]> git.zerfleddert.de Git - proxmark3-svn/blob - client/cmdlfem4x.c
cbe85bd4b0ff5c23a2604a411420119026db5a42
[proxmark3-svn] / client / cmdlfem4x.c
1 //-----------------------------------------------------------------------------
2 // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
3 //
4 // This code is licensed to you under the terms of the GNU GPL, version 2 or,
5 // at your option, any later version. See the LICENSE.txt file for the text of
6 // the license.
7 //-----------------------------------------------------------------------------
8 // Low frequency EM4x commands
9 //-----------------------------------------------------------------------------
10
11 #include "cmdlfem4x.h"
12
13 uint64_t g_em410xid = 0;
14
15 static int CmdHelp(const char *Cmd);
16
17 int CmdEMdemodASK(const char *Cmd)
18 {
19 char cmdp = param_getchar(Cmd, 0);
20 uint8_t findone = (cmdp == '1') ? 1 : 0;
21 UsbCommand c = {CMD_EM410X_DEMOD, {findone, 0, 0}};
22 SendCommand(&c);
23 return 0;
24 }
25
26 /* Read the ID of an EM410x tag.
27 * Format:
28 * 1111 1111 1 <-- standard non-repeatable header
29 * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
30 * ....
31 * CCCC <-- each bit here is parity for the 10 bits above in corresponding column
32 * 0 <-- stop bit, end of tag
33 */
34 int CmdEM410xRead(const char *Cmd)
35 {
36 uint32_t hi=0;
37 uint64_t lo=0;
38
39 if(!AskEm410xDemod("", &hi, &lo, false)) return 0;
40 PrintAndLog("EM410x pattern found: ");
41 printEM410x(hi, lo);
42 if (hi){
43 PrintAndLog ("EM410x XL pattern found");
44 return 0;
45 }
46 g_em410xid = lo;
47 return 1;
48 }
49
50
51 int usage_lf_em410x_sim(void) {
52 PrintAndLog("Simulating EM410x tag");
53 PrintAndLog("");
54 PrintAndLog("Usage: lf em 410xsim [h] <uid> <clock>");
55 PrintAndLog("Options:");
56 PrintAndLog(" h - this help");
57 PrintAndLog(" uid - uid (10 HEX symbols)");
58 PrintAndLog(" clock - clock (32|64) (optional)");
59 PrintAndLog("samples:");
60 PrintAndLog(" lf em 410xsim 0F0368568B");
61 PrintAndLog(" lf em 410xsim 0F0368568B 32");
62 return 0;
63 }
64
65 // emulate an EM410X tag
66 int CmdEM410xSim(const char *Cmd)
67 {
68 int i, n, j, binary[4], parity[4];
69 uint8_t uid[5] = {0x00};
70
71 char cmdp = param_getchar(Cmd, 0);
72 if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
73
74 /* clock is 64 in EM410x tags */
75 uint8_t clock = 64;
76
77 if (param_gethex(Cmd, 0, uid, 10)) {
78 PrintAndLog("UID must include 10 HEX symbols");
79 return 0;
80 }
81
82 param_getdec(Cmd, 1, &clock);
83
84 PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
85 PrintAndLog("Press pm3-button to about simulation");
86
87 /* clear our graph */
88 ClearGraph(0);
89
90 /* write 9 start bits */
91 for (i = 0; i < 9; i++)
92 AppendGraph(0, clock, 1);
93
94 /* for each hex char */
95 parity[0] = parity[1] = parity[2] = parity[3] = 0;
96 for (i = 0; i < 10; i++)
97 {
98 /* read each hex char */
99 sscanf(&Cmd[i], "%1x", &n);
100 for (j = 3; j >= 0; j--, n/= 2)
101 binary[j] = n % 2;
102
103 /* append each bit */
104 AppendGraph(0, clock, binary[0]);
105 AppendGraph(0, clock, binary[1]);
106 AppendGraph(0, clock, binary[2]);
107 AppendGraph(0, clock, binary[3]);
108
109 /* append parity bit */
110 AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
111
112 /* keep track of column parity */
113 parity[0] ^= binary[0];
114 parity[1] ^= binary[1];
115 parity[2] ^= binary[2];
116 parity[3] ^= binary[3];
117 }
118
119 /* parity columns */
120 AppendGraph(0, clock, parity[0]);
121 AppendGraph(0, clock, parity[1]);
122 AppendGraph(0, clock, parity[2]);
123 AppendGraph(0, clock, parity[3]);
124
125 /* stop bit */
126 AppendGraph(1, clock, 0);
127
128 CmdLFSim("0"); //240 start_gap.
129 return 0;
130 }
131
132 /* Function is equivalent of lf read + data samples + em410xread
133 * looped until an EM410x tag is detected
134 *
135 * Why is CmdSamples("16000")?
136 * TBD: Auto-grow sample size based on detected sample rate. IE: If the
137 * rate gets lower, then grow the number of samples
138 * Changed by martin, 4000 x 4 = 16000,
139 * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
140 */
141 int CmdEM410xWatch(const char *Cmd)
142 {
143 do {
144 if (ukbhit()) {
145 printf("\naborted via keyboard!\n");
146 break;
147 }
148
149 CmdLFRead("s");
150 getSamples("6144",true);
151 } while (!CmdEM410xRead(""));
152
153 return 0;
154 }
155
156 //currently only supports manchester modulations
157 // todo: helptext
158 int CmdEM410xWatchnSpoof(const char *Cmd)
159 {
160 // loops if the captured ID was in XL-format.
161 CmdEM410xWatch(Cmd);
162 PrintAndLog("# Replaying captured ID: %" PRIu64 , g_em410xid);
163 CmdLFaskSim("");
164 return 0;
165 }
166
167 int CmdEM410xWrite(const char *Cmd)
168 {
169 uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
170 int card = 0xFF; // invalid card value
171 uint32_t clock = 0; // invalid clock value
172
173 sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock);
174
175 // Check ID
176 if (id == 0xFFFFFFFFFFFFFFFF) {
177 PrintAndLog("Error! ID is required.\n");
178 return 0;
179 }
180 if (id >= 0x10000000000) {
181 PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
182 return 0;
183 }
184
185 // Check Card
186 if (card == 0xFF) {
187 PrintAndLog("Error! Card type required.\n");
188 return 0;
189 }
190 if (card < 0) {
191 PrintAndLog("Error! Bad card type selected.\n");
192 return 0;
193 }
194
195 // Check Clock
196 // Default: 64
197 if (clock == 0)
198 clock = 64;
199
200 // Allowed clock rates: 16, 32, 40 and 64
201 if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
202 PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
203 return 0;
204 }
205
206 if (card == 1) {
207 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
208 // NOTE: We really should pass the clock in as a separate argument, but to
209 // provide for backwards-compatibility for older firmware, and to avoid
210 // having to add another argument to CMD_EM410X_WRITE_TAG, we just store
211 // the clock rate in bits 8-15 of the card value
212 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
213 } else if (card == 0) {
214 PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
215 card = (card & 0xFF) | ((clock << 8) & 0xFF00);
216 } else {
217 PrintAndLog("Error! Bad card type selected.\n");
218 return 0;
219 }
220
221 UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
222 SendCommand(&c);
223 return 0;
224 }
225
226 bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
227 {
228 if (rows*cols>size) return FALSE;
229 uint8_t colP=0;
230 //assume last col is a parity and do not test
231 for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
232 for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
233 colP ^= BitStream[(rowNum*cols)+colNum];
234 }
235 if (colP != pType) return FALSE;
236 }
237 return TRUE;
238 }
239
240 bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
241 {
242 if (rows*cols>size) return FALSE;
243 uint8_t rowP=0;
244 //assume last row is a parity row and do not test
245 for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
246 for (uint8_t colNum = 0; colNum < cols; colNum++) {
247 rowP ^= BitStream[(rowNum*cols)+colNum];
248 }
249 if (rowP != pType) return FALSE;
250 }
251 return TRUE;
252 }
253
254 // EM word parity test.
255 // 9*5 = 45 bits in total
256 // 012345678|r1
257 // 012345678|r2
258 // 012345678|r3
259 // 012345678|r4
260 // ------------
261 //c012345678| 0
262 // |- must be zero
263
264 bool EMwordparitytest(uint8_t *bits){
265
266 // last row/col parity must be 0
267 if (bits[44] != 0 ) return FALSE;
268
269 // col parity check
270 uint8_t c1 = bytebits_to_byte(bits, 8) ^ bytebits_to_byte(bits+9, 8) ^ bytebits_to_byte(bits+18, 8) ^ bytebits_to_byte(bits+27, 8);
271 uint8_t c2 = bytebits_to_byte(bits+36, 8);
272 if ( c1 != c2 ) return FALSE;
273
274 // row parity check
275 uint8_t rowP = 0;
276 for ( uint8_t i = 0; i < 36; ++i ) {
277
278 rowP ^= bits[i];
279 if ( i>0 && (i % 9) == 0) {
280
281 if ( rowP != EVEN )
282 return FALSE;
283
284 rowP = 0;
285 }
286 }
287 // all checks ok.
288 return TRUE;
289 }
290
291
292 //////////////// 4050 / 4450 commands
293 int usage_lf_em4x50_dump(void) {
294 PrintAndLog("Dump EM4x50/EM4x69. Tag must be on antenna. ");
295 PrintAndLog("");
296 PrintAndLog("Usage: lf em 4x50dump [h] <pwd>");
297 PrintAndLog("Options:");
298 PrintAndLog(" h - this help");
299 PrintAndLog(" pwd - password (hex) (optional)");
300 PrintAndLog("samples:");
301 PrintAndLog(" lf em 4x50dump");
302 PrintAndLog(" lf em 4x50dump 11223344");
303 return 0;
304 }
305 int usage_lf_em4x50_read(void) {
306 PrintAndLog("Read EM 4x50/EM4x69. Tag must be on antenna. ");
307 PrintAndLog("");
308 PrintAndLog("Usage: lf em 4x50read [h] <address> <pwd>");
309 PrintAndLog("Options:");
310 PrintAndLog(" h - this help");
311 PrintAndLog(" address - memory address to read. (0-15)");
312 PrintAndLog(" pwd - password (hex) (optional)");
313 PrintAndLog("samples:");
314 PrintAndLog(" lf em 4x50read 1");
315 PrintAndLog(" lf em 4x50read 1 11223344");
316 return 0;
317 }
318 int usage_lf_em4x50_write(void) {
319 PrintAndLog("Write EM 4x50/4x69. Tag must be on antenna. ");
320 PrintAndLog("");
321 PrintAndLog("Usage: lf em 4x50write [h] <address> <data> <pwd>");
322 PrintAndLog("Options:");
323 PrintAndLog(" h - this help");
324 PrintAndLog(" address - memory address to write to. (0-15)");
325 PrintAndLog(" data - data to write (hex)");
326 PrintAndLog(" pwd - password (hex) (optional)");
327 PrintAndLog("samples:");
328 PrintAndLog(" lf em 4x50write 1 deadc0de");
329 PrintAndLog(" lf em 4x50write 1 deadc0de 11223344");
330 return 0;
331 }
332
333 uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
334 {
335 if (size<45) return 0;
336
337 uint32_t code = bytebits_to_byte(BitStream,8);
338 code = code<<8 | bytebits_to_byte(BitStream+9,8);
339 code = code<<8 | bytebits_to_byte(BitStream+18,8);
340 code = code<<8 | bytebits_to_byte(BitStream+27,8);
341
342 if (verbose || g_debugMode){
343 for (uint8_t i = 0; i<5; i++){
344 if (i == 4) PrintAndLog(""); //parity byte spacer
345 PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
346 BitStream[i*9],
347 BitStream[i*9+1],
348 BitStream[i*9+2],
349 BitStream[i*9+3],
350 BitStream[i*9+4],
351 BitStream[i*9+5],
352 BitStream[i*9+6],
353 BitStream[i*9+7],
354 BitStream[i*9+8],
355 bytebits_to_byte(BitStream+i*9,8)
356 );
357 }
358 if (pTest)
359 PrintAndLog("Parity Passed");
360 else
361 PrintAndLog("Parity Failed");
362 }
363 return code;
364 }
365
366
367 /* Read the transmitted data of an EM4x50 tag from the graphbuffer
368 * Format:
369 *
370 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
371 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
372 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
373 * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
374 * CCCCCCCC <- column parity bits
375 * 0 <- stop bit
376 * LW <- Listen Window
377 *
378 * This pattern repeats for every block of data being transmitted.
379 * Transmission starts with two Listen Windows (LW - a modulated
380 * pattern of 320 cycles each (32/32/128/64/64)).
381 *
382 * Note that this data may or may not be the UID. It is whatever data
383 * is stored in the blocks defined in the control word First and Last
384 * Word Read values. UID is stored in block 32.
385 */
386 //completed by Marshmellow
387 int EM4x50Read(const char *Cmd, bool verbose) {
388 uint8_t fndClk[] = {8,16,32,40,50,64,128};
389 int clk = 0;
390 int invert = 0;
391 int tol = 0;
392 int i, j, startblock, skip, block, start, end, low, high, minClk;
393 bool complete = false;
394 int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
395 uint32_t Code[6];
396 char tmp[6];
397 char tmp2[20];
398 int phaseoff;
399 high = low = 0;
400 memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64);
401
402 // get user entry if any
403 sscanf(Cmd, "%i %i", &clk, &invert);
404
405 // save GraphBuffer - to restore it later
406 save_restoreGB(1);
407
408 // first get high and low values
409 for (i = 0; i < GraphTraceLen; i++) {
410 if (GraphBuffer[i] > high)
411 high = GraphBuffer[i];
412 else if (GraphBuffer[i] < low)
413 low = GraphBuffer[i];
414 }
415
416 i = 0;
417 j = 0;
418 minClk = 255;
419 // get to first full low to prime loop and skip incomplete first pulse
420 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
421 ++i;
422 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
423 ++i;
424 skip = i;
425
426 // populate tmpbuff buffer with pulse lengths
427 while (i < GraphTraceLen) {
428 // measure from low to low
429 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
430 ++i;
431 start= i;
432 while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
433 ++i;
434 while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
435 ++i;
436 if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
437 break;
438 }
439 tmpbuff[j++]= i - start;
440 if (i-start < minClk && i < GraphTraceLen) {
441 minClk = i - start;
442 }
443 }
444 // set clock
445 if (!clk) {
446 for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
447 tol = fndClk[clkCnt]/8;
448 if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
449 clk=fndClk[clkCnt];
450 break;
451 }
452 }
453 if (!clk) {
454 PrintAndLog("ERROR: EM4x50 - didn't find a clock");
455 return 0;
456 }
457 } else tol = clk/8;
458
459 // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
460 start = -1;
461 for (i= 0; i < j - 4 ; ++i) {
462 skip += tmpbuff[i];
463 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
464 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
465 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
466 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
467 {
468 start= i + 4;
469 break;
470 }
471 }
472 startblock = i + 4;
473
474 // skip over the remainder of LW
475 skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
476 if (tmpbuff[i+3]>clk)
477 phaseoff = tmpbuff[i+3]-clk;
478 else
479 phaseoff = 0;
480 // now do it again to find the end
481 end = skip;
482 for (i += 3; i < j - 4 ; ++i) {
483 end += tmpbuff[i];
484 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
485 if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
486 if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
487 if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
488 {
489 complete= true;
490 break;
491 }
492 }
493 end = i;
494 // report back
495 if (verbose || g_debugMode) {
496 if (start >= 0) {
497 PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
498 } else {
499 PrintAndLog("No data found!, clock tried:%d",clk);
500 PrintAndLog("Try again with more samples.");
501 PrintAndLog(" or after a 'data askedge' command to clean up the read");
502 return 0;
503 }
504 } else if (start < 0) return 0;
505 start = skip;
506 snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
507 // get rid of leading crap
508 snprintf(tmp, sizeof(tmp), "%i", skip);
509 CmdLtrim(tmp);
510 bool pTest;
511 bool AllPTest = true;
512 // now work through remaining buffer printing out data blocks
513 block = 0;
514 i = startblock;
515 while (block < 6) {
516 if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
517 skip = phaseoff;
518
519 // look for LW before start of next block
520 for ( ; i < j - 4 ; ++i) {
521 skip += tmpbuff[i];
522 if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
523 if (tmpbuff[i+1] >= clk-tol)
524 break;
525 }
526 if (i >= j-4) break; //next LW not found
527 skip += clk;
528 if (tmpbuff[i+1]>clk)
529 phaseoff = tmpbuff[i+1]-clk;
530 else
531 phaseoff = 0;
532 i += 2;
533 if (ASKDemod(tmp2, false, false, 1) < 1) {
534 save_restoreGB(0);
535 return 0;
536 }
537 //set DemodBufferLen to just one block
538 DemodBufferLen = skip/clk;
539 //test parities
540 pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
541 pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
542 AllPTest &= pTest;
543 //get output
544 Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
545 if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
546 //skip to start of next block
547 snprintf(tmp,sizeof(tmp),"%i",skip);
548 CmdLtrim(tmp);
549 block++;
550 if (i >= end) break; //in case chip doesn't output 6 blocks
551 }
552 //print full code:
553 if (verbose || g_debugMode || AllPTest){
554 if (!complete) {
555 PrintAndLog("*** Warning!");
556 PrintAndLog("Partial data - no end found!");
557 PrintAndLog("Try again with more samples.");
558 }
559 PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
560 end = block;
561 for (block=0; block < end; block++){
562 PrintAndLog("Block %d: %08x",block,Code[block]);
563 }
564 if (AllPTest) {
565 PrintAndLog("Parities Passed");
566 } else {
567 PrintAndLog("Parities Failed");
568 PrintAndLog("Try cleaning the read samples with 'data askedge'");
569 }
570 }
571
572 //restore GraphBuffer
573 save_restoreGB(0);
574 return (int)AllPTest;
575 }
576
577 int CmdEM4x50Read(const char *Cmd) {
578 uint8_t ctmp = param_getchar(Cmd, 0);
579 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_read();
580 return EM4x50Read(Cmd, true);
581 }
582 int CmdEM4x50Write(const char *Cmd){
583 uint8_t ctmp = param_getchar(Cmd, 0);
584 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_write();
585 PrintAndLog("no implemented yet");
586 return 0;
587 }
588 int CmdEM4x50Dump(const char *Cmd){
589 uint8_t ctmp = param_getchar(Cmd, 0);
590 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x50_dump();
591 PrintAndLog("no implemented yet");
592 return 0;
593 }
594
595 #define EM_PREAMBLE_LEN 6
596 // download samples from device and copy to Graphbuffer
597 bool downloadSamplesEM(){
598
599 // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
600 uint8_t got[6000];
601 GetFromBigBuf(got, sizeof(got), 0);
602 if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2500) ) {
603 PrintAndLog("command execution time out");
604 return FALSE;
605 }
606 setGraphBuf(got, sizeof(got));
607 return TRUE;
608 }
609
610 // em_demod
611 bool doPreambleSearch(size_t *startIdx){
612
613 // sanity check
614 if ( DemodBufferLen < EM_PREAMBLE_LEN) {
615 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 demodbuffer too small");
616 return FALSE;
617 }
618
619 // set size to 20 to only test first 14 positions for the preamble
620 size_t size = (20 > DemodBufferLen) ? DemodBufferLen : 20;
621 *startIdx = 0;
622 // skip first two 0 bits as they might have been missed in the demod
623 uint8_t preamble[EM_PREAMBLE_LEN] = {0,0,1,0,1,0};
624
625 if ( !preambleSearchEx(DemodBuffer, preamble, EM_PREAMBLE_LEN, &size, startIdx, TRUE)) {
626 if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", *startIdx);
627 return FALSE;
628 }
629 return TRUE;
630 }
631
632 bool detectFSK(){
633 // detect fsk clock
634 if (!GetFskClock("", FALSE, FALSE)) {
635 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK clock failed");
636 return FALSE;
637 }
638 // demod
639 int ans = FSKrawDemod("0 0", FALSE);
640 if (!ans) {
641 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: FSK Demod failed");
642 return FALSE;
643 }
644 return TRUE;
645 }
646 // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
647 bool detectPSK(){
648 int ans = GetPskClock("", FALSE, FALSE);
649 if (ans <= 0) {
650 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK clock failed");
651 return FALSE;
652 }
653 //demod
654 //try psk1 -- 0 0 6 (six errors?!?)
655 ans = PSKDemod("0 0 6", FALSE);
656 if (!ans) {
657 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 Demod failed");
658
659 //try psk1 inverted
660 ans = PSKDemod("0 1 6", FALSE);
661 if (!ans) {
662 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: PSK1 inverted Demod failed");
663 return FALSE;
664 }
665 }
666 // either PSK1 or PSK1 inverted is ok from here.
667 // lets check PSK2 later.
668 return TRUE;
669 }
670 // try manchester - NOTE: ST only applies to T55x7 tags.
671 bool detectASK_MAN(){
672 bool stcheck = FALSE;
673 int ans = ASKDemod_ext("0 0 0", FALSE, FALSE, 1, &stcheck);
674 if (!ans) {
675 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/Manchester Demod failed");
676 return FALSE;
677 }
678 return TRUE;
679 }
680 bool detectASK_BI(){
681 int ans = ASKbiphaseDemod("0 0 1", FALSE);
682 if (!ans) {
683 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase normal demod failed");
684
685 ans = ASKbiphaseDemod("0 1 1", FALSE);
686 if (!ans) {
687 if (g_debugMode) PrintAndLog("DEBUG: Error - EM: ASK/biphase inverted demod failed");
688 return FALSE;
689 }
690 }
691 return TRUE;
692 }
693
694 // param: idx - start index in demoded data.
695 bool setDemodBufferEM(uint32_t *word, size_t idx){
696
697 //test for even parity bits.
698 uint8_t parity[45] = {0};
699 memcpy( parity, DemodBuffer, 45);
700 if (!EMwordparitytest(parity) ){
701 PrintAndLog("DEBUG: Error - EM Parity tests failed");
702 return FALSE;
703 }
704
705 // test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
706 if (!removeParity(DemodBuffer, idx + EM_PREAMBLE_LEN, 9, 0, 36)) {
707 if (g_debugMode) PrintAndLog("DEBUG: Error - EM, failed removing parity");
708 return FALSE;
709 }
710 setDemodBuf(DemodBuffer, 32, 0);
711 *word = bytebits_to_byteLSBF(DemodBuffer, 32);
712 return TRUE;
713 }
714
715 // FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
716 // should cover 90% of known used configs
717 // the rest will need to be manually demoded for now...
718 bool demodEM4x05resp(uint32_t *word) {
719 size_t idx = 0;
720
721 if (detectASK_MAN() && doPreambleSearch( &idx ))
722 return setDemodBufferEM(word, idx);
723
724 if (detectASK_BI() && doPreambleSearch( &idx ))
725 return setDemodBufferEM(word, idx);
726
727 if (detectFSK() && doPreambleSearch( &idx ))
728 return setDemodBufferEM(word, idx);
729
730 if (detectPSK()) {
731 if (doPreambleSearch( &idx ))
732 return setDemodBufferEM(word, idx);
733
734 psk1TOpsk2(DemodBuffer, DemodBufferLen);
735 if (doPreambleSearch( &idx ))
736 return setDemodBufferEM(word, idx);
737 }
738 return FALSE;
739 }
740
741 //////////////// 4205 / 4305 commands
742 int usage_lf_em4x05_dump(void) {
743 PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
744 PrintAndLog("");
745 PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
746 PrintAndLog("Options:");
747 PrintAndLog(" h - this help");
748 PrintAndLog(" pwd - password (hex) (optional)");
749 PrintAndLog("samples:");
750 PrintAndLog(" lf em 4x05dump");
751 PrintAndLog(" lf em 4x05dump 11223344");
752 return 0;
753 }
754 int usage_lf_em4x05_read(void) {
755 PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
756 PrintAndLog("");
757 PrintAndLog("Usage: lf em 4x05read [h] <address> <pwd>");
758 PrintAndLog("Options:");
759 PrintAndLog(" h - this help");
760 PrintAndLog(" address - memory address to read. (0-15)");
761 PrintAndLog(" pwd - password (hex) (optional)");
762 PrintAndLog("samples:");
763 PrintAndLog(" lf em 4x05read 1");
764 PrintAndLog(" lf em 4x05read 1 11223344");
765 return 0;
766 }
767 int usage_lf_em4x05_write(void) {
768 PrintAndLog("Write EM4x05/4x69. Tag must be on antenna. ");
769 PrintAndLog("");
770 PrintAndLog("Usage: lf em 4x05write [h] <address> <data> <pwd>");
771 PrintAndLog("Options:");
772 PrintAndLog(" h - this help");
773 PrintAndLog(" address - memory address to write to. (0-15)");
774 PrintAndLog(" data - data to write (hex)");
775 PrintAndLog(" pwd - password (hex) (optional)");
776 PrintAndLog("samples:");
777 PrintAndLog(" lf em 4x05write 1 deadc0de");
778 PrintAndLog(" lf em 4x05write 1 deadc0de 11223344");
779 return 0;
780 }
781 int usage_lf_em4x05_info(void) {
782 PrintAndLog("Tag information EM4205/4305/4469//4569 tags. Tag must be on antenna.");
783 PrintAndLog("");
784 PrintAndLog("Usage: lf em 4x05info [h] <pwd>");
785 PrintAndLog("Options:");
786 PrintAndLog(" h - this help");
787 PrintAndLog(" pwd - password (hex) (optional)");
788 PrintAndLog("samples:");
789 PrintAndLog(" lf em 4x05info");
790 PrintAndLog(" lf em 4x05info deadc0de");
791 return 0;
792 }
793
794 int CmdEM4x05Dump(const char *Cmd) {
795 uint8_t addr = 0;
796 uint32_t pwd = 0;
797 bool usePwd = false;
798 uint8_t ctmp = param_getchar(Cmd, 0);
799 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_dump();
800
801 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
802 pwd = param_get32ex(Cmd, 0, 1, 16);
803
804 if ( pwd != 1 )
805 usePwd = true;
806
807 int success = 1;
808 PrintAndLog("Addr | data | ascii");
809 PrintAndLog("-----+--------+------");
810 for (; addr < 16; addr++) {
811 if (addr == 2) {
812 if (usePwd) {
813 PrintAndLog(" %02u | %08X", addr, pwd);
814 } else {
815 PrintAndLog(" 02 | cannot read");
816 }
817 } else {
818 //success &= EM4x05Read(addr, pwd, usePwd);
819 }
820 }
821
822 return success;
823 }
824 //ICEMAN; mentalnote to self: -1 is not doable for uint32_t..
825 int CmdEM4x05Read(const char *Cmd) {
826 int addr, pwd;
827 bool usePwd = false;
828 uint8_t ctmp = param_getchar(Cmd, 0);
829 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_read();
830
831 addr = param_get8ex(Cmd, 0, -1, 10);
832 pwd = param_get32ex(Cmd, 1, -1, 16);
833
834 if ( (addr > 15) || (addr < 0 ) || ( addr == -1) ) {
835 PrintAndLog("Address must be between 0 and 15");
836 return 1;
837 }
838 if ( pwd == -1 )
839 PrintAndLog("Reading address %d", addr);
840 else {
841 usePwd = true;
842 PrintAndLog("Reading address %d | password %08X", addr, pwd);
843 }
844
845 UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
846 clearCommandBuffer();
847 SendCommand(&c);
848 UsbCommand resp;
849 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
850 PrintAndLog("Command timed out");
851 return -1;
852 }
853
854 if (!downloadSamplesEM())
855 return -1;
856
857 int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
858 if (graphJustNoise(GraphBuffer, testLen)) {
859 PrintAndLog("Tag not found");
860 return -1;
861 }
862
863 //attempt demod
864 uint32_t word = 0;
865 int isOk = demodEM4x05resp(&word);
866 if (isOk)
867 PrintAndLog("Got Address %02d | %08X",addr, word);
868 else
869 PrintAndLog("Read failed");
870
871 return isOk;
872 }
873
874 int CmdEM4x05Write(const char *Cmd) {
875 uint8_t ctmp = param_getchar(Cmd, 0);
876 if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_write();
877
878 bool usePwd = false;
879 int addr = 16; // default to invalid address
880 int data = 0xFFFFFFFF; // default to blank data
881 int pwd = 0xFFFFFFFF; // default to blank password
882
883 addr = param_get8ex(Cmd, 0, -1, 10);
884 data = param_get32ex(Cmd, 1, -1, 16);
885 pwd = param_get32ex(Cmd, 2, -1, 16);
886
887 if ( (addr > 15) || (addr < 0 ) || ( addr == -1) ) {
888 PrintAndLog("Address must be between 0 and 15");
889 return 1;
890 }
891 if ( pwd == -1 )
892 PrintAndLog("Writing address %d data %08X", addr, data);
893 else {
894 usePwd = true;
895 PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
896 }
897
898 uint16_t flag = (addr << 8 ) | usePwd;
899
900 UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
901 clearCommandBuffer();
902 SendCommand(&c);
903 UsbCommand resp;
904 if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
905 PrintAndLog("Error occurred, device did not respond during write operation.");
906 return -1;
907 }
908
909 if (!downloadSamplesEM())
910 return -1;
911
912
913 //attempt demod:
914 //need 0 bits demoded (after preamble) to verify write cmd
915 uint32_t dummy = 0;
916 int isOk = demodEM4x05resp(&dummy);
917 if (isOk)
918 PrintAndLog("Write Verified");
919 else
920 PrintAndLog("Write could not be verified");
921 return isOk;
922 }
923
924 void printEM4x05config(uint32_t wordData) {
925 uint16_t datarate = (((wordData & 0x3F)+1)*2);
926 uint8_t encoder = ((wordData >> 6) & 0xF);
927 char enc[14];
928 memset(enc,0,sizeof(enc));
929
930 uint8_t PSKcf = (wordData >> 10) & 0x3;
931 char cf[10];
932 memset(cf,0,sizeof(cf));
933 uint8_t delay = (wordData >> 12) & 0x3;
934 char cdelay[33];
935 memset(cdelay,0,sizeof(cdelay));
936 uint8_t LWR = (wordData >> 14) & 0xF; //last word read
937
938 switch (encoder) {
939 case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
940 case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
941 case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
942 case 3: snprintf(enc,sizeof(enc),"Miller"); break;
943 case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
944 case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
945 case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
946 case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
947 case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
948 case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
949 default: snprintf(enc,sizeof(enc),"Unknown"); break;
950 }
951
952 switch (PSKcf) {
953 case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
954 case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
955 case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
956 case 3: snprintf(cf,sizeof(cf),"unknown"); break;
957 }
958
959 switch (delay) {
960 case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
961 case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
962 case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
963 case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
964 }
965 PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
966 PrintAndLog("Config Breakdown:", wordData);
967 PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate);
968 PrintAndLog(" Encoder: %u | %s", encoder, enc);
969 PrintAndLog(" PSK CF: %u | %s", PSKcf, cf);
970 PrintAndLog(" Delay: %u | %s", delay, cdelay);
971 PrintAndLog(" LastWordR: %02u | Address of last word for default read", LWR);
972 PrintAndLog(" ReadLogin: %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required");
973 PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required");
974 PrintAndLog("WriteLogin: %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required");
975 PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required");
976 PrintAndLog(" R.A.W.: %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off");
977 PrintAndLog(" Disable: %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted");
978 PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled");
979 PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled");
980 }
981
982 void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
983 switch (chipType) {
984 case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break;
985 case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break;
986 case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break;
987 //add more here when known
988 default: PrintAndLog(" Chip Type: %u Unknown", chipType); break;
989 }
990
991 switch (cap) {
992 case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
993 case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break;
994 case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
995 case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break;
996 default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
997 }
998
999 PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
1000 if (serial != 0) {
1001 PrintAndLog("\n Serial #: %08X\n", serial);
1002 }
1003 }
1004
1005 void printEM4x05ProtectionBits(uint32_t wordData) {
1006 for (uint8_t i = 0; i < 15; i++) {
1007 PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
1008 if (i==14) {
1009 PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
1010 }
1011 }
1012 }
1013
1014 //quick test for EM4x05/EM4x69 tag
1015 bool EM4x05Block0Test(uint32_t *wordData) {
1016 // return (EM4x05ReadWord_ext(0,0,false,wordData) == 1);
1017 return false;
1018 }
1019
1020 int CmdEM4x05Info(const char *Cmd) {
1021 /*
1022 uint32_t pwd;
1023 uint32_t wordData = 0;
1024 bool usePwd = false;
1025 uint8_t ctmp = param_getchar(Cmd, 0);
1026 if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em4x05_info();
1027
1028 // for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
1029 pwd = param_get32ex(Cmd, 0, 1, 16);
1030
1031 if ( pwd != 1 )
1032 usePwd = true;
1033
1034 // read word 0 (chip info)
1035 // block 0 can be read even without a password.
1036 if ( !EM4x05Block0Test(&wordData) )
1037 return -1;
1038
1039 uint8_t chipType = (wordData >> 1) & 0xF;
1040 uint8_t cap = (wordData >> 5) & 3;
1041 uint16_t custCode = (wordData >> 9) & 0x3FF;
1042
1043 // read word 1 (serial #) doesn't need pwd
1044 wordData = 0;
1045 if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
1046 //failed, but continue anyway...
1047 }
1048 printEM4x05info(chipType, cap, custCode, wordData);
1049
1050 // read word 4 (config block)
1051 // needs password if one is set
1052 wordData = 0;
1053 if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 )
1054 return 0;
1055
1056 printEM4x05config(wordData);
1057
1058 // read word 14 and 15 to see which is being used for the protection bits
1059 wordData = 0;
1060 if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) {
1061 return 0;
1062 }
1063 // if status bit says this is not the used protection word
1064 if (!(wordData & 0x8000)) {
1065 if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) {
1066 return 0;
1067 }
1068 }
1069 if (!(wordData & 0x8000)) {
1070 //something went wrong
1071 return 0;
1072 }
1073 printEM4x05ProtectionBits(wordData);
1074
1075 */
1076 return 1;
1077 }
1078
1079 static command_t CommandTable[] = {
1080 {"help", CmdHelp, 1, "This help"},
1081 {"410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
1082 {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag in GraphBuffer"},
1083 {"410xsim", CmdEM410xSim, 0, "simulate EM410x tag"},
1084 {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
1085 {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
1086 {"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
1087 {"4x05dump", CmdEM4x05Dump, 0, "dump EM4205/4305 tag"},
1088 {"4x05info", CmdEM4x05Info, 0, "tag information EM4x05/EM4x69"},
1089 {"4x05read", CmdEM4x05Read, 0, "read word data from EM4205/4305"},
1090 {"4x05write", CmdEM4x05Write, 0, "write word data to EM4205/4305"},
1091 {"4x50read", CmdEM4x50Read, 0, "read word data from EM4x50"},
1092 {"4x50write", CmdEM4x50Write, 0, "write word data to EM4x50"},
1093 {"4x50dump", CmdEM4x50Dump, 0, "dump EM4x50 tag"},
1094 {NULL, NULL, 0, NULL}
1095 };
1096
1097 int CmdLFEM4X(const char *Cmd) {
1098 clearCommandBuffer();
1099 CmdsParse(CommandTable, Cmd);
1100 return 0;
1101 }
1102
1103 int CmdHelp(const char *Cmd) {
1104 CmdsHelp(CommandTable);
1105 return 0;
1106 }
Impressum, Datenschutz