1 //-----------------------------------------------------------------------------
2 // The main application code. This is the first thing called after start.c
4 // Jonathan Westhues, Mar 2006
5 // Edits by Gerhard de Koning Gans, Sep 2007 (##)
6 //-----------------------------------------------------------------------------
17 //=============================================================================
18 // A buffer where we can queue things up to be sent through the FPGA, for
19 // any purpose (fake tag, as reader, whatever). We go MSB first, since that
20 // is the order in which they go out on the wire.
21 //=============================================================================
26 struct common_area common_area
__attribute__((section(".commonarea")));
28 void BufferClear(void)
30 memset(BigBuf
,0,sizeof(BigBuf
));
31 DbpString("Buffer cleared");
34 void ToSendReset(void)
40 void ToSendStuffBit(int b
)
44 ToSend
[ToSendMax
] = 0;
49 ToSend
[ToSendMax
] |= (1 << (7 - ToSendBit
));
54 if(ToSendBit
>= sizeof(ToSend
)) {
56 DbpString("ToSendStuffBit overflowed!");
60 //=============================================================================
61 // Debug print functions, to go out over USB, to the usual PC-side client.
62 //=============================================================================
64 void DbpString(char *str
)
66 /* this holds up stuff unless we're connected to usb */
71 c
.cmd
= CMD_DEBUG_PRINT_STRING
;
73 memcpy(c
.d
.asBytes
, str
, c
.ext1
);
75 UsbSendPacket((BYTE
*)&c
, sizeof(c
));
76 // TODO fix USB so stupid things like this aren't req'd
80 void DbpIntegers(int x1
, int x2
, int x3
)
82 /* this holds up stuff unless we're connected to usb */
87 c
.cmd
= CMD_DEBUG_PRINT_INTEGERS
;
92 UsbSendPacket((BYTE
*)&c
, sizeof(c
));
97 //-----------------------------------------------------------------------------
98 // Read an ADC channel and block till it completes, then return the result
99 // in ADC units (0 to 1023). Also a routine to average 32 samples and
101 //-----------------------------------------------------------------------------
102 static int ReadAdc(int ch
)
106 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_SWRST
;
107 AT91C_BASE_ADC
->ADC_MR
=
108 ADC_MODE_PRESCALE(32) |
109 ADC_MODE_STARTUP_TIME(16) |
110 ADC_MODE_SAMPLE_HOLD_TIME(8);
111 AT91C_BASE_ADC
->ADC_CHER
= ADC_CHANNEL(ch
);
113 AT91C_BASE_ADC
->ADC_CR
= AT91C_ADC_START
;
114 while(!(AT91C_BASE_ADC
->ADC_SR
& ADC_END_OF_CONVERSION(ch
)))
116 d
= AT91C_BASE_ADC
->ADC_CDR
[ch
];
121 static int AvgAdc(int ch
)
126 for(i
= 0; i
< 32; i
++) {
130 return (a
+ 15) >> 5;
133 void MeasureAntennaTuning(void)
135 BYTE
*dest
= (BYTE
*)BigBuf
;
136 int i
, ptr
= 0, adcval
= 0, peak
= 0, peakv
= 0, peakf
= 0;;
137 int vLf125
= 0, vLf134
= 0, vHf
= 0; // in mV
141 DbpString("Measuring antenna characteristics, please wait.");
142 memset(BigBuf
,0,sizeof(BigBuf
));
145 * Sweeps the useful LF range of the proxmark from
146 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
147 * read the voltage in the antenna, the result left
148 * in the buffer is a graph which should clearly show
149 * the resonating frequency of your LF antenna
150 * ( hopefully around 95 if it is tuned to 125kHz!)
152 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER
);
153 for (i
=255; i
>19; i
--) {
154 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, i
);
156 // Vref = 3.3V, and a 10000:240 voltage divider on the input
157 // can measure voltages up to 137500 mV
158 adcval
= ((137500 * AvgAdc(ADC_CHAN_LF
)) >> 10);
159 if (i
==95) vLf125
= adcval
; // voltage at 125Khz
160 if (i
==89) vLf134
= adcval
; // voltage at 134Khz
162 dest
[i
] = adcval
>>8; // scale int to fit in byte for graphing purposes
171 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
172 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
);
174 // Vref = 3300mV, and an 10:1 voltage divider on the input
175 // can measure voltages up to 33000 mV
176 vHf
= (33000 * AvgAdc(ADC_CHAN_HF
)) >> 10;
178 c
.cmd
= CMD_MEASURED_ANTENNA_TUNING
;
179 c
.ext1
= (vLf125
<< 0) | (vLf134
<< 16);
181 c
.ext3
= peakf
| (peakv
<< 16);
182 UsbSendPacket((BYTE
*)&c
, sizeof(c
));
185 void SimulateTagHfListen(void)
187 BYTE
*dest
= (BYTE
*)BigBuf
;
188 int n
= sizeof(BigBuf
);
193 // We're using this mode just so that I can test it out; the simulated
194 // tag mode would work just as well and be simpler.
195 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR
| FPGA_HF_READER_RX_XCORR_848_KHZ
| FPGA_HF_READER_RX_XCORR_SNOOP
);
197 // We need to listen to the high-frequency, peak-detected path.
198 SetAdcMuxFor(GPIO_MUXSEL_HIPKD
);
204 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_TXRDY
)) {
205 AT91C_BASE_SSC
->SSC_THR
= 0xff;
207 if(AT91C_BASE_SSC
->SSC_SR
& (AT91C_SSC_RXRDY
)) {
208 BYTE r
= (BYTE
)AT91C_BASE_SSC
->SSC_RHR
;
228 DbpString("simulate tag (now type bitsamples)");
231 void ReadMem(int addr
)
233 const DWORD
*data
= ((DWORD
*)addr
);
236 DbpString("Reading memory at address");
237 DbpIntegers(0, 0, addr
);
238 for (i
= 0; i
< 8; i
+= 2)
239 DbpIntegers(0, data
[i
], data
[i
+1]);
242 /* osimage version information is linked in */
243 extern struct version_information version_information
;
244 /* bootrom version information is pointed to from _bootphase1_version_pointer */
245 extern char *_bootphase1_version_pointer
, _flash_start
, _flash_end
;
246 void SendVersion(void)
248 char temp
[48]; /* Limited data payload in USB packets */
249 DbpString("Prox/RFID mark3 RFID instrument");
251 /* Try to find the bootrom version information. Expect to find a pointer at
252 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
253 * pointer, then use it.
255 char *bootrom_version
= *(char**)&_bootphase1_version_pointer
;
256 if( bootrom_version
< &_flash_start
|| bootrom_version
>= &_flash_end
) {
257 DbpString("bootrom version information appears invalid");
259 FormatVersionInformation(temp
, sizeof(temp
), "bootrom: ", bootrom_version
);
263 FormatVersionInformation(temp
, sizeof(temp
), "os: ", &version_information
);
266 FpgaGatherVersion(temp
, sizeof(temp
));
270 // samy's sniff and repeat routine
273 DbpString("Stand-alone mode! No PC necessary.");
275 // 3 possible options? no just 2 for now
278 int high
[OPTS
], low
[OPTS
];
280 // Oooh pretty -- notify user we're in elite samy mode now
282 LED(LED_ORANGE
, 200);
284 LED(LED_ORANGE
, 200);
286 LED(LED_ORANGE
, 200);
288 LED(LED_ORANGE
, 200);
294 // Turn on selected LED
295 LED(selected
+ 1, 0);
302 // Was our button held down or pressed?
303 int button_pressed
= BUTTON_HELD(1000);
306 // Button was held for a second, begin recording
307 if (button_pressed
> 0)
310 LED(selected
+ 1, 0);
314 DbpString("Starting recording");
316 // wait for button to be released
317 while(BUTTON_PRESS())
320 /* need this delay to prevent catching some weird data */
323 CmdHIDdemodFSK(1, &high
[selected
], &low
[selected
], 0);
324 DbpString("Recorded");
325 DbpIntegers(selected
, high
[selected
], low
[selected
]);
328 LED(selected
+ 1, 0);
329 // Finished recording
331 // If we were previously playing, set playing off
332 // so next button push begins playing what we recorded
336 // Change where to record (or begin playing)
337 else if (button_pressed
)
339 // Next option if we were previously playing
341 selected
= (selected
+ 1) % OPTS
;
345 LED(selected
+ 1, 0);
347 // Begin transmitting
351 DbpString("Playing");
352 // wait for button to be released
353 while(BUTTON_PRESS())
355 DbpIntegers(selected
, high
[selected
], low
[selected
]);
356 CmdHIDsimTAG(high
[selected
], low
[selected
], 0);
357 DbpString("Done playing");
358 if (BUTTON_HELD(1000) > 0)
360 DbpString("Exiting");
365 /* We pressed a button so ignore it here with a delay */
368 // when done, we're done playing, move to next option
369 selected
= (selected
+ 1) % OPTS
;
372 LED(selected
+ 1, 0);
375 while(BUTTON_PRESS())
384 Listen and detect an external reader. Determine the best location
388 Inside the ListenReaderField() function, there is two mode.
389 By default, when you call the function, you will enter mode 1.
390 If you press the PM3 button one time, you will enter mode 2.
391 If you press the PM3 button a second time, you will exit the function.
393 DESCRIPTION OF MODE 1:
394 This mode just listens for an external reader field and lights up green
395 for HF and/or red for LF. This is the original mode of the detectreader
398 DESCRIPTION OF MODE 2:
399 This mode will visually represent, using the LEDs, the actual strength of the
400 current compared to the maximum current detected. Basically, once you know
401 what kind of external reader is present, it will help you spot the best location to place
402 your antenna. You will probably not get some good results if there is a LF and a HF reader
403 at the same place! :-)
407 static const char LIGHT_SCHEME
[] = {
408 0x0, /* ---- | No field detected */
409 0x1, /* X--- | 14% of maximum current detected */
410 0x2, /* -X-- | 29% of maximum current detected */
411 0x4, /* --X- | 43% of maximum current detected */
412 0x8, /* ---X | 57% of maximum current detected */
413 0xC, /* --XX | 71% of maximum current detected */
414 0xE, /* -XXX | 86% of maximum current detected */
415 0xF, /* XXXX | 100% of maximum current detected */
417 static const int LIGHT_LEN
= sizeof(LIGHT_SCHEME
)/sizeof(LIGHT_SCHEME
[0]);
419 void ListenReaderField(int limit
)
421 int lf_av
, lf_av_new
, lf_baseline
= 0, lf_count
= 0, lf_max
;
422 int hf_av
, hf_av_new
, hf_baseline
= 0, hf_count
= 0, hf_max
;
423 int mode
=1, display_val
, display_max
, i
;
430 lf_av
=lf_max
=ReadAdc(ADC_CHAN_LF
);
432 if(limit
!= HF_ONLY
) {
433 DbpString("LF 125/134 Baseline:");
434 DbpIntegers(lf_av
,0,0);
438 hf_av
=hf_max
=ReadAdc(ADC_CHAN_HF
);
440 if (limit
!= LF_ONLY
) {
441 DbpString("HF 13.56 Baseline:");
442 DbpIntegers(hf_av
,0,0);
447 if (BUTTON_PRESS()) {
452 DbpString("Signal Strength Mode");
456 DbpString("Stopped");
464 if (limit
!= HF_ONLY
) {
466 if (abs(lf_av
- lf_baseline
) > 10) LED_D_ON();
471 lf_av_new
= ReadAdc(ADC_CHAN_LF
);
472 // see if there's a significant change
473 if(abs(lf_av
- lf_av_new
) > 10) {
474 DbpString("LF 125/134 Field Change:");
475 DbpIntegers(lf_av
,lf_av_new
,lf_count
);
483 if (limit
!= LF_ONLY
) {
485 if (abs(hf_av
- hf_baseline
) > 10) LED_B_ON();
490 hf_av_new
= ReadAdc(ADC_CHAN_HF
);
491 // see if there's a significant change
492 if(abs(hf_av
- hf_av_new
) > 10) {
493 DbpString("HF 13.56 Field Change:");
494 DbpIntegers(hf_av
,hf_av_new
,hf_count
);
503 if (limit
== LF_ONLY
) {
505 display_max
= lf_max
;
506 } else if (limit
== HF_ONLY
) {
508 display_max
= hf_max
;
509 } else { /* Pick one at random */
510 if( (hf_max
- hf_baseline
) > (lf_max
- lf_baseline
) ) {
512 display_max
= hf_max
;
515 display_max
= lf_max
;
518 for (i
=0; i
<LIGHT_LEN
; i
++) {
519 if (display_val
>= ((display_max
/LIGHT_LEN
)*i
) && display_val
<= ((display_max
/LIGHT_LEN
)*(i
+1))) {
520 if (LIGHT_SCHEME
[i
] & 0x1) LED_C_ON(); else LED_C_OFF();
521 if (LIGHT_SCHEME
[i
] & 0x2) LED_A_ON(); else LED_A_OFF();
522 if (LIGHT_SCHEME
[i
] & 0x4) LED_B_ON(); else LED_B_OFF();
523 if (LIGHT_SCHEME
[i
] & 0x8) LED_D_ON(); else LED_D_OFF();
531 void UsbPacketReceived(BYTE
*packet
, int len
)
533 UsbCommand
*c
= (UsbCommand
*)packet
;
536 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K
:
537 AcquireRawAdcSamples125k(c
->ext1
);
540 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K
:
541 ModThenAcquireRawAdcSamples125k(c
->ext1
,c
->ext2
,c
->ext3
,c
->d
.asBytes
);
544 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693
:
545 AcquireRawAdcSamplesIso15693();
552 case CMD_READER_ISO_15693
:
553 ReaderIso15693(c
->ext1
);
556 case CMD_SIMTAG_ISO_15693
:
557 SimTagIso15693(c
->ext1
);
560 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443
:
561 AcquireRawAdcSamplesIso14443(c
->ext1
);
564 case CMD_READ_SRI512_TAG
:
565 ReadSRI512Iso14443(c
->ext1
);
568 case CMD_READER_ISO_14443a
:
569 ReaderIso14443a(c
->ext1
);
572 case CMD_SNOOP_ISO_14443
:
576 case CMD_SNOOP_ISO_14443a
:
580 case CMD_SIMULATE_TAG_HF_LISTEN
:
581 SimulateTagHfListen();
584 case CMD_SIMULATE_TAG_ISO_14443
:
585 SimulateIso14443Tag();
588 case CMD_SIMULATE_TAG_ISO_14443a
:
589 SimulateIso14443aTag(c
->ext1
, c
->ext2
); // ## Simulate iso14443a tag - pass tag type & UID
592 case CMD_SIMULATE_TAG_LEGIC_RF
:
596 case CMD_MEASURE_ANTENNA_TUNING
:
597 MeasureAntennaTuning();
600 case CMD_LISTEN_READER_FIELD
:
601 ListenReaderField(c
->ext1
);
604 case CMD_HID_DEMOD_FSK
:
605 CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
608 case CMD_HID_SIM_TAG
:
609 CmdHIDsimTAG(c
->ext1
, c
->ext2
, 1); // Simulate HID tag by ID
612 case CMD_FPGA_MAJOR_MODE_OFF
: // ## FPGA Control
613 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF
);
615 LED_D_OFF(); // LED D indicates field ON or OFF
618 case CMD_READ_TI_TYPE
:
622 case CMD_WRITE_TI_TYPE
:
623 WriteTItag(c
->ext1
,c
->ext2
,c
->ext3
);
626 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
: {
628 if(c
->cmd
== CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K
) {
629 n
.cmd
= CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K
;
631 n
.cmd
= CMD_DOWNLOADED_RAW_BITS_TI_TYPE
;
634 memcpy(n
.d
.asDwords
, BigBuf
+c
->ext1
, 12*sizeof(DWORD
));
635 UsbSendPacket((BYTE
*)&n
, sizeof(n
));
638 case CMD_DOWNLOADED_SIM_SAMPLES_125K
: {
639 BYTE
*b
= (BYTE
*)BigBuf
;
640 memcpy(b
+c
->ext1
, c
->d
.asBytes
, 48);
643 case CMD_SIMULATE_TAG_125K
:
645 SimulateTagLowFrequency(c
->ext1
, 1);
651 case CMD_SET_LF_DIVISOR
:
652 FpgaSendCommand(FPGA_CMD_SET_DIVISOR
, c
->ext1
);
654 case CMD_SET_ADC_MUX
:
656 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD
); break;
657 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW
); break;
658 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD
); break;
659 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW
); break;
665 case CMD_LF_SIMULATE_BIDIR
:
666 SimulateTagLowFrequencyBidir(c
->ext1
, c
->ext2
);
676 case CMD_SETUP_WRITE
:
677 case CMD_FINISH_WRITE
:
678 case CMD_HARDWARE_RESET
:
679 USB_D_PLUS_PULLUP_OFF();
682 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
684 // We're going to reset, and the bootrom will take control.
687 case CMD_START_FLASH
:
688 if(common_area
.flags
.bootrom_present
) {
689 common_area
.command
= COMMON_AREA_COMMAND_ENTER_FLASH_MODE
;
691 USB_D_PLUS_PULLUP_OFF();
692 AT91C_BASE_RSTC
->RSTC_RCR
= RST_CONTROL_KEY
| AT91C_RSTC_PROCRST
;
696 case CMD_DEVICE_INFO
: {
698 c
.cmd
= CMD_DEVICE_INFO
;
699 c
.ext1
= DEVICE_INFO_FLAG_OSIMAGE_PRESENT
| DEVICE_INFO_FLAG_CURRENT_MODE_OS
;
700 if(common_area
.flags
.bootrom_present
) c
.ext1
|= DEVICE_INFO_FLAG_BOOTROM_PRESENT
;
701 UsbSendPacket((BYTE
*)&c
, sizeof(c
));
705 DbpString("unknown command");
710 void __attribute__((noreturn
)) AppMain(void)
714 if(common_area
.magic
!= COMMON_AREA_MAGIC
|| common_area
.version
!= 1) {
715 /* Initialize common area */
716 memset(&common_area
, 0, sizeof(common_area
));
717 common_area
.magic
= COMMON_AREA_MAGIC
;
718 common_area
.version
= 1;
720 common_area
.flags
.osimage_present
= 1;
729 // The FPGA gets its clock from us from PCK0 output, so set that up.
730 AT91C_BASE_PIOA
->PIO_BSR
= GPIO_PCK0
;
731 AT91C_BASE_PIOA
->PIO_PDR
= GPIO_PCK0
;
732 AT91C_BASE_PMC
->PMC_SCER
= AT91C_PMC_PCK0
;
733 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
734 AT91C_BASE_PMC
->PMC_PCKR
[0] = AT91C_PMC_CSS_PLL_CLK
|
735 AT91C_PMC_PRES_CLK_4
;
736 AT91C_BASE_PIOA
->PIO_OER
= GPIO_PCK0
;
739 AT91C_BASE_SPI
->SPI_CR
= AT91C_SPI_SWRST
;
741 AT91C_BASE_SSC
->SSC_CR
= AT91C_SSC_SWRST
;
743 // Load the FPGA image, which we have stored in our flash.
750 // test text on different colored backgrounds
751 LCDString(" The quick brown fox ", (char *)&FONT6x8
,1,1+8*0,WHITE
,BLACK
);
752 LCDString(" jumped over the ", (char *)&FONT6x8
,1,1+8*1,BLACK
,WHITE
);
753 LCDString(" lazy dog. ", (char *)&FONT6x8
,1,1+8*2,YELLOW
,RED
);
754 LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8
,1,1+8*3,RED
,GREEN
);
755 LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8
,1,1+8*4,MAGENTA
,BLUE
);
756 LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8
,1,1+8*5,BLUE
,YELLOW
);
757 LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8
,1,1+8*6,BLACK
,CYAN
);
758 LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8
,1,1+8*7,BLUE
,MAGENTA
);
761 LCDFill(0, 1+8* 8, 132, 8, BLACK
);
762 LCDFill(0, 1+8* 9, 132, 8, WHITE
);
763 LCDFill(0, 1+8*10, 132, 8, RED
);
764 LCDFill(0, 1+8*11, 132, 8, GREEN
);
765 LCDFill(0, 1+8*12, 132, 8, BLUE
);
766 LCDFill(0, 1+8*13, 132, 8, YELLOW
);
767 LCDFill(0, 1+8*14, 132, 8, CYAN
);
768 LCDFill(0, 1+8*15, 132, 8, MAGENTA
);
776 if (BUTTON_HELD(1000) > 0)