtin_cpu_supports("mmx")) bitarray_AND4_function_p = &bitarray_AND4_MMX;
460 else {
461 printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n");
462 exit(5);
463 }
464 // call the most optimized function for this CPU
465 (*bitarray_AND4_function_p)(A, B, C, D);
466 }
467
468 void bitarray_OR_dispatch(uint32_t *A, uint32_t *B) {
469 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
470 if (__builtin_cpu_supports("avx512f")) bitarray_OR_function_p = &bitarray_OR_AVX512;
471 else if (__builtin_cpu_supports("avx2")) bitarray_OR_function_p = &bitarray_OR_AVX2;
472 #else
473 if (__builtin_cpu_supports("avx2")) bitarray_OR_function_p = &bitarray_OR_AVX2;
474 #endif
475 else if (__builtin_cpu_supports("avx")) bitarray_OR_function_p = &bitarray_OR_AVX;
476 else if (__builtin_cpu_supports("sse2")) bitarray_OR_function_p = &bitarray_OR_SSE2;
477 else if (__builtin_cpu_supports("mmx")) bitarray_OR_function_p = &bitarray_OR_MMX;
478 else {
479 printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n");
480 exit(5);
481 }
482 // call the most optimized function for this CPU
483 (*bitarray_OR_function_p)(A,B);
484 }
485
486 uint32_t count_bitarray_AND2_dispatch(uint32_t *A, uint32_t *B) {
487 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
488 if (__builtin_cpu_supports("avx512f")) count_bitarray_AND2_function_p = &count_bitarray_AND2_AVX512;
489 else if (__builtin_cpu_supports("avx2")) count_bitarray_AND2_function_p = &count_bitarray_AND2_AVX2;
490 #else
491 if (__builtin_cpu_supports("avx2")) count_bitarray_AND2_function_p = &count_bitarray_AND2_AVX2;
492 #endif
493 else if (__builtin_cpu_supports("avx")) count_bitarray_AND2_function_p = &count_bitarray_AND2_AVX;
494 else if (__builtin_cpu_supports("sse2")) count_bitarray_AND2_function_p = &count_bitarray_AND2_SSE2;
495 else if (__builtin_cpu_supports("mmx")) count_bitarray_AND2_function_p = &count_bitarray_AND2_MMX;
496 else {
497 printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n");
498 exit(5);
499 }
500 // call the most optimized function for this CPU
501 return (*count_bitarray_AND2_function_p)(A, B);
502 }
503
504 uint32_t count_bitarray_AND3_dispatch(uint32_t *A, uint32_t *B, uint32_t *C) {
505 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
506 if (__builtin_cpu_supports("avx512f")) count_bitarray_AND3_function_p = &count_bitarray_AND3_AVX512;
507 else if (__builtin_cpu_supports("avx2")) count_bitarray_AND3_function_p = &count_bitarray_AND3_AVX2;
508 #else
509 if (__builtin_cpu_supports("avx2")) count_bitarray_AND3_function_p = &count_bitarray_AND3_AVX2;
510 #endif
511 else if (__builtin_cpu_supports("avx")) count_bitarray_AND3_function_p = &count_bitarray_AND3_AVX;
512 else if (__builtin_cpu_supports("sse2")) count_bitarray_AND3_function_p = &count_bitarray_AND3_SSE2;
513 else if (__builtin_cpu_supports("mmx")) count_bitarray_AND3_function_p = &count_bitarray_AND3_MMX;
514 else {
515 printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n");
516 exit(5);
517 }
518 // call the most optimized function for this CPU
519 return (*count_bitarray_AND3_function_p)(A, B, C);
520 }
521
522 uint32_t count_bitarray_AND4_dispatch(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) {
523 #if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
524 if (__builtin_cpu_supports("avx512f")) count_bitarray_AND4_function_p = &count_bitarray_AND4_AVX512;
525 else if (__builtin_cpu_supports("avx2")) count_bitarray_AND4_function_p = &count_bitarray_AND4_AVX2;
526 #else
527 if (__builtin_cpu_supports("avx2")) count_bitarray_AND4_function_p = &count_bitarray_AND4_AVX2;
528 #endif
529 else if (__builtin_cpu_supports("avx")) count_bitarray_AND4_function_p = &count_bitarray_AND4_AVX;
530 else if (__builtin_cpu_supports("sse2")) count_bitarray_AND4_function_p = &count_bitarray_AND4_SSE2;
531 else if (__builtin_cpu_supports("mmx")) count_bitarray_AND4_function_p = &count_bitarray_AND4_MMX;
532 else {
533 printf("\nFatal: you need at least a CPU with MMX instruction set support. Aborting...\n");
534 exit(5);
535 }
536 // call the most optimized function for this CPU
537 return (*count_bitarray_AND4_function_p)(A, B, C, D);
538 }
539
540
541 ///////////////////////////////////////////////77
542 // Entries to dispatched function calls
543
544 uint32_t *malloc_bitarray(uint32_t x) {
545 return (*malloc_bitarray_function_p)(x);
546 }
547
548 void free_bitarray(uint32_t *x) {
549 (*free_bitarray_function_p)(x);
550 }
551
552 uint32_t bitcount(uint32_t a) {
553 return (*bitcount_function_p)(a);
554 }
555
556 uint32_t count_states(uint32_t *bitarray) {
557 return (*count_states_function_p)(bitarray);
558 }
559
560 void bitarray_AND(uint32_t *A, uint32_t *B) {
561 (*bitarray_AND_function_p)(A, B);
562 }
563
564 void bitarray_low20_AND(uint32_t *A, uint32_t *B) {
565 (*bitarray_low20_AND_function_p)(A, B);
566 }
567
568 uint32_t count_bitarray_AND(uint32_t *A, uint32_t *B) {
569 return (*count_bitarray_AND_function_p)(A, B);
570 }
571
572 uint32_t count_bitarray_low20_AND(uint32_t *A, uint32_t *B) {
573 return (*count_bitarray_low20_AND_function_p)(A, B);
574 }
575
576 void bitarray_AND4(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) {
577 (*bitarray_AND4_function_p)(A, B, C, D);
578 }
579
580 void bitarray_OR(uint32_t *A, uint32_t *B) {
581 (*bitarray_OR_function_p)(A, B);
582 }
583
584 uint32_t count_bitarray_AND2(uint32_t *A, uint32_t *B) {
585 return (*count_bitarray_AND2_function_p)(A, B);
586 }
587
588 uint32_t count_bitarray_AND3(uint32_t *A, uint32_t *B, uint32_t *C) {
589 return (*count_bitarray_AND3_function_p)(A, B, C);
590 }
591
592 uint32_t count_bitarray_AND4(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) {
593 return (*count_bitarray_AND4_function_p)(A, B, C, D);
594 }
595
596 #endif
597
Impressum, Datenschutz